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In this sequel to a companion paper, we complement our analysis of the binary projections of
the International Trade Network (ITN) by considering its weighted representations. We show that,
unlike the binary case, all possible weighted representations of the ITN (directed/undirected, ag-
gregated/disaggregated) cannot be traced back to local structural properties, which are therefore
of limited informativeness. Our results highlight that any topological property representing only
partial information (e.g., degree sequences) cannot in general be obtained from the corresponding
weighted property (e.g., strength sequences). Therefore the expectation that weighted structural
properties offer a more complete description than purely topological ones is misleading. Our analy-
sis of the I'TN detects indirect effects that are not captured by traditional macroeconomic analyses
focused only on weighted first-order country-specific properties, and highlights the limitations of
models and theories that overemphasize the need to reproduce and explain such properties.

PACS numbers: 89.65.Gh; 89.70.Cf; 89.75.-k; 02.70.Rr

I. INTRODUCTION

In this paper we extend our analysis of the binary
projection of the International Trade Network (ITN) re-
ported in the previous paper [1] to the weighted repre-
sentation of the same network. As in the binary case,
we employ a recently-proposed randomization method
[2] to assess in detail the role that local properties have
in shaping higher-order patterns of the weighted ITN in
all its possible representations (directed/undirected, ag-
gregated /disaggregated) and across several years. We
find that, unlike the binary case, higher-order patterns
of weighted (either directed or undirected, either aggre-
gated or disaggregated) representations of the ITN can-
not be merely traced back to local properties alone (i.e.,
node strength sequences). In particular, when compared
to its randomized variants, the observed weighted ITN
displays a different and sparser topology (despite the
ITN is usually considered denser than most studied net-
works), stronger disassortativity, and larger clustering.
As sparser and less aggregated commodity-specific rep-
resentations are considered, the accordance between the
real and randomized networks gets even worse. All these
results hold for both undirected and directed projections,
and are robust throughout the time interval we consider
(from year 1992 to 2002).

From an international-trade perspective, our results in-
dicate that a weighted network description of trade flows,
by focusing on higher-order properties in addition to local
ones, captures novel and fresh evidence. Therefore, tra-
ditional analyses of country trade profiles focusing only

on local properties and country-specific statistics convey
a partial description of the richness and details of the
ITN architecture. Moreover, economic models and the-
ories that only aim at explaining the local properties of
the weighted ITN (i.e. the total values of imports and
exports of world countries) are limited, as such proper-
ties have no predictive power on the rest of the structure
of the network.

We refer the reader to the companion paper [1] for a
description of the data, the notation used, the meaning
and economic importance of local topological properties,
and the randomization method that we have adopted.

II. THE ITN AS A WEIGHTED UNDIRECTED
NETWORK

The weighted representation of the ITN takes into ac-
count the intensity (dollar value) of trade relationships,
and can be either directed or undirected. The structure of
the network is completely specified by the weight matrix
W, whose entries {w;;} have been defined in Ref. [1] in
the directed and undirected case. In both cases, we first
use the matrix W as the starting point for the random-
ization method, and as a result we obtain an ensemble of
randomized weight matrices with fixed local constraints
(the strength sequences). Then, we rescale both the real
matrix and its randomized counterparts by dividing all
weights by the total yearly weight w;os = Zij w;;. Note
that wyee is the sum of the strengths of all vertices, and
is therefore preserved by the method in all randomized



networks, as a result of the constraints on the strengths.
This procedure allows for homogeneous comparisons be-
tween real and randomized webs, and across different
years and commodities.

In the weighted undirected case, an edge between ver-
tices ¢ and j represents the presence of at least one of the
two possible trade relationships between the two coun-
tries 7 and j, and the weight w;; represents the average
trade value (or equivalently half the total bilateral trade
value) [1]. Clearly, if no trade occurs in either direction,
then w;; = 0 and no link exists. The weight matrix W
is therefore symmetric: w;; = wj;. One can still de-
fine an adjacency matrix A, describing the purely binary
topology of the network, with entries a;; = ©(w;;) where
O(z) = 1if £ > 0 and ©(x) = 0 otherwise. Clearly,
the symmetry of W implies the symmetry of A. In the
weighted undirected representation the local constraints
{C,} are the strengths of all vertices, i.e. the strength se-
quence {s;} [1]. The randomization method [2] proceeds
in this case by specifying the constraints {C,} = {s;}
(see Appendix A), and yields the ensemble probability
of any weighted graph G, which now is uniquely speci-
fied by its generic weight matrix W. For any weighted
topological property X, it is therefore possible to easily
obtain the expectation value (X) across the ensemble of
weighted undirected graphs with specified strength se-
quence. In economic terms, specifying the strength se-
quence amounts to investigate the properties of the trade
network once total trade of all countries is controlled for.
By construction, the expected strength (s;) across the
randomized ensemble is equal to the empirical value s;,
therefore in the weighted undirected case the strength
values {s; } are the natural independent variables in terms
of which other weighted properties X can be visualized.
However, as we mentioned in the companion paper [1],
in order to allow a consistent temporal analysis we need
to use the rescaled weights @;; = w;j/we. Consistently,
we define the rescaled strength
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(1)

(where wior = >, >, wi;) and we similarly use w;; in-
stead of w;; in the definition of all other weighted topo-
logical quantities. Note that, across the randomized en-
semble, w;,: is a random variable, since so are the weights
w;j. However, we can rewrite w; = Y, 5;/2, and since
(s;) = s; we have
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The above result shows that the expectation value of
the total weight across the randomized ensemble is con-
strained by the method to be strictly equal to the ob-
served value wyy¢. In other words, the constraint on the
strengths is automatically reflected also in a constraint
on the total weight, and we can therefore use the the lat-
ter to rescale all weights, both in the real network and in
its randomized variants.

<wtot> = = Wtot (2)

As for the binary analyses [1], we first report de-
tailed results for the 2002 snapshot of the commodity-
aggregated network (Sections IT A and II B) then consider
the temporal evolution of the aggregated network (Sec-
tions ITC and IID), and finally perform a commodity-
specific analysis (Section ITE).

A. Average nearest neighbor strength

We start with the analysis of the completely aggre-
gated network (i.e. ¢ = 0 according to our notation de-
scribed in Ref. [1]). Therefore, in the following formulas,
we set W = W0 and drop the superscript for brevity.
Our aim is to understand how specifying the strength se-
quence affects higher-order properties. We start with the
weighted counterpart of the average nearest neighbor de-
gree (ANND), i.e. the average nearest neighbor strength
(ANNS) of vertex ¢, defined as
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The ANNS measures the average strength of the neigh-
bors of a given vertex. Similarly to the ANND, the
ANNS involves indirect interactions of length 2, however
(as happens for most weighted quantities) mixing both
weighted and purely topological information: in particu-
lar, terms of the type a;;10;;, appear in the definition. The
correlations between the strength of neighboring coun-
tries can be inspected by plotting 87" versus 5;. This is
shown in Fig. 1. Even if the points are now significantly
more scattered, we find a decreasing trend as previously
observed for the corresponding binary quantities [1]. This
trend signals that highly trading countries trade typically
with poorly trading ones (and vice versa), confirming on
a weighted basis the disassortative character observed at
the binary level. However, in this case the null model be-
haves in a completely different way: over the randomized
ensemble with specified strength sequence, the expecta-
tion value (§7™) of the ANNS (see Appendix A) decreases
over a much narrower range (see Fig. 1), and is always
different from the observed value. This important re-
sults implies that, even if we observe disassortativity in
both cases (binary and weighted), we find that in the
binary case this property is completely explained by the
degree sequence, whereas in the weighted case it is not ex-
plained by the strength sequence. This has implications
for economic models of international trade: while no the-
oretical explanation is required in order to explain why
poorly connected countries trade with highly connected
ones on a binary basis (once the number of trade part-
ners is specified), additional explanations are required
in order to explain the same phenomenon at a weighted
level, even after controlling for the total trade volumes of
all countries. This result could look counterintuitive, as
a simple visual inspection would suggest that in the bi-
nary case the disassortative behavior is in absolute terms

snn —

S

(2 - kz

3)



[ o
0.05} ]
L e
lo o
. 004} ¢ 1
Iinf L4 0. ¢ ° .
1S = o ]
o 0-03: ". @ . %
[ o ° o Q’.$ %
T R A T |
: il 2L ¢ VP
001’ L L L L L =
10 107 0.001 0.01 0.1
s
FIG. 1: Average nearest neighbor strength §;'" versus

strength §; in the 2002 snapshot of the real weighted undi-
rected ITN (red points), and corresponding average over the
maximum-entropy ensemble with specified strengths (blue
curve).

less noisy, and sometimes more pronounced, than in the
weighted one.

B. Weighted clustering coefficient

We now consider the weighted version of the cluster-
ing coefficient. In particular, we choose the definition
proposed in Ref. [3], which has a more direct extension
to the directed case [4]. According to that definition, the
(rescaled) weighted clustering coefficient ¢; represents the
intensity of the triangles in which vertex ¢ participates:

5 = 2 Zk;ﬁi,j(wijwjkﬁ)ki)l/:g
T ki (ki — 1)
2t Dokt (40 1Dk )/
2o jti Dokt g Gk

(4)

Note that ¢; takes into account indirect interactions
of length 3, corresponding to products of the type
Wi W;,Wk; appearing in the above formula. In Fig. 2
we plot ¢; versus §;. This time we find an increasing
trend of ¢; as a function of §;, indicating that countries
with larger total trade participate in more intense trade
triangles. We also show the trend followed by the ran-
domized quantity (¢;) (see Appendix A), which is found
to approximately reproduce the empirical data. Despite
the partial accordance between the clustering profile of
real and randomized networks, the total level of cluster-
ing of the real ITN is however larger than its randomized
counterpart, as we show below (Section IIC) for all the
years considered.
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FIG. 2: Weighted clustering coefficient ¢&; versus strength §;
in the 2002 snapshot of the real weighted undirected ITN
(red points), and corresponding average over the maximum-
entropy ensemble with specified strengths (blue curve).

C. Evolution of weighted undirected properties

The results we have reported above are qualitatively
similar for each of the 11 shapshots of the ITN from year
1992 to 2002. As for our binary analyses [1], we can
therefore compactly describe the temporal evolution of
weighted undirected properties in terms of simple indica-
tors.

We start with the analysis of the ANNS (Fig. 3). In
Fig. 3a we report the average (across vertices) and the
associated 95% confidence interval of both real and ran-
domized values ({57} and {(57"™)}) as a function of time.
We find that the average of 57" has been first decreasing
rapidly, and has then remained almost constant. This
behavior is already clean from trends in the total vol-
ume of trade, since all weights have been rescaled and
divided by wyo¢. By contrast, the average of the random-
ized quantity (§7") displays a constant trend throughout
the time interval considered, and its value is always sig-
nificantly smaller than the empirical one. Thus, unlike
the binary case, the null model does not reproduce the
average values of the correlations considered, and does
not capture their temporal evolution. A similar behavior
is observed for the evolution of the standard deviation of
the ANNS across vertices (Fig. 3b). In Fig. 3¢ we show
the correlation coefficient between the empirical quan-
tities {87} and {8;}, whose value (fluctuating around
—0.4) compactly summarizes the disassortativity of the
noisy scatter plot that we have shown previously in Fig. 1,
and the correlation coefficient between the randomized
quantities {(87™)} and {(3;)} = {§;}, which instead dis-
plays a different value close to —1 (due to the noise-free,
even if much weaker, decrease of the randomized curve in
Fig. 1). The discrepancy between the null model and the
real network is finally confirmed by the small correlation
between {57"} and {(57")} (Fig. 3d), which is in marked
contrast with the perfect correlation between {k7"} and
{(k)} we found in the binary case.
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FIG. 3: Temporal evolution of the properties of the (rescaled)
average nearest neighbor strength 5" in the 1992-2002
snapshots of the real weighted undirected I'TN and of the
corresponding maximum-entropy ensembles with specified
strengths. a) average of 3™ across all vertices (red: real,
blue: randomized). b) standard deviation of 57" across all
vertices (red: real, blue: randomized). c¢) correlation coeffi-
cient between 37" and §; (red: real, blue: randomized). d)
correlation coefficient between §7" and (5;"). The 95% con-
fidence intervals of all quantities are represented as vertical
bars.

In Fig. 4 we report a similar analysis for the evolution
of the weighted clustering coefficient. We find that, de-
spite the partial accordance of the real and randomized
clustering profiles shown in Fig. 2, the average level of
clustering of the real network is always higher than its
randomized variant (Fig. 4a), even if the two values have
become closer through time. The same is true for the
standard deviation of the weighted clustering coefficient
(Fig. 4b). We also find that the correlation coefficient be-
tween the empirical quantities {¢;} and {§;} (Fig. 4c) has
rapidly increased between the years 1992 and 1995 (from
about 0.5 to more than 0.95) and has then remained sta-
ble in time. This indicates that the scatter plot shown in
Fig. 2 for the year 2002 becomes noisier in the first snap-
shots of our time window, as we confirmed through an
explicit inspection (not shown). By contrast, the correla-
tion coefficient between the randomized quantities {(¢;)}
and {(8;)} = {5;} displays much smaller variations about
the value 0.85, and is therefore initially larger, and even-
tually smaller, than the corresponding empirical value.
Finally, in Fig. 4d we show the correlation coefficient be-
tween {¢;} and {(¢)}. The increasing trend confirms
the growing agreement between the real and randomized
clustering coefficients, already suggested by the previous
plots. Note however that even two perfectly correlated
lists of values (correlation coefficient equal to 1) are only
equal if their averages are the same (otherwise they are
simply proportional to each other). Thus large correla-
tion coefficients between two quantities can only be inter-
preted in conjunction with a comparison of the average
values of the same quantities. While in the binary case
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FIG. 4: Temporal evolution of the properties of the (rescaled)
weighted clustering coefficient &; in the 1992-2002 snapshots
of the real weighted undirected ITN and of the correspond-
ing maximum-entropy ensembles with specified strengths. a)
average of ¢; across all vertices (red: real, blue: randomized).
b) standard deviation of & across all vertices (red: real, blue:
randomized). ¢) correlation coefficient between ¢; and §; (red:
real, blue: randomized). d) correlation coefficient between ¢;
and (&;). The 95% confidence intervals of all quantities are
represented as vertical bars.

we simultaneously found perfect correlation and equal
average values between real and randomized quantities
[1], in this case we find large correlation but different
average values, systematically confirming only a partial
accordance between the real network and the null model.

D. Edge weights

So far, in our weighted network analysis of world trade
we considered the weighted counterparts (strengths,
ANNS; clustering) of the topological properties we had
studied in the binary case [1]. However, due to the larger
number of degrees of freedom, in the weighted case there
are additional quantities to study which have no binary
analogue. In particular, it is important to understand the
effect that the enforcement of local constraints (strength
sequence) has on the weights of the network, as well as
on its purely binary topology.

To this end, we compare the empirical weight distri-
bution with the expected one. Importantly, one should
not confuse the expected weight distribution with the
distribution of expected weights. In the spirit of our
analysis, the empirical network (and so its weight dis-
tribution) is regarded as a particular possible realization
of the null model with given strengths, and the compar-
ison with the expected properties aims at assessing how
unlikely that particular realization is. Therefore the ob-
served number of edges with weight equal to w (i.e. the
empirical weight distribution) should be compared with
the expected number of such edges in a single realization



10
=08
&
06
304
v
202

0
1990 1992 1994 1996 1998 2000 2002
year

FIG. 5: Edge weights in the weighted undirected ITN. a) cu-
mulative distributions of edge weights in the years 1992 (top
curves) to 2002 (bottom curves). Orange: real network; blue:
expectation for the maximum-entropy ensemble with speci-
fied strengths. b) same as the previous panel, but excluding
zero weights (missing links). Orange: real network; green:
randomization. ¢) percentage of missing links as a function
of time. Red: real network; blue: randomization.

(the expected weight distribution), rather than with the
number of edges whose expected weight across realiza-
tions is equal to w (the distribution of expected weights).
The difference between the two expected quantities is evi-
denced by the fact that the expected edge weight between
vertices is always positive (see Appendix A), whereas in a
single realization there are a number of zero-weight edges
(i.e. missing links).

In Fig. ba we therefore compare the cumulative dis-
tribution of observed weights P.(w) (the fraction of
edge weights smaller than w) with the expected num-
ber (P<(w)) (see Appendix A), both including missing
links (w = 0) and therefore normalized to the number of
pairs of vertices. As an alternative, in Fig. 5b we also
compare the cumulative distribution of positive weights
PZ(w) (which excludes missing links and is therefore nor-
malized to the total number of links) with the expected
number (PX(w)) (see Appendix A). We find that, for
all years in our time window, the real distributions are
always different from the expected ones. To rigorously
confirm this, we have performed Kolmogorov-Smirnov
and Lilliefors tests and for all years we always had to re-
ject the hypothesis that real and expected distributions
are the same (5% significance level). For the positive
weight distributions PZ(w) and (P2 (w)) we also sepa-
rately tested the hypothesis of the log-normality of the
distributions, and again we always had to reject it (5%
significance level).

The above results, besides highlighting large differ-
ences in the weighted structure of real and randomized
networks, also convey important information about re-
markable deviations in their topology. The largest differ-
ence between the curves P.(w) and (P.(w)) is found

at w = 0, and the corresponding points P(0) and
(P<(0)) represent the fractions %,eros and (%zeros) Of
zero weights (missing links) in the network. In Fig. 5c¢
we show the evolution of these fractions over time. We
find that the fraction of missing links in the real network
decreases in time over the time interval considered (i.e.
the link density increases), but its value is always much
larger than the corresponding (vanishing) expected value.
Thus, despite it is usually considered a very dense graph,
with more links per node than most other real-world net-
works, we find that the ITN turns out to be surprisingly
sparser than random weighted networks with the same
strength sequence. This fixes a previously unavailable
benchmark for the density of the empirical ITN, and im-
plies that the high percentage of missing trade relations
among world countries is not explained by size effects
(i.e. the total trade value of all countries).

E. Commodity-specific weighted undirected
networks

We now focus on the disaggregated commodity-specific
versions of the weighted undirected ITN, representing the
trade of single classes of products. We therefore repeat
the previous analyses after setting W = W¢ for various
individual commodities ¢ > 0. As we did for the binary
case [1], we show our results for a subset of 6 commodities
taken from the top 14 categories, namely the two com-
modities with the smallest traded volume (¢ = 93,9),
two ones with intermediate volume (¢ = 39,90), the one
with the largest volume (¢ = 84), plus the aggregation of
all the top 14 commodities (similar results hold also for
the other commodities). Together with the completely
aggregated data (¢ = 0) considered above, this dataset
consists of 7 networks with increasing trade volume and
level of aggregation.

In Fig. 6, we show the scatter plot of the average
nearest neighbor strength as a function of the strength.
Similarly, in Fig. 7, we report the scatter plot for the
weighted clustering coefficient. Both are shown for the
2002 snapshots of the 6 commodity-specific networks.
When compared with the aggregated network (shown
previously in Figs. 1 and 2), these results lead to interest-
ing conclusions. In general, as happens in the binary case
[1], we find that commodities with a lower traded volume
feature more dispersed scatter plots, with larger fluctua-
tions of the empirical data around the average trend. The
effect is more pronounced here than in the binary case.
However, while in the latter the real networks are al-
ways well reproduced by the null model, in the weighted
case the disagreement between empirical and random-
ized data remains strong across different levels of com-
modity aggregation. Moreover, the weighted clustering
coefficient is the quantity that displays the largest differ-
ences between aggregated and disaggregated networks.
We see that, for all commodity classes considered, the ob-
served weighted clustering coefficient is generally larger
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FIG. 6: Average nearest neighbor strength 5;'™ versus
strength §; in the 2002 snapshots of the commodity-specific
(disaggregated) versions of the real weighted undirected ITN
(red points), and corresponding average over the maximum-
entropy ensemble with specified strengths (blue curve). a)
commodity 93; b) commodity 09; ¢) commodity 39; d) com-
modity 90; e) commodity 84; f) aggregation of the top 14
commodities (see Ref. [1] for details). From a) to f), the
intensity of trade and level of aggregation increases.

than its randomized counterpart. However, the devia-
tion is larger for sparser commodities, and decreases as
commodity classes with larger trade volumes and higher
levels of aggregation are considered. This shows that the
partial agreement between real and randomized networks
in the completely aggregated case (see Fig. 2) is not ro-
bust to disaggregation. In other words, the accordance
between empirical data and null model, which according
to our discussion in Section IIC is already incomplete
in the aggregated case, becomes even worse for sparser
commodity-specific networks.

The above results confirm that, unlike the binary case,
the properties of the weighted undirected version of the
ITN are not completely reproduced by simply control-
ling for the local properties. The presence of higher-order
mechanisms is required as an explanation for the onset
and evolution of the observed patterns. This result holds
across different years and is enhanced as lower levels of
commodity aggregation are considered. This shows that
a weighted network approach to the analysis of inter-
national trade conveys additional information with re-
spect to traditional economic studies that describe trade
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commodity 09; ¢) commodity 39; d) commodity 90; e) com-
modity 84; f) aggregation of the top 14 commodities (see Ref.
[1] for details). From a) to f), the intensity of trade and level
of aggregation increases.

in terms of local properties alone (total trade, openness,
etc.) [5]. Interestingly, a major deviation between the
real network and the null model is in the topology im-
plied by local constraints. This confirms, from a different
point of view, that in order to properly understand the
structure of the international trade system is essential to
reproduce its binary topology, even if one is interested in
a weighted description.

III. THE ITN AS A WEIGHTED DIRECTED
NETWORK

We now turn to the weighted directed analysis of the
ITN. A single graph G in the ensemble of weighted di-
rected networks is completely specified by its generic
weight matrix W which is in general not symmetric, and
whose entry w;; represents the intensity of the directed
link from vertex i to vertex j (w;; = 0 if no directed
link is there). The binary adjacency A, with entries
a;; = ©(w;;), is in general not symmetric as well. The
out-strength sequence {s"'} and the in-strength sequence
{si"} represent the local constraints {C, } in the weighted
directed case [1]. The randomization method [2] yields



the expectation value (X) of a property X across the
maximally random ensemble of weighted directed graphs
with in-strength and out-strength sequences equal to the
observed ones (see Appendix B). The quantities {s¢“!}
and {si"} (or combinations of them) are now the natural
independent variables against which other properties can
be visualized in both the real and randomized case, since
their expected value coincides with the observed one by
construction. As for the weighted undirected case, we
will consider the rescaled weights w;; = w;;/wie in or-
der to wash away trends due to an overall change in the
volume of trade across different years. Correspondingly
we consider the rescaled strengths
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(where wior = 32, >, ; wij) and we analogously use w;;
instead of w;; in the definition of all quantities. Note
that we = >, 8™ =, 89", and since (si™) = s and

(s24t) = 59U we have

(Wiot) = Z<S§"> = Z 51" = Wrot (8)
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Therefore, as for the undirected case, the expected value
of wye; coincides with its empirical value, and the total
weight can therefore be safely used to rescale the weights
of both real and randomized networks. As usual, we first
consider the aggregated snapshot for year 2002 in more
detail, then discuss the temporal evolution of the results,
and finally perform a study of disaggregated networks.

A. Directed average nearest neighbor strengths

We consider four generalizations of the definition of
the average nearest neighbor strength of a vertex in a
directed weighted network:

D 05iST i 2ty %Ok

~in/in  __
' = . 9
gin/out _ 21 455" _ i 2ty %iDsk (10)
i - k;n Z Qs
JF£L I
ggut/m _ Zj;éiaijgé‘n _ Z]‘;ﬁi Zk# Qi Wi (11)
7 - k;?ut Z » aij
J
goutfout _ 2y 055 D Dk iy sk (12)
i - ket D ji Wi
7 j#i

Indirect interactions due to chains of length two (prod-
ucts of the type a;jwy;) contribute to the above quan-
tities. A fifth aggregated quantity, which is the natu-
ral analogue of the undirected ANNS, is based on the

(rescaled) total strength 5t = 5in + 50ut;

stot/tot _ 2 ji(ai + aji) 55

2 k%fot

We start by considering the latter. In Fig. 8 we show
§§Ot/ ' together with its randomized value (§i0t/ 't (ob-
tained as in Appendix B), as a function of s in the
aggregated snapshot for year 2002. There are no sig-
nificant differences with respect to Fig. 1, apart from a
“double” series of randomized values due to the two pos-

sible directions (the terms a;; and a;;) that contribute to

the definition of 5:°//**" in Eq. (13). Thus we still observe
a disassortative behavior in the empirical network, which
is not paralleled by the null model.

We now turn to the four directed versions of the ANNS
defined in Egs.(9)-(12), as well as their randomized val-
ues (see Appendix B). As shown in Fig. 9, we find that
the four empirical quantities all display the same disas-
sortative trend, whereas the four randomized ones are
always approximately flat (and no longer switch between
two trends as in Fig. 8). These results show that, as
in the undirected representation, the correlation prop-
erties of the directed weighted ITN deviate significantly
from the ones displayed by the null model with speci-
fied strength sequences. In particular, the pronounced
disassortativity of the real network is a true signature of
negative correlations between the total trade values (in
any direction) of neighboring countries, even after con-
trolling for the heterogeneities in the total trade values
themselves. This is in marked contrast with the binary
case, where we showed that the observed disassortativity
is completely explained by controlling for the empirical
degree sequence [1].

(13)

B. Directed weighted clustering coefficients

The four weighted versions of the inward, outward,
cyclic and middleman directed clustering coefficients
considered in Ref. [1] read [4]

gn — it >t (Drith D) 2

= ; - 14
1 bk —1) (1)
out Dot Zk¢i,j(wikwjk@ij)l/3 )
G = kqut (kqut _ 1) ( 5)
eye _ Dajti St j (Wi W0k )P
G = Linjout _ f+ (16)
. . (Wi W05 1/3
5;,_7”d = Z];ﬁz Zk;ﬁz,]( k'Wj ]k) (17)

in Lout _ L.<>

The above quantities capture indirect interactions of
length 3 according to their directionality, appearing as
products of the type w;; Wy Wy A fifth measure aggre-
gates all directions:

_1/3, ~1/3v,~1/3 | ~1/3\,~1/3 , -1/3
atot — D Dokt (Wi W) (W " w5 7) (W +w,1”)
0=

2[ktot (ktot —1)—2k |
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FIG. 8: Total average nearest neighbor strength stOt/tOt versus

total strength 51°" in the 2002 snapshot of the real weighted
directed ITN (red points), and corresponding average over the
maximum-entropy ensemble with specified out-strengths and
in-strengths (blue curve).

We show the latter in Fig. 10, and the four directed quan-
tities defined in Eqs.(14)-(17) in Fig. 11. All properties
are shown together with their randomized values (see
Appendix B), and plotted against the natural indepen-
dent variables (or combinations of them). Again, there
is no significant difference with respect to the weighted
undirected plot (Fig. 2), apart from the switching behav-

ior of (¢!°") between two trends as already discussed for
<§§°t/ wt). We find an approximate agreement between

real and randomized clustering profiles.
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the maximum-entropy ensemble with specified out-strengths
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FIG. 10: Total weighted clustering coefficient &:°* versus to-
tal strength 5°* in the 2002 snapshot of the real weighted
directed ITN (red points), and corresponding average over
the maximum-entropy ensemble with specified out-strengths
and in-strengths (blue curve).

C. Evolution of weighted directed properties

We now study the temporal evolution of the struc-
tural properties considered. Figure 12 reports the aver-
age, standard deviation, and correlation coefficients for
glot/tot a5 a function of time, and Fig. 13 reports (for
brevity) only the average of the four directed variants

§Z:n/m, §Zn/out, §f"t/m, f“t/o"t. We find that the de-
tailed description offered by the directed structural prop-
erties portrays a different picture with respect to the
undirected results shown in Fig. 3. In particular, we
find that the empirical trends are not always decreas-

ing and the randomized trends are not always constant,
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FIG. 11: Weighted -clustering coefficients versus vertex

strengths in the 2002 snapshot of the real weighted di-

rected ITN (red points), and corresponding averages over the

maximum-entropy ensemble with specified out-strengths and

in-strengths (blue curves). a) &" versus 5:"; b) &' versus
59Ut; ) EY° versus 51" - 59Ut d) &' versus 3 - 59
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FIG. 12:

(rescaled) total average nearest neighbor strength in
the 1992-2002 snapshots of the real weighted directed ITN

and of the corresponding maximum-entropy ensembles with
specified out-strengths and in-strengths. a) average of 5.°"/*"
across all vertices (red: real, blue: randomized). b) standard

L ~tot/tot
deviation of 3"/

Temporal evolution of the properties of the
gtot/tot
i

across all vertices (red: real, blue: ran-
domized). ¢) correlation coefficient between 5°//*°" and 5t
(red: real, blue: randomized). d) correlation coefficient be-
tween 517/ and (51°"/'°"). The 95% confidence intervals of

all quantities are represented as vertical bars.

in contrast with what previously observed for the undi-
rected ANNS. Both the empirical and randomized values
of I/ (Fig. 12a) and §"*/™ (Fig. 13c) display de-
creasing averages, whereas 5;"/ ™ (Fig. 13a) and 52"/ out
(Fig. 13b) display constant randomized values and first
increasing, then slightly decreasing empirical values. In
addition, 57//°"" (Fig. 13d) displays a different behavior
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FIG. 13: Averages and their 95% confidence intervals (across
all vertices) of the directed average nearest neighbor strengths
in the 1992-2002 snapshots of the real weighted directed ITN
(red), and corresponding averages over the maximum-entropy
ensemble with specified out-strengths and in-strengths (blue).
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FIG. 14: Temporal evolution of the properties of the
(rescaled) total weighted clustering coefficient &°* in the 1992-
2002 snapshots of the real weighted directed ITN and of
the corresponding maximum-entropy ensembles with speci-
fied out-strengths and in-strengths. a) average of &i°" across
all vertices (red: real, blue: randomized). b) standard de-
viation of &°" across all vertices (red: real, blue: random-
ized). c) correlation coefficient between é&°° and 5% (red:
real, blue: randomized). d) correlation coefficient between
&t and (&t°"). The 95% confidence intervals of all quantities
are represented as vertical bars.

where both real and randomized averages first increase
and then decrease. These fine-level differences are all
washed away in the undirected description considered in
Section II, signaling a loss of information like the one we
also observed in the binary case [1]. However, while in
the latter the null model was always in agreement with
the empirical data, here we always observe large devi-
ations. In particular, the averages and standard devia-
tions of all empirical quantities are different from their
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FIG. 15: Averages and their 95% confidence intervals (across
all vertices) of the directed weighted clustering coefficients
in the 1992-2002 snapshots of the real weighted directed ITN
(red), and corresponding averages over the maximum-entropy
ensemble with specified out-strengths and in-strengths (blue).
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FIG. 16: Edge weights in the weighted directed ITN (red:
real network, blue: expectation for the maximum-entropy en-
semble with specified out-strengths and in-strengths). a) cu-
mulative distributions of edge weights in the years 1992 (top
curves) to 2002 (bottom curves). b) same as the previous
panel, but excluding zero weights (missing links). c) percent-
age of missing links as a function of time.

randomized counterparts, and the analysis of the correla-
tion coefficients confirms that the disassortative behavior
of the real network is robust in time, and its intensity is
systematically not reproduced by the null model.

Different considerations apply to the evolution of the
weighted directed clustering coefficients éi°t, ¢in, cout,
¢¥ and ¢4, shown in Figs. 14 and 15. In this case
we find that the undirected trend we observed in Fig. 4
is still not representative of the individual trends of the
directed coefficients studied here. However, the empiri-
cal and randomized values of the latter are found to be
closer here than in the undirected case, and to follow
similar temporal behaviors. The null model is however
only marginally consistent with the real network, and the
knowledge of the strength sequences remains of limited
informativeness.

D. Directed edge weights

As we did in Section IID for the weighted undirected
case, we now study the consequences that the specifi-
cation of the in- and out-strength sequences has on the
weights of the network and on its density.

In Fig. 16a we show the cumulative distribution of
observed weights P.(w) (including missing links with
w = 0) and its randomized counterpart (P<(w)) (see Ap-
pendix B). Similarly, in Fig. 16b we show the cumulative
distribution of observed positive weights PZ (w) (exclud-
ing missing links) and the randomized one (P (w)) (see
Appendix B). As in the undirected case, we find that the
empirical distributions are always different from the ran-
domized ones, and we confirmed that the hypothesis of
equality of real and expected distributions is always re-

10

jected by both Kolmogorov-Smirnov and Lilliefors tests
(5% significance level). Similarly, the hypothesis of log-
normality of the positive weight distributions P2 (w) and
(PZ(w)) is always rejected (5% significance level).

In this case too, we can monitor the important differ-
ence between the topological density of the real and ran-
domized ITN by plotting the fractions of missing links
Yozeros = P<(0) and (Yozeros) = (P<(0)) as a function
of time (Fig. 16¢). Even if the difference is smaller than
in the undirected case, we can confirm on a directed ba-
sis that, despite it is usually considered a dense graph,
the observed ITN is surprisingly sparser than random
directed weighted networks with the same in- and out-
strength sequences. Thus the density of (missing) links
in the real trade network is not accounted for by size
considerations (total imports and total exports of world
countries).

E. Commodity-specific weighted directed networks

We finally come to the analysis of disaggregated
commodity-specific representations of the weighted di-
rected ITN. We show results for the usual subset of 6
commodity classes ordered by increasing trade intensity
ad level of commodity aggregation, to which we can add
the completely aggregated case already discussed (again,
we found similar results for all commodities).

Figures 17 and 18 report the total average nearest
neighbor strength and total weighted clustering coeffi-
cient as functions of the total strength, for the 6 selected
commodity classes in year 2002. The corresponding plots
for the aggregated networks were shown previously in
Figs. 8 and 10. We find once again that, as more in-
tensely traded commodities and higher levels of aggre-
gation are considered, the empirical data become less
scattered around their average trend. In this case, the
same effect holds also for the randomized data. As for
the weighted undirected case, and unlike the binary rep-
resentation, there is no agreement between empirical net-
works and the null model. The accordance becomes even
worse as commodity classes with smaller trade volume
and lower level of aggregation are considered.

The above results extend to the directed case what we
found in the analysis of weighted undirected properties.
In particular, unlike the binary case, the knowledge of lo-
cal properties conveys only limited information about the
actual structure of the network. Higher-order properties
are not explained by local constraints, and indirect inter-
actions cannot be decomposed to direct ones. This holds
irrespective of the commodity aggregation level and the
particular year considered. This implies that a weighted
network approach captures more information than sim-
pler analyses focusing on country-specific local proper-
ties. Moreover, simple purely topological properties such
as link density are not reproduced by the null model.
This implies that, even in weighted analyses, the binary
structure is an important property to explain, because it
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FIG. 17: Total average nearest neighbor strength stOt/tOt
versus total strength 5!°' in the 2002 snapshots of the
commodity-specific (disaggregated) versions of the real
weighted directed ITN (red points), and corresponding aver-
age over the maximum-entropy ensemble with specified out-
strengths and in-strengths (blue curve). a) commodity 93;
b) commodity 09; ¢) commodity 39; d) commodity 90; e)
commodity 84; f) aggregation of the top 14 commodities (see
Ref. [1] for details). From a) to f), the intensity of trade and
level of aggregation increases.

is responsible of major departures of the empirical net-
work from the null model. Therefore, both binary and
weighted analyses highlight, for completely different rea-
sons, the importance of reproducing the ITN topology
and devoting it more consideration in models of trade.

IV. CONCLUSIONS

In this paper and in the preceding one [1] we have de-
rived a series of results about the structure of the ITN
and the role that local topological properties have in con-
straining it. Our findings are a priori unpredictable with-
out a comparison with a null model, and can be summa-
rized as follows.

In the binary description (both in the directed and
undirected cases), we found that specifying the degree
sequence(s) (a first-order topological property) is enough
to explain all higher-order properties [1]. This result has
two consequences. First, it implies that all the observed
patterns (disassortativity, clustering, etc.) should not
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FIG. 18: Total weighted clustering coefficient &:°* versus to-
tal strength 5i°" in the 2002 snapshots of the commodity-
specific (disaggregated) versions of the real weighted di-
rected ITN (red points), and corresponding average over the
maximum-entropy ensemble with specified our-strengths and
in-strengths (blue curve). a) commodity 93; b) commodity
09; ¢) commodity 39; d) commodity 90; e) commodity 84;
f) aggregation of the top 14 commodities (see Ref. [1] for
details). From a) to f), the intensity of trade and level of
aggregation increases.

be interpreted as genuine higher-order stylized facts and
do not require additional explanations besides those ac-
counting for the different specific numbers of trade part-
ners of all countries. Second, it indicates that the degree
sequence encodes virtually all the binary information and
is therefore a key structural property that economic mod-
els of trade should try to explain in detail.

By contrast, in the weighted description (again, both in
the directed and undirected cases) specifying the strength
sequence(s) is not enough in order to reproduce the other
properties of the network. Therefore the knowledge of
total trade volumes of all countries is of limited infor-
mativeness. A weighted network description of trade,
by taking into account indirect interactions besides di-
rect ones, succeeds in conveying additional, nontrivial
information with respect to standard economic analyses
that explain international trade in terms of local country-
specific properties only. In particular, in this case the dis-
assortative character of the network and the high level of
clustering cannot be simply traced back to the observed
local trade volumes and requires additional explanations.
Moreover, the purely binary topology of the real trade
network is different and sparser (despite the ITN is tra-



ditionally considered a very dense network) than the one
predicted by the null model with the same strength se-
quence.

Our results bear important consequences for the theory
of international trade. The most commonly used model-
ing framework, i.e. that of gravity models [6, 7], relies on
the assumption that the intensity of trade between coun-
tries ¢ and j depends only on individual properties of 4
and j (e.g., their GDP) and on additional pairwise quan-
tities relevant to ¢ and j alone (the distance between them
plus other factors either favoring or impeding trade). The
irreducibility of weighted indirect interactions to direct
ones, that we have shown above, implies that even if
gravity models succeed in reproducing the magnitude of
isolated interactions, they fail to capture the complexity
of longer chains of relationships in the network. More-
over, as we have shown, much of the deviation between
real and randomized networks in the weighted case is due
to differences in the bare topology. This means that, in
order to successfully reproduce the weighted properties
of the ITN, it is essential to correctly replicate its binary
structure, confirming (from a completely different per-
spective) the importance of the latter. This explains why
in other studies the weighted properties of the aggregated
ITN have been replicated by specifying the strength and
the degree of all vertices simultaneously [8]. Even if it
is not the focus of the present work, the effects of a si-
multaneous specification of the strength sequence and of
the degree sequence can be studied in more detail ap-
plying the same maximum-likelihood method used here
[2] by exploiting the analytical results available for the
corresponding maximum-entropy ensemble of weighted
graphs [9]. In general, our results indicate that theories
and models of international trade are incomplete if they
only focus on bilateral trade volumes and local weighted
properties as in the case of gravity models, and if they
do not include the binary topology of the ITN among the
main empirical properties to replicate.
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APPENDIX A: WEIGHTED UNDIRECTED
PROPERTIES

In the weighted undirected case, each graph G is com-
pletely specified by its (symmetric) non-negative weight
matrix W. The entries w;; of this matrix are integer-
valued, since so are the trade values we consider [1].
The randomization method we are adopting [2] proceeds
by specifying the strength sequence as the constraint:
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{Cs} = {si}. The Hamiltonian therefore reads

H(W) = Z Oisi(W) =D > (0; + 0wy

i j<i

(A1)

and one can show [9] that this allows to write the graph
probability as

P(W) = H H Gij(wij) (A2)
where
gij(w) = (zix;)" (1 — ziz5) (A3)

(with ; = e~%) is the probability that a link of weight w
exists between vertices ¢ and j in the maximum-entropy
ensemble of weighted undirected graphs, subject to spec-
ifying a given strength sequence as the constraint. If
the latter is chosen to be the empirical strength se-
quence {s;(W*)} of the particular real network W*, then
Eq. (A3) yields the exact value of the connection proba-
bility in the ensemble of randomized weighted networks
with the same average strength sequence as the empiri-
cal one, provided that the parameters {x;} are set to the
values that maximize the likelihood P(W*) [2]. These
values are the solution of the following set of N coupled
nonlinear equations:

T
(si) = Z m =s5(W*) Vi (A4)
J#i

Once the values {z;} are found, they are inserted into
Eq. (A3) which allows to easily compute the expectation
value (X) of any topological property X analytically,
without generating the randomized networks explicitly
[2]. Equation (A4) shows that, by construction, the
strengths of all vertices are special local quantities whose
expected and empirical values are exactly equal: (s;) =
s;- The expectation values of the higher-order topological
properties considered in the main text can be obtained as
in Table I. The expressions are derived exploiting the fact
that <’LUZ]> = Zw wq”(w) = $1I]/(1 — l’i(l?j), and that
different pairs of vertices are statistically independent,
which implies (w;jwp) = (wij) (wi) if (¢ —j) and (k —1)
are distinct pairs of vertices, whereas (w;jwy) = (wg;) if
(i —j) and (k — ) are the same pair of vertices. The ex-
pected value of the power of the weight between vertices
i and j is calculated as follows:

<w%) = Zwo‘qij(w) = (1 —z;z;)Li_o(xsz;)  (AD)

where Li, (z) denotes the Polylogarithm function defined
as

o0 Zl
Lin(2) =) o (A6)
=1

The adjacency matrix representing the existence of a
link (irrespective of its intensity) between vertex ¢ and
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TABLE I: Expressions for the empirical and expected properties in the weighted (undirected and directed) representations of

the network.

vertex j is derived from the weight matrix by setting
a;; = ©(w;;), where O(z) = 1if z > 0 and O(z) = 0
otherwise. The probability that vertices 7 and j are con-
nected, irrespective of the edge weight, is now (a;;) =
pij =1 —q;;(0) = z;z;. In analogy with the expectation
values of products of weights, we have (a;jar) = pi;jpm
if (i—7) and (k—1) are distinct pairs of vertices, whereas
(aijar) = (af;) = (aij) = pi; if (i — j) and (k —1) are
the same pair of vertices. Finally note that we are in-
terested in studying the quantities obtained using the

rescaled weights w;; = w;;/wiee. This does not introduce
complications, since (wit) = wier as we have shown in
Eq. (2). However, the parameters {z;} are computed as
in Eq. (A4) before rescaling the strengths, since the origi-
nal integer weights w;; are the actual degrees of freedom.



APPENDIX B: WEIGHTED DIRECTED
PROPERTIES

In the weighted directed case, the above results can
be generalized as follows. Each graph G is completely
specified by its non-negative (integer-valued) weight ma-
trix W, which now is in general not symmetric. The
constraints specified in the randomization method [2]
are now the joint in-strength and out-strength sequence:
{Cy} = {5t", 59"}, The Hamiltonian takes the form

HW) = Y [0 (W) + 07 (W)] - (BL)
The above choice leads to the graph probability [2]
P(W) =[] ]] as(wi) (B2)
i gt
where
gij(w) = (ziy;)" (1 — ziy;) (B3)

(with z; = e %" and y; = e~ %") is the probability that
a link of weight w exists from vertex ¢ to vertex j in the
maximum-entropy ensemble of weighted directed graphs
with specified in- and out-strength sequences. If the em-
pirical strength sequences {si"(W*)} and {s¢“!(W*)} of
a particular real directed weighted network W* are cho-
sen as constraints, then Eq. (B3) yields the exact value of
the connection probability in the ensemble of randomized
directed weighted graphs with the same average strength
sequences as the empirical ones, provided that the param-
eters {x;} and {y;} are set to the values that maximize
the likelihood P(W*) [2]. These values are the solution
of the following set of 2IN coupled non-linear equations
[10]:

ou TilYj out * ;
o) = 3B ey i (B
; 1 -2y,
i Y
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After the values {z;} and {y;} are found and plugged
into Eq. (B3), the expectation value (X) of any topo-
logical property X can be calculated analytically, avoid-
ing the numerical generation of the random ensemble [2].
Now, by construction, the in-strengths and out-strengths
of all vertices are special local quantities whose expected
and empirical values are exactly equal: (si") = si" and
(s0ut) = 59 as shown in Eq. (B5). The higher-order
topological properties considered in the main text have
the expectation values shown in Table I, obtained using
the same prescriptions as in the undirected case, with
two differences. The first one is that now

(wiy) = Zwa% (w) = (1 — zy;)Li—a(z:y;)

where Li, (2) is still the Polylogarithm function defined
in Eq. (A6). Thus (ws;) = x;y;/(1 — z;y;) and (a;;) =
pij = 1 —¢;;(0) = z;y;, where a;; = O(w;;). The ex-
pectation values of other powers of the weight change
accordingly. The second one is that, as in the binary
directed case, (i — j) and (j — ¢) are different (and sta-
tistically independent) directed pairs of vertices. There-
fore (wijwﬂ> = (wij><wji> and (aijajz') = DijPji- Again,
we have (wint) = wir as we have shown in Eq. (8).
Therefore we can still easily obtain the quantities built
on the rescaled weights w;; = w;;/wie. As for the
weighted undirected case, the parameters {x;} and {y;}
are however computed using Eq. (B5) before rescaling
the strengths, preserving the original integer weights w;;
as the actual degrees of freedom.
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