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Sequence motifs are words of nucleotides in DNA with biological functions, e.g. gene regulation.
Identification of such words proceeds through rejection of Markov models on the expected motif
frequency along the genome. Additional biological information can be extracted from the correlation
structure among patterns of motif occurrences. In this paper a log-linear multivariate intensity
Poisson model is estimated via expectation maximization on a set of motifs along the genome of
E. coli K12. The proposed approach allows for excitatory as well as inhibitory interactions among
motifs and between motifs and other genomic features like gene occurrences. Our findings confirm
previous stylized facts about such types of interactions and shed new light on genome-maintenance
functions of some particular motifs. We expect these methods to be applicable to a wider set of
genomic features.

I. INTRODUCTION

Counting processes are the most natural way to model
the occurrence of a particular type of event. Such a pro-
cess is fully described by the probability Pt to observe the
event a time t. Eventually, an additional variable St may
indicate the actual state of the system [1] . The descrip-
tion of many physical, biological and social systems lies
in the class of point processes in which the probability
P i
t of the i-th process is determined by the past history

of all the processes that enter in the system, including
the process itself (point processes with stochastic inten-
sity). Related researches encompass very different fields
such as photon counting, laser physics, astrophysics, geo-
physics, social phenomena and, as discussed in detail in
this paper, genomics. For example, a self-exciting point
process (usually called Hawkes’ process, see [2]) is used
in [3] to model the photomultiplier tubes’ dark pulses: in
this model an occurrence a time ti of a dark pulse event
increases the probability to observe another dark pulse
for t > ti, with an exponential decay interaction. An
identical process is adopted by [4] to model a feedback-
controlled cavity in a steady-state. On the same line,
the occurrence of a photon count can be used to inhibit
the probability of another photon count. Such a photon
anticorrelation mechanism is used in [5–7] for the produc-
tion of a particular state of light, namely photon-number-
squeezed light. In astrophysics Hawkes’ processes are
introduced to model hotspots’ interactions in accretion
disc (see [8, 9]). A similar idea is behind the modeling
of the small earthquake shocks that follow a main shock.
Usually, in these models, several features are included for
explaining the total amount of the observed intensity. In
[10] the seismic activity (i.e. the probability of a seismic
event) is described by a point process with stochastic
intensity that includes self-excitation as well as trends,
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periodicity and interactions with other earthquakes in
other locations (mutually exciting point processes). Not
only the simple occurrence of a shock can increase the
probability of subsequent shocks, but also its magnitude,
as encompassed by the Epidemic-Type Aftershock Se-
quence (ETAS) model, which is the baseline model used
in [11–13]. Finally, several kinds of social phenomena
originated by complex network interactions are success-
fully described by point processes with stochastic inten-
sity (as an example, think about the spatio-temporal pat-
tern of a disease or opinion spreading). Among many we
suggest the analysis of the book sale dynamics proposed
by [14], in which the probability of a buy is conditioned
by all the previous buys, as in an epidemic or avalanche
model.
Given the recognized ductility of stochastic intensity

point processes, in this paper we propose the adoption of
such a process for the detection of statistical interactions
among events along a string of DNA. The type of events
we have in mind can be either the occurrence of a gene
or the occurrence of another genomic feature. As an il-
lustration of the method, we will focus on occurrences of
gene and motifs.
In next Section we will briefly describe what functional

motifs are and we will shortly review the empirical evi-
dences that can be found in the existing literature on the
interaction between motifs and genes.
The model we propose is a log-linear multivariate in-

tensity Poisson model [15] borrowed from the neuro-
science literature (see [16, 17] among others), where these
models are quite common, and we show how it can be
used to detect positive and negative correlations in a set
of words suspected to play a biological function. We ap-
ply this method to some motifs in the E. coli genome and
we show that these models fit the data well.
The rest of the work is organized as follows: in Section

III we derive a model of motifs’ dependencies starting
from a very simple empirical evidence. The model is for-
mally described in Section IV where we also sketch the
iterative algorithm used to estimate it. Maximum likeli-
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hood estimates are reported in Section V while a good-
ness of fit test is developed in Section VI together with
the a-posteriori validation of the hypotheses introduced
in Section III. Finally, we discuss our findings in Section
VII and we report our conclusions in Section VIII.

II. NON-RANDOM SEQUENCES IN DNA: THE

CASE OF FUNCTIONAL MOTIFS.

Functional motifs are short strings of DNA, RNA or
even proteins that share the same biological function.
Functional motifs differ from structural motifs as they
require the aminoacid to be adjacent, while the latter
ones require a 3D arrangement. Protein binding sites and
cis regulatory motifs are typical examples of DNA func-
tional motifs. They are present in all types of genomes
from Archaea to humans, both in coding and noncoding
regions.
Sometimes a single sequence can perform the same

function in a wide range of genomes. In other cases
slightly different sequences perform the same function in
different species. In such cases a consensus sequence is
built that spans a certain number of species [18].
One of the most important open problems in computa-

tional genomics nowadays is predicting functional motifs.
The most common computational approach to the prob-
lem is to compile a list of previously characterized func-
tional motifs and perform a genome-wide scan for over-
represented motifs contained in the list. This approach
lies on the assumption that a sequence that is functional
in all its occurrences will be more frequent than if it was
appearing by chance [19].
Another purely computational approach is just based

on retrieving overrepresented words in the genome. As
the probability of an over-representation by chance is
very low, overrepresented motifs have to be functional
at least in some of their occurrences.
The list of motifs that have been identified in past

years is quite long, among them there are the gene pro-
moter TATAAT [20, 21], the very frequent uptake signal
sequence (USS) AAGTGCGGT present in H. influenzae

and the USS sequence GCCGTCTGAA of N. meningi-

tidis (both analyzed in [22]), the CHI recombinational
hotspots GCTGGTGG of E. coli [23] and GCGCGTG
of L. lactis [24]. The latter coincides with the CHI
site of Streptococcus pyogenes, Streptococcus pneumoniae,
Streptococcus agalactiae and Streptococcus thermophilus,
as shown in [25]. The same authors find, by predictive
modeling, that the motif GAAGCGG is the functional
Chi site in the Staphylococcus aureus. The prominent role
in chromosome replication of the motif GATC in E. coli

is analyzed in [26]: the replication origin (oriC) of the E.
coli chromosome contains 11 GATC sites in 254 bp, a den-
sity that points toward a total rejection of a random ac-
cumulation. Moreover GATC-GATC interactions clearly
appear when the GATC distribution along the genome is
put under investigation. In [27] is shown that, in whole

the genome of E. coli, GATCNNGATC pairs are under-
represented while the most favored distance between two
consecutive GATC occurrences ranges in 1100-1200 bp.
On the same line [28] found that a very short distance of
10− 20 nucleotides between GATC motifs is most favor-
able in SeqA-bound regions of E. coli. This suggests at
least two different functions for the palindrome GATC.
Other motifs operating in bacterial genome are described
in [29].
A completely different approach comes from the adop-

tion of chaotic maps for the identification of ”non-
random” sequences in genomic data (see, among others,
[30, 31]). Quite recently, [32] adopted a multifractal spec-
trum analysis to identify correlations in motif sequences
of the human genome. They show that the observed mul-
tifractal spectra of all human chromosomes are far away
from those expected if the sequences were randomly gen-
erated. Notably in [33] it is shown that this spectrum can
be surprisingly well fitted, for positive order exponents,
with that one of a coupled map lattice.

III. A MODEL OF MOTIFS DEPENDENCIES

We start our analysis from a very simple empirical ob-
servation. On the genome of E. coli K12 [34] consider
the set of motifs GATC, TATAAT, TTGACA, and the
CHI recombinational hotspot GCTGGTGG. We further
include in our sample the gene position as it is provided
from Genbank resources.
We interpret each occurrence (of a motif or of a gene)

as an ”event” along the genome. If a dependence among
occurrences of events exists it must affect the distribution
of inter-event distances. Figure 1 reports the observed
distribution of the distances between couples of events.
More precisely, the black line with triangles (the

Gene→Gene in the legend) is the empirical density of the
distances between an occurrence of a gene and the next
occurrence of a gene, similarly the red line with stars (the
GATC→Gene in the legend) corresponds to the density
of the distances between an occurrence of a motif GATC
and the next occurrence of a gene, etc. The distances are
reported in kilo base-pairs (kbps).
An eye inspection of the empirical densities reveals

that there is a notable difference in the structure of
the inter-event distances. While the TATAAT→Gene
and TTGACA→Gene inter-event distances are peaked
around small values, the remaining ones display an empty
zone around the origin, especially in the Gene→Gene
case, and a shifted and less pronounced peak. Both
TATAAT and TTGACA are well-known gene promot-
ers of E. coli [35], therefore their corresponding distri-
bution of motif-gene distances is expected to be peaked
around small distances. In the other cases it seems that
a repulsive effect exists on short distances that avoids
a gene to be located near a gene/GATC/CHI locus.
Note that while the repulsion between genes can be ex-
plained by their finite size (about 1 kbps), motifs are
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FIG. 1. (Color online) Reports the observed empirical densities (in percentage) of the distances (in kilo base-pairs) between an
occurrences of a gene, GATC, TATAAT, TTGACA, and CHI and the subsequent occurrence of a gene. The bin width is set
to 100 base-pairs.

practically point-like and therefore, for a random distri-
bution of events, their theoretical density of inter-event
distances should be well approximated by a negative ex-
ponential, therefore no repulsive effect at short distances
is expected.

This simple preliminary analysis points toward the
adoption of a model apt to capture attractive as well as
repulsive interactions among occurrences of words that
are supposed to have a biological function in the genome
of E. coli. To obtain such a model, we assume that the
presence of a motif q in position t in the genome is a ran-
dom Bernoulli variable, where randomness comes from
the stochastic nature of the mutational and evolutionary
processes acting on the genome. The probability Pq(t)
that the motif q could be found in t depends actually on
the local genomic features (other motifs, local GC con-
tent, regulatory sequences, genes, non-coding RNA, local
chromatin structure...), denoted collectively here as g(t).
Since most of these features are unknown or not con-
sidered in the analysis, the probability is given by the
integral over the distribution of genomic features:

Pq(t) =

∫

dµ(g(t))Pq(t|g(t))

In this case, the continuum limit of the model would re-
duce to a (possibly inhomogeneous) Poisson model with
parameter Pq(t) = λq(t) dt. If we assume that the
genome dynamics is approximately invariant under trans-
lations over distances much shorter than the size of the
genome, then the parameter λq does not depend on the
location and the distribution of motifs is described by a
simple Poisson model.

Now we include interaction among motifs. We denote
by {n, s} the occurrence of an event of type n in posi-
tion s and by Nn(s) the cumulative number of events
of type n in position s. An additional motif n in po-
sition s will modify the probability Pq(t|g(t)) of a fac-
tor δPq(t|g(t))/δNn(s) = Pq(t|g(t), {n, s}) − Pq(t|g(t)),
where Pq(t|g(t), {n, s}) is the probability to find motif q
at position t conditioned on g (t) and on the presence of
n in position s. We assume that (i) the effect of each
feature on the probability of finding a motif Pq(t|g(t)) is
small, that is, |δPq(t|g(t))/δNn(s)| ≪ Pq(t|g(t)); (ii) the
genome dynamics is translationally invariant, that is, the
interaction between the events {n1, t} and {n2, t + ∆t}
does not depend on the absolute position t but only on
the relative position ∆t.
Under these assumptions, the effect of a motif of type

n in position s on the probability of occurrence of a motif
of type q in position t is

δPq(t)

δNn(s)
=

∫

dµ(g(t))
δPq(t|g(t))

δNn(s)
=

=

∫

dµ(g(t))Pq(t|g(t))
δPq(t|g(t))/δNn(s)

Pq(t|g(t))
∫

dµ(g(t))Pq(t|g(t))
Pq(t) =

= E

[

δPq(t|g(t))/δNn(s)

Pq(t|g(t))

∣

∣

∣

∣

{q, t}

]

Pq(t) =

= E

[

δPq(0|g(0))/δNn(s− t)

Pq(0|g(0))

∣

∣

∣

∣

{q, 0}

]

Pq(t)

where the expectation value is conditioned on the event q
in position x using Bayes’ theorem and the last step fol-
lows from translational invariance [36]. After redefining
the quantity
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Kq,n(t− s) ≡ E

[

δPq(0|g(0))/δNn(s− t)

Pq(0|g(0))

∣

∣

∣

∣

{q, 0}

]

and passing to the continuum limit Pq(t) = λq(t)dt,
we obtain for a single event

δ log(λq(t))

δNn(s)
=

1

λq(t)

δλq(t)

δNn(y)
= Kq,n(t− s) (1)

Now we can consider the joint effect of all events {nj , sj}.
Since all the effects are assumed to be small, nonlinear
interaction terms among different events can be neglected
at first order. Summing the equation (1) over all events,
we obtain a Poisson model with parameter

λq(t) ∝ exp





∑

events j

Kq,nj
(t− sj)





that is, the model reduces to a log-linear intensity Poisson
model.
Note that in the DNA there is an inherent asymmetry

between the two directions 5’→3’ and 3’→5’, since the
transcription process acts in the 5’→3’ direction. This
leads to a causality relation in the 5’→3’ direction for
some sets of motifs or features. In the rest of the analysis
we assume that the t axis is 5’→3’ oriented and that (iii)

an event {n, s} has no influence on the occurrence of the
event {q, t} if s > t (i.e. Kq,n(t − s) = 0 for s > t).
This assumption will be relaxed in future work. The
reliability of assumptions (i), (ii) and (iii) is confirmed
a posteriori by a goodness of fit test of our model on a
specific dataset (see Section VI) . In particular, note that
while hypothesis iii) can be interpreted as an implication
of the chemical reading sense of the genome, i) and ii)
are additional assumptions that we require to justify the
adoption of a log-linear intensity model. Nevertheless
they will be discussed in detail in Section VI, where we
will give empirical evidence to support them.

IV. FORMAL MODEL

As mentioned above we interpret the occurrence of a
motif or of a gene as an event in the tape represented by
the genome.

Let t ∈ [0, T ] be the coordinate along a genome, com-
posed by T base-pairs. LetNn (t) be the counting process
of the n-th process. In our specific case n = 1, 2, 3, 4, 5
corresponds to the counting process of starting point of a
gene, GATC, TATAAT, TTGACA, and CHI occurrences,
respectively. In the log-linear intensity model the condi-
tional intensity of having an event of type q at position
t is written as

log λq (t|Ht) = µq +

N
∑

n=1

∫ t

0

Kq,n (t− s) dNn (s) , q = 1, .., N, (2)

where the infectious function Kq,n (t− s) describes the
effect of an occurrence at time t−s of motif n (trigger) on
the instantaneous conditional probability (i.e. λq (t|Ht))
of having a motif of type q (target) at time t and where
the conditioning is given by the filtration [37] generated
by all the counting process of the system:

Ht = σ (Nn (s) | 0 < s < t, n = 1, ...N) .

In the specification of the model given by equation
(2) the quantity exp (µq) ∗ dt represents the spontaneous
probability of having an event q in the infinitesimal por-
tion dt of the genome. The baseline activity µq is es-
sential to fit the missing dynamics not captured by the
interaction with the other counting processes.
Let [0, D] be the support of the infectious function

Kq,n (τ) (i.e. the memory of the system) and let Π =
{t0 = 0 < t1 < ... < tM = D} be a partition of [0, D] with
evenly spaced points

ti = i ∗W, i = 0, ..,
D

W
,

where we have assumed, without any restriction, that
D
W ≡ M is an integer. As in [16] we approximate the
infectious function via simple functions [38]:

Kq,n (τ) ≈

M
∑

k=1

αq,n,kI[tk−1,tk] (τ) ,

where the indicator function I[tk−1,tk] is defined as:

I[tk−1,tk] (τ) =

{

1 τ ∈ [tk−1, tk]
0 τ ∈ R

+/ [tk−1, tk] .

The model (2) is now re-written as:

log λq (t|Ht) = µq +

N
∑

n=1

M
∑

k=1

αq,n,k dNn ([tk−1, tk]) , (3)

where the random measure dNn ([tk−1, tk]) corre-
sponds to the total number of events of element n in
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the interval [tk−1, tk]. In the formalism of [39] a dis-
tance tk = kW from an occurrence of process n and
the next occurrence of process q is favored anytime that
αq,n,k > 0, unfavored if αq,n,k < 0, and neither favored
nor unfavored when αq,n,k = 0. Note that the advantage

in adopting a log-linear model with respect to a linear
one (as in [39]) is that there are no constraints on the
parameter space: αq,n,k is allowed to vary in whole real
line R.
The log-likelihood of model (2) is given by (see [40])

lq =

∫ T

0

log λq (t|Ht) dNq (s) +

∫ T

0

[1− λq (t|Ht)] dt, (4)

and is a function of the U = N×M+1 model parameters
(µq, αq,n,k)q,n=1,...,N ;k=1,...,M . The total number of pa-

rameters of the system is thus N ×U . Following [16] and
[17] the likelihood (4) can be maximized via the expecta-
tion maximization algorithm of [41]. Re-write equation
(3) using a reduced index j = (n− 1) ∗N + k obtaining:

log λq (t|Ht) =

R
∑

j=0

αq,j Ij (t) ,

where R = N × M + 1 and Ij=(n−1)∗N+k (t)
is the number of events of element n in window
[t− kW, t− (k − 1)W ] and I0 (t) = 1 for all t. In this
new notation we have defined αq,0 = µq. Let α0

q,j be a

guess for the model parameters. Define γ0
q,j = exp

(

α0
q,j

)

and apply recursively the iterative algorithm:

γn+1
q,j = γn

q,j







∑T
k=0 Ij (k) (Nq (k + 1)−Nq (k))

∑T
k=0 Ij (k)

∏R
l=0

(

γn
q,l

)Il(k)







βq,j

(5)

βq,j =

∑T
k=0 Ij (k) (Nq (k + 1)−Nq (k))

∑T
k=0 Ij (k)

∑R
l=0 Il (k) (Nq (k + 1)−Nq (k))

, (6)

where we have imposed an unitary ”time-step” (i.e. dt =
1). The initial starting point α0

q,j is computed according
to the algorithm proposed by [17], which gives a reason-
able and easy-to-compute guess of the model parameters.
We also implement the stopping rule of [17], that is algo-
rithm (5)-(6) is stopped at the iteration n̄ such that [42]:

max
j

(

γn̄+1
q,j

γn̄
q,j

− 1,
γn̄
q,j

γn̄+1
q,j

− 1

)

< 10−4, q = 1, ..., N.

The output of the iterative algorithm are the maxi-
mum likelihood estimates γ̂q,j of parameters γq,j and, as a
consequence, of the original parameters: α̂q,j = ln (γ̂q,j).
The rejection of the null hypothesis [43] αq,j = 0 is tested
using the standard properties of the maximum likelihood
estimator [44]. We first compute the t-statistic:

tq,j =
|α̂q,j |

σq,j
, (7)

where the standard deviation σq,j is given by:

σq,j =







√

√

√

√−

[

(

∂2lq
∂αq,l∂αq,k

)

l,k=0,...,R

]−1






j,j

,

i.e. the diagonal element of the square root of the
inverse hessian matrix (changed by sign) of log-likelihood
(4). Therefore we reject the hypothesis αq,j = 0 with
confidence β (or with a p-value [45] 1−β) if tq,j ≥ Φ (β),
where Φ (·) is the inverse of the cumulative distribution
function of a Gaussian variable with mean zero and unit
standard deviation.

Model selection is achieved through AIC criterion. We
fix the value of D to 5000 base-pairs [46] and we select
the total number M of windows (as a consequence the
window width is fixed by W = D/M) that minimizes the
AIC function:

A (M) = 2 [N × (N ×M + 1)]− 2

N
∑

q=1

l̂q, (8)
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where l̂q is the log-likelihood of process q computed in
the optimal point (µ̂q, α̂q,1, ..., α̂q,N×M ). Figure 2 plots
the value of A (M) as a function ofM . From this plot it is
quite clear that the optimal trade-off between the value
of the maximized likelihood and the number of model
parameters to employ is reached at M = 25, according
to the AIC criterion. This will be our final choice leading
to a total number of 5 × (5× 25 + 1) = 630 parameters
for our system.
An approach similar to that presented in this Sec-

tion is proposed by [39], however here a linear model
is adopted. We believe that a log-linear approach is pre-
ferred because naturally incorporates exciting as well as
inhibitory connections without any call to constrained
maximization procedures. The second main difference
between model (2) and the model proposed by [39] lies
in the parametrization of the infectious functions. As
explained, we adopt a decomposition in simple functions
(as suggested in [16]), that, in our view, is preferred to
the B-splines adopted by [39] for three main reasons: I)
it avoids spurious smoothing of the kernel functions, II)
it provides simpler interpretations to each parameters of
the model, III) in the B-splines approach the total num-
ber of parameters that enter in the model are selected by
the AIC criterion, as in our case, nevertheless the choice
of the degree of the polynomial of the B-splines remain
a little bit arbitrary.

V. MAXIMUM LIKELIHOOD ESTIMATES

In this section, after a brief description of the dataset,
we discuss the estimation of the proposed model. We
refer to Section VII for the interpretation of our results.
Our dataset is composed by the double strand of the

complete genome of E. coli K12 plus the positions of
all the genes, as provided by Genbank. The position
of each gene is identified with the position of its first
coding base. We find 4490 occurrences of genes, 19120
occurrences of the palindrome GATC, 1036 occurrences
of the gene promoter TATAAT, 1057 occurrences of the
gene promoter TTGACA and 1008 occurrences of the
CHI motif GCTGGTGG.
The estimated baseline activities exp (µ̂q) are reported

in Table I. The t-statistics for these parameters are very
large (≥ 98) and therefore are omitted. The last col-
umn of Table I reports the expected probability of the
corresponding event under the uniform model M00 (for
more details about models of word occurrences see [47]).
This model computes the probability of finding a partic-
ular word of length m as (1/4)

m
, i.e. attributes to each

single nucleotide the same probability and does not take
into consideration corrections of higher order [48] (for
example the abundance of C-G nucleotides, which varies
widely both across taxa and within genomes regions).
Maximum likelihood estimates α̂q,n,k of parameters of

model (2) are reported in Figure 3. The label on the
top horizontal axis indicates the trigger event (process la-

Baseline Probability

Event exp (µ̂q) M00

Gene 9.68 × 10−4 −

GATC 41.34 × 10−4 (1/4)4 = 39.06 × 10−4

TATAAT 2.23 × 10−4 (1/4)6 = 2.4414 × 10−4

TTGACA 2.28 × 10−4 (1/4)6 = 2.4414 × 10−4

CHI 2.17 × 10−4 (1/4)8 = 1.5259 × 10−5

TABLE I. Reports (second column) the maximum likelihood
estimates of the baseline probability for each process in the
system (recall that dt = 1 so that exp (µ̂q) coincides with
the baseline probability of having a motif q somewhere in the
genome). The third column shows the probability of finding a
word of the corresponding motif length under the model M00
(see text for details).

belled as n in equation 2) while the label on the left verti-
cal axis indicates the target event (process labelled as q in
equation 2). We distinguish two levels of significance: pa-
rameters with a p-value less then 10−5 are marked with a
blue cross while parameters with a p-value less then 10−6

are marked with a magenta square. A goodness of fit test
is achieved through residual analysis and is reported in
Section VI. Similarly to what we have done in our pre-
liminary analysis (see Figure 1) we report in Figure 4
the inter-event interval (normalized and in percentage)
distribution. More precisely the histogram in sub-figure
positioned in the q-th row and n-th column of Figure 4
is the distribution of the distance between event n and
q, conditioned on having observed event q (target) after
event n (trigger). As in Figure 3 diagonal sub-figures
correspond to self-interactions. Each distribution is a
normalized histogram with a bin of 1 base-pairs. In each
sub-figure we report vertical magenta lines initiated and
terminated by a triangle in correspondence of a negative
model parameter with p-value less than 10−6. Similarly,
we report vertical red lines initiated and terminated by
a circle in correspondence of a positive model parameter
with p-value less than 10−6. Vertical lines highlight thus
particular values in the inter-event interval distribution
that have a statistical significance according to log-linear
model (2).

VI. GOODNESS OF FIT AND HYPOTHESIS

TESTING

Let µ̂q, α̂q,n,k be the maximum likelihood estimates
of the model parameters defined in equation (3). The

model-implied intensities functions λ̂q (t|Ht), with q =
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FIG. 2. (Color online) Plots the value of A (M) (see definition 8) as a function of the number M of windows in which the
support [0, D] of the infectious function is partitioned. The value for D is set empirically to 5× 103 base-pairs and the window
width W is derived accordingly as W = D/M .

1, ..., N , are easily computed as:

λ̂q (t|Ht) = exp

[

µ̂q +
N
∑

n=1

M
∑

k=1

α̂q,n,k dNn ([tk−1, tk])

]

. (9)

Note that since dt = 1 the previous quantity approxi-
mates the probability to have an event q (gene or motif)
at position t along the genome. As shown in [49] if uq

k,
with k = 0, ..., Tq, where Tq is the total number of events
for the q-th element of the ensemble, is a realization of

a counting process with conditional intensity λ̂q (t,Ht)
then the variables:

zqk = 1−exp

(

∫ uq

k

uq

k−1

λ̂q (s,Hs) ds

)

, k = 1, ..., Tq (10)

are uniformly distributed in [0, 1]. The order statistics
of (10) can be compared with the one of a uniformly

distributed variable, i.e. U q
k =

k− 1

2

Tq
. The rationale is that

if the model-implied intensity (9) is a correct description
of the observed counting process the points

ξqk = (U q
k , z

q
k) ,

{

q = 1, ..., N

k = 1, ..., Tq
(11)

should lie on a 45◦ line. Figure 5 reports (as thick lines)
the observed ξqk for each element of the ensemble consid-
ered. The red dotted lines in each plot represent the 99%
confidence bands. The model provides a reliable descrip-
tion of the observed counting processes, with the only
exception of TATAAT. Nevertheless we have checked the
TATAAT fit is quite improved if we use as a promoter
TATA instead of TATAAT.
While the goodness of fit test witnesses a general agree-

ment of the data with the model, each single hypothesis
introduced in Section III can be tested. As mentioned
above we have postponed for further studies the analysis
of a non-causal model, thus hypothesis iii) remains just a
consequence of the chemical reading sense of the genome.
Nevertheless, hypothesis i) can be written as

|δPq(t|g(t))/δNn(s)|

Pq(t|g(t))
≪ 1,

which directly implies that
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|Kq,n(τ)| ≡

∣

∣

∣

∣

E

[

δPq(0|g(0))/δNn(τ)

Pq(0|g(0))
| {q, 0}

]∣

∣

∣

∣

< E

[∣

∣

∣

∣

δPq(0|g(0))/δNn(τ)

Pq(0|g(0))

∣

∣

∣

∣

| {q, 0}

]

≪ 1,

i.e. the absolute value of the infectious function should
be a small quantity, or at least less than one. Apart
from the short-range Gene→Gene and CHI→TATAAT
interactions, the estimated values of Figure 3 reveals
that the interaction is weak and thus that hypothesis i)
is valid [50]. Translational invariance of the interaction
(hypothesis ii) is confirmed by Figure 6, where a K-fold
cross-validation of the empirical densities of Figure 1 (ex-
tended to all the pairs of genomic features) is shown. The
K-fold cross-validation validation is obtained by slicing
the entire sequence of events in non-overlapping slices of
1000 events each, and then producing the histograms of
Figure 1 under the random selection of five of these slices.
A statistics of these histograms have been obtained over
100 repetitions. Under this condition, if the interaction
is translationally invariant then the resulting confidence
bands should embrace the distribution obtained using the
whole genomic sequence. This is actually what we obtain
in Figure 6 (see caption for more details), in particular
for features with a higher populated statistics (Gene and
GATC).

VII. DISCUSSION

The estimates reported in Table I suggest that, apart
from the CHI case, the baseline probability of a motif
event is in line with that of the random model M00. The
CHI case presents, on the contrary, a level approximately
one order of magnitude larger than what could be ex-
pected from a uniformly random draw.
An inspection of the estimated infectious function in

Figure 3 confirms the intuition suggested by Figure 1.
The CHI motif has a negative (and highly significant)
correlation on the probability of a gene event (first row
and last column of Figure 3). Thus the empty zone in the
CHI→Gene distribution (first row and last column of Fig-
ure 4) is explained by this repulsive effect. A similar evi-
dence is found for the GATC motif, which presents a neg-
ative correlation with gene occurrences for distances ap-
proximately less than 0.4 kbps and a positive correlation
nearly at 2.2 kbps. The esamers TATAAT and TTGACA
show, as it should be for gene promoters, a positive short-
run correlation with gene occurrences and this explains
the peak positioned around small distances in the distri-
bution of TATAAT→Gene and TTGACA→Gene inter-
val distributions (first row and third/fourth columns of
Figure 4).
The repulsive effect of CHI and GATC on gene occur-

rences can be easily explained by their role in genome
maintenance. In particular, the CHI motif plays a role
during DNA strand breaking and repair. A coding se-
quence close to the motif has an higher probability of

being spoiled during the repair process, therefore CHI
motifs near genes are negatively selected.
It is interesting to note that the repulsive force of CHI

and GATC against a gene occurrence is associated to
the inhibition of the TATAAT and TTGACA promot-
ers. In fact the occurrence of TATAAT is inhibited by
both GATC and CHI at short distances (third row and
second/fifth columns of Figures 3-4), while TTGACA is
inhibited solely by CHI (fourth row and fifth column
of Figures 3-4). This interaction is roughly symmet-
ric: an occurrence of TATAAT and TTGACA reduces
the probability of a GATC occurrence (second row and
third/fourth columns of Figures 3-4).
Here we notice that the proposed model is capable to

detect both direct and indirect interactions, nevertheless,
it cannot discriminate among them.
Moving on to self-interactions, the correlation between

two gene occurrences is highly negative in the range
from 0 to 1 kbps and thus becomes positive in the
range 1.2 − 1.6 kbps. This profile is mainly explained
by the mean length of a gene occurrence, which is ap-
proximately 1 kbps and therefore prohibits a new gene
event in this range. The remaining self-interactions
are significantly different from zero (and positive) only
for GATC and TATAAT. The GATC→GATC infectious
function reveals a positive feedback for GATC occur-
rences at short distances and at approximately 1 kbps,
a result in line with the findings of [27]. Finally, the
TATAAT→TATAAT case shows a quite persistent and
positive self-interaction.

VIII. CONCLUSIONS

The analysis presented in this paper starts from a very
simple empirical evidence: the distance between a mo-
tif and the gene start codon (i.e. the word ATG) de-
pends strongly on the motif. This fact suggests the pres-
ence of correlation of different type between motifs and
gene occurrences. We show that such a dependence exists
not only between a motif and the start codon but also
among different motifs regulating the expression of the
same gene. This empirical finding suggests the adoption
of a multivariate model apt to capture positive as well as
negative correlations among events in the genome under
study, where an event is defined as an occurrence of a
particular DNA motif.
In particular, we have shown that a multivariate Pois-

son process with log-linear intensities is capable to catch
these features. This result confirms, together with previ-
ous studies [3–14], the ductility of this class of processes
in describing of wide range of physical as well as biologi-
cal phenomena.
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The main objection that can be moved against our
model hinges on causality. In fact the model, as largely
explained in the Introduction, is originally designed for
photon counting, cavities with feedback, neural interac-
tions, earthquake aftershocks and other phenomena, and
therefore is a causal model. Nevertheless in model (2) the
variable t is a position variable and therefore the model
is not required to be causal, but rather locally depen-
dent. However, as mentioned in Section III, there is a
preferred direction along the genome coordinate, and the
introduction of a non-causal model could result in a re-
duction of simplicity without any fundamental improve-
ment. In this paper for simplicity we assumed a causal
sense 5’→3’ for the genome dynamics. The extension to
a non-causal framework would be a feasible development
and it is postponed for future research.
Our analysis confirms the role of TATAAT and

TTGACA as gene promoters. Most notably, we confirm
the prominent role in genome maintenance of the CHI
and GATC motifs of E. coli, which are well-known to be
involved in DNA repair and replication [29]. In fact we
show that a negative correlation exists between an occur-
rence of CHI or GATC and the subsequent occurrence of
a gene (and of a gene promoter), a feature essential in
preserving, during genome repair or replication, the in-
formation contained in genes.
Finally, our analysis of the goodness of fit shows that

the proposed model is a good description of the process
and it could be useful for more detailed studies of the ex-
isting interactions between motifs and genomic features.
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FIG. 3. (Color online) Estimated infectious function Kq,n (τ) (dark points) for the system composed by all genes and the motifs GATC, TATAAT, TTGACA and CHI. The
labels on the top horizontal axis indicate trigger events (i.e. the index n in Kq,n (τ)) while the ones on the vertical axis indicate target events (i.e. the index q in Kq,n (τ)).
The abscissa reports the distance τ between events in kilo base-pairs. Blue crosses indicate p-values less than 10−5 while magenta squares mark parameters with p-value less
than 10−6.



11

0 2 4 6
0

0.1

0.2

Gene

G
en

e

Distance (kbps)

0 2 4 6
0

0.1

0.2

GATC

Distance (kbps)

0 2 4
0

0.5

TATAAT

Distance (kbps)

0 2 4
0

0.5

TTGACA

Distance (kbps)

0 2 4
0

0.2

0.4

CHI

Distance (kbps)

0 1 2 3
0

0.5

G
A

TC

Distance (kbps)

0 2 4
0

0.5

Distance (kbps)

0 1 2
0

0.5

Distance (kbps)

0 2 4
0

0.5

Distance (kbps)

0 2 4
0

0.5

1

Distance (kbps)

0 20 40 60
0

0.05

0.1

TA
TA

A
T

Distance (kbps)

0 20 40 60
0

0.05

Distance (kbps)

0 20 40 60
0

2

4

Distance (kbps)

0 20 40 60
0

0.2

0.4

Distance (kbps)

0 20 40 60
0

0.1

0.2

Distance (kbps)

0 10 20 30
0

0.1

0.2

TT
G

A
C

A

Distance (kbps)

0 10 20 30
0

0.05

Distance (kbps)

0 10 20
0

0.2

0.4

Distance (kbps)

0 10 20 30
0

0.2

Distance (kbps)

0 10 20
0

0.2

Distance (kbps)

0 10 20 30
0

0.05

0.1

C
H

I

Distance (kbps)

0 10 20 30
0

0.05

Distance (kbps)

0 10 20 30
0

0.2

Distance (kbps)

0 10 20 30
0

0.2

Distance (kbps)

0 10 20 30
0

0.2

0.4

Distance (kbps)

FIG. 4. (Color online) Inter-event distances distribution (in percentage) for the system composed by all genes and the motifs GATC, TATAAT, TTGACA and CHI. The labels
on the top horizontal axis indicate trigger events while the ones on the vertical axis indicate target events (see caption of Figure 3 for more explanations). Vertical magenta
lines initiated and terminated by a triangle highlight event distances that correspond to negative parameters of model (2) with a p-value less than 10−6 while vertical red
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on the abscissa of each sub-plot is expressed in kilo base-pairs and the bin width is set to a single base-pairs.
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