

LEM | Laboratory of Economics and Management

Institute of Economics Scuola Superiore Sant'Anna

Piazza Martiri della Libertà, 33 - 56127 Pisa, Italy ph. +39 050 88.33.43 institute.economics@sssup.it

LEM Working Paper Series

Braid groups in complex spaces

Sandro Manfredini[¶] Saima Parveen[§] Simona Settepanella°

Department of Mathematics, University of Pisa, Italy
Abdus Salam School of Mathematical Sciences, GC University, Lahore-Pakistan
Institute of Economics and LEM, Scuola Superiore Sant'Anna, Pisa, Italy

2012/15

September 2012

Braid groups in complex spaces

Sandro Manfredini* Saima Parveen[†] Simona Settepanella[‡]

September 13, 2012

Abstract

We describe the fundamental groups of ordered and unordered k-point sets in \mathbb{C}^n generating an affine subspace of fixed dimension.

Keywords:

complex space, configuration spaces, braid groups.

MSC (2010): 20F36, 52C35, 57M05, 51A20.

1 Introduction

Let M be a manifold and Σ_k be the symmetric group on k elements. The ordered and unordered configuration spaces of k distinct points in M, $\mathcal{F}_k(M) = \{(x_1, \ldots, x_k) \in M^k | x_i \neq x_j, i \neq j\}$ and $\mathcal{C}_k(M) = \mathcal{F}_k(M)/\Sigma_k$, have been widely studied. It is well known that for a simply connected manifold M of dimension ≥ 3 , the pure braid group $\pi_1(\mathcal{F}_k(M))$ is trivial and the braid group $\pi_1(\mathcal{C}_k(M))$ is isomorphic to Σ_k , while in low dimensions there are non trivial pure braids. For example, (see [F]) the pure braid group of the plane \mathcal{PB}_n has the following presentation

$$\mathcal{PB}_n = \pi_1(\mathcal{F}_n(\mathbb{C})) \cong \langle \alpha_{ij}, 1 \leq i < j \leq n \mid (YB3)_n, (YB4)_n \rangle,$$

^{*}Department of Mathematics, University of Pisa, manfredi@dm.unipi.it

 $^{^{\}dagger 2} \mathrm{Abdus}$ Salam School of Mathematical Sciences, GC University, Lahore-Pakistan, saimashaa@gmail.com

[‡]LEM, Scuola Superiore Sant'Anna, Pisa, s.settepanella@sssup.it

where $(YB3)_n$ and $(YB4)_n$ are the Yang-Baxter relations:

$$(YB3)_n: \quad \alpha_{ij}\alpha_{ik}\alpha_{jk} = \alpha_{ik}\alpha_{jk}\alpha_{ij} = \alpha_{jk}\alpha_{ij}\alpha_{ik}, \ 1 \le i < j < k \le n,$$

$$(YB4)_n: \quad [\alpha_{kl}, \alpha_{ij}] = [\alpha_{il}, \alpha_{jk}] = [\alpha_{jl}, \alpha_{jk}^{-1}\alpha_{ik}\alpha_{jk}] = [\alpha_{jl}, \alpha_{kl}\alpha_{ik}\alpha_{kl}^{-1}] = 1,$$

$$1 \le i < j < k < l \le n,$$

while the braid group of the plane \mathcal{B}_n has the well known presentation (see [A])

$$\mathcal{B}_n = \pi_1(\mathcal{C}_n(\mathbb{C})) \cong \langle \sigma_i, 1 \leq i \leq n-1 \mid (A)_n \rangle,$$

where $(A)_n$ are the classical Artin relations:

$$(A)_n : \sigma_i \sigma_j = \sigma_j \sigma_i, \ 1 \le i < j \le n - 1, \ j - i \ge 2,$$

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \ 1 < i < n - 1.$$

Other interesting examples are the pure braid group and the braid group of the sphere $S^2 \approx \mathbb{C}P^1$ with presentations (see [B2] and [F])

$$\pi_1(\mathcal{F}_n(\mathbb{C}P^1)) \cong \langle \alpha_{ij}, 1 \leq i < j \leq n-1 \mid (YB3)_{n-1}, (YB4)_{n-1}, D_{n-1}^2 = 1 \rangle$$

$$\pi_1(\mathcal{C}_n(\mathbb{C}P^1)) \cong \langle \sigma_i, 1 \leq i \leq n-1 \mid (A)_n, \ \sigma_1\sigma_2 \dots \sigma_{n-1}^2 \dots \sigma_2\sigma_1 = 1 \rangle,$$

where $D_k = \alpha_{12}(\alpha_{13}\alpha_{23})(\alpha_{14}\alpha_{24}\alpha_{34}) \cdots (\alpha_{1k}\alpha_{2k} \cdots \alpha_{k-1})_k.$

The inclusion morphisms $\mathcal{PB}_n \to \mathcal{B}_n$ are given by (see [B2])

$$\alpha_{ij} \mapsto \sigma_{j-1}\sigma_{j-2}\dots\sigma_{i+1}\sigma_i^2\sigma_{i+1}^{-1}\dots\sigma_{i-1}^{-1}$$

and due to these inclusions, we can identify the pure braid D_n with Δ_n^2 , the square of the fundamental Garside braid ([G]). In a recent paper ([BS]) Berceanu and the second author introduced new configuration spaces. They stratify the classical configuration spaces $\mathcal{F}_k(\mathbb{C}P^n)$ (resp. $\mathcal{C}_k(\mathbb{C}P^n)$) with complex submanifolds $\mathcal{F}_k^i(\mathbb{C}P^n)$ (resp. $\mathcal{C}_k^i(\mathbb{C}P^n)$) defined as the ordered (resp. unordered) configuration spaces of all k points in $\mathbb{C}P^n$ generating a projective subspace of dimension i. Then they compute the fundamental groups $\pi_1(\mathcal{F}_k^i(\mathbb{C}P^n))$ and $\pi_1(\mathcal{C}_k^i(\mathbb{C}P^n))$, proving that the former are trivial and the latter are isomorphic to Σ_k except when i=1 providing, in this last case, a presentation for both $\pi_1(\mathcal{F}_k^1(\mathbb{C}P^n))$ and $\pi_1(\mathcal{C}_k^1(\mathbb{C}P^n))$ similar to those of the braid groups of the sphere. In this paper we apply the same technique to the affine case, i.e. to $\mathcal{F}_k(\mathbb{C}^n)$ and $\mathcal{C}_k(\mathbb{C}^n)$, showing that the situation is similar except in one case. More precisely we prove that, if $\mathcal{F}_k^{i,n} = \mathcal{F}_k^i(\mathbb{C}^n)$ and $\mathcal{C}_k^{i,n} = \mathcal{C}_k^i(\mathbb{C}^n)$ denote, respectively, the ordered and unordered configuration spaces of all k points in \mathbb{C}^n generating an affine subspace of dimension i, then the following theorem holds:

Theorem 1.1. The spaces $\mathcal{F}_k^{i,n}$ are simply connected except for i = 1 or i = n = k - 1. In these cases

1.
$$\pi_1(\mathcal{F}_k^{1,1}) = \mathcal{PB}_k$$
,

2.
$$\pi_1(\mathcal{F}_k^{1,n}) = \mathcal{PB}_k / < D_k > when n > 1$$
,

3.
$$\pi_1(\mathcal{F}_{n+1}^{n,n}) = \mathbb{Z} \text{ for all } n \geq 1.$$

The fundamental group of $C_k^{i,n}$ is isomorphic to the symmetric group Σ_k except for i = 1 or i = n = k - 1. In these cases:

1.
$$\pi_1(\mathcal{C}_k^{1,1}) = \mathcal{B}_k$$
,

2.
$$\pi_1(\mathcal{C}_k^{1,n}) = \mathcal{B}_k / < \Delta_k^2 > when \ n > 1$$
,

3.
$$\pi_1(\mathcal{C}_{n+1}^{n,n}) = \mathcal{B}_{n+1}/<\sigma_1^2 = \sigma_2^2 = \dots = \sigma_n^2 > \text{for all } n \ge 1.$$

Our paper begins by defining a geometric fibration that connects the spaces $\mathcal{F}_k^{i,n}$ to the affine grasmannian manifolds $Graff^i(\mathbb{C}^n)$. In Section 3 we compute the fundamental groups for two special cases: points on a line $\mathcal{F}_k^{1,n}$ and points in general position $\mathcal{F}_k^{k-1,n}$. Then, in Section 4, we describe an open cover of $\mathcal{F}_k^{n,n}$ and, using a Van-Kampen argument, we prove the main result for the ordered configuration spaces. In Section 5 we prove the main result for the unordered configuration spaces.

2 Geometric fibrations on the affine grassmannian manifold

We consider \mathbb{C}^n with its affine structure. If $p_1, \ldots, p_k \in \mathbb{C}^n$ we write $\langle p_1, \ldots, p_k \rangle$ for the affine subspace generated by p_1, \ldots, p_k . We stratify the configuration spaces $\mathcal{F}_k(\mathbb{C}^n)$ with complex submanifolds as follows:

$$\mathcal{F}_k(\mathbb{C}^n) = \coprod_{i=0}^n \mathcal{F}_k^{i,n} \; ,$$

where $\mathcal{F}_k^{i,n}$ is the ordered configuration space of all k distinct points p_1, \ldots, p_k in \mathbb{C}^n such that the dimension dim $\langle p_1, \ldots, p_k \rangle = i$.

Remark 2.1. The following easy facts hold:

- 1. $\mathcal{F}_k^{i,n} \neq \emptyset$ if and only if $i \leq \min(k+1,n)$; so, in order to get a non empty set, i = 0 forces k = 1, and $\mathcal{F}_1^{0,n} = \mathbb{C}^n$.
- 2. $\mathcal{F}_k^{1,1} = \mathcal{F}_k(\mathbb{C}), \ \mathcal{F}_2^{1,n} = \mathcal{F}_2(\mathbb{C}^n);$
- 3. the adjacency of the strata is given by

$$\overline{\mathcal{F}_k^{i,n}} = \mathcal{F}_k^{1,n} \prod \dots \prod \mathcal{F}_k^{i,n}.$$

By the above remark, it follows that the case k = 1 is trivial, so from now on we will consider k > 1 (and hence i > 0).

For $i \leq n$, let $Graff^i(\mathbb{C}^n)$ be the affine grassmannian manifold parametrizing *i*-dimensional affine subspaces of \mathbb{C}^n .

We recall that the map $Graff^i(\mathbb{C}^n) \to Gr^i(\mathbb{C}^n)$ which sends an affine subspace to its direction, exibits $Graff^i(\mathbb{C}^n)$ as a vector bundle over the ordinary grassmannian manifold $Gr^i(\mathbb{C}^n)$ with fiber of dimension n-i. Hence, $\dim Graff^i(\mathbb{C}^n) = (i+1)(n-i)$ and it has the same homotopy groups as $Gr^i(\mathbb{C}^n)$. In particular, affine grassmannian manifolds are simply connnected and $\pi_2(Graff^i(\mathbb{C}^n)) \cong \mathbb{Z}$ if i < n (and trivial if i = n). We can also identify a generator for $\pi_2(Graff^i(\mathbb{C}^n))$ given by the map

$$g:(D^2,S^1)\to (Graf f^i(\mathbb{C}^n),L_1), \quad g(z)=L_z$$

where L_z is the linear subspace of \mathbb{C}^n given by the equations

$$(1-|z|)X_1-zX_2=X_{i+2}=\cdots=X_n=0$$
.

Affine grasmannian manifolds are related to the spaces $\mathcal{F}_k^{i,n}$ through the following fibrations.

Proposition 2.2. The projection

$$\gamma: \mathcal{F}_k^{i,n} \to Graff^i(\mathbb{C}^n)$$

given by

$$(x_1,\ldots,x_k) \mapsto \langle x_1,x_2,\ldots,x_k \rangle$$

is a locally trivial fibration with fiber $\mathcal{F}_k^{i,i}$.

Proof. Take $V_0 \in Graff^i(\mathbb{C}^n)$ and choose $L_0 \in Gr^{n-i}(\mathbb{C}^n)$ such that L_0 intersects V_0 in one point and define \mathcal{U}_{L_0} , an open neighborhood of V_0 , by

$$\mathcal{U}_{L_0} = \{ V \in Graff^i(\mathbb{C}^n) | L_0 \text{ intersects } V \text{ in one point} \}.$$

For $V \in \mathcal{U}_{L_0}$, define the affine isomorphism

$$\varphi_V: V \to V_0, \ \varphi_V(x) = (L_0 + x) \cap V_0.$$

The local trivialization is given by the homeomorphism

$$f: \gamma^{-1}(\mathcal{U}_{L_0}) \to \mathcal{U}_{L_0} \times \mathcal{F}_k^{i,i}(V_0)$$
$$y = (y_1, \dots, y_k) \mapsto (\gamma(y), (\varphi_{\gamma(y)}(y_1), \dots, \varphi_{\gamma(y)}(y_k)))$$

making the following diagram commute (where $\mathcal{F}_k^{i,i}(V_0) = \mathcal{F}_k^{i,i}$ upon choosing a coordinate system in V_0)

$$\gamma^{-1}(\mathcal{U}_{L_0}) \xrightarrow{f} \mathcal{U}_{L_0} \times \mathcal{F}_k^{i,i}$$

$$\downarrow pr_1$$

Corollary 2.3. The complex dimensions of the strata are given by

$$\dim(\mathcal{F}_k^{i,n}) = \dim(\mathcal{F}_k^{i,i}) + \dim(\operatorname{Graff}^i(\mathbb{C}^n)) = ki + (i+1)(n-i).$$

Proof. $\mathcal{F}_k^{i,i}$ is a Zariski open subset in $(\mathbb{C}^i)^k$ for $k \geq i+1$.

The canonical embedding

$$\mathbb{C}^m \longrightarrow \mathbb{C}^n, \quad \{z_0, \dots, z_m\} \mapsto \{z_0, \dots, z_m, 0, \dots, 0\}$$

induces, for $i \leq m$, the following commutative diagram of fibrations

which gives rise, for i < m, to the commutative diagram of homotopy groups

where the leftmost and central vertical homomorphisms are isomorphisms. Then, also the rightmost vertical homomorphisms are isomorphisms, and we have

$$\pi_1(\mathcal{F}_k^{i,n}) \cong \pi_1(\mathcal{F}_k^{i,m}) \cong \pi_1(\mathcal{F}_k^{i,i+1}) \text{ for } i < m \le n.$$
 (1)

Thus, in order to compute $\pi_1(\mathcal{F}_k^{i,n})$ we can restrict to the case $k \geq n$ (note that k > i), computing the fundamental groups $\pi_1(\mathcal{F}_k^{i,i+1})$, and for this we can use the homotopy exact sequence of the fibration from Proposition 2.2, which leads us to compute the fundamental groups $\pi_1(\mathcal{F}_k^{i,i})$. This is equivalent, simplifying notations, to compute $\pi_1(\mathcal{F}_k^{n,n})$ when $k \geq n+1$.

We begin by studying two special cases, points on a line and points in general position.

3 Special cases

The case i = 1, points on a line.

By remark 2.1 the space $\mathcal{F}_k^{1,1} = \mathcal{F}_k(\mathbb{C})$ for all $k \geq 2$ and the fibration in Proposition 2.2 gives rise to the exact sequence

$$\mathbb{Z} = \pi_2(Graff^1(\mathbb{C}^2)) \xrightarrow{\delta_*} \mathcal{PB}_n = \pi_1(\mathcal{F}_k(\mathbb{C})) \to \pi_1(\mathcal{F}_k^{1,2}) \to 1 . \tag{2}$$

It follows that $\pi_1(\mathcal{F}_k^{1,2}) \cong \mathcal{PB}_n/\mathrm{Im}\delta_*$. Since $\pi_2(Graff^1(\mathbb{C}^2)) = \mathbb{Z}$, we need to know the image of a generator of this group in \mathcal{PB}_n . Taking as generator the map

$$g:(D^2,S^1)\to (Graff^1(\mathbb{C}^2),L_1), \ g(z)=L_z,$$

where L_z is the line of equation $(1 - |z|)X_1 = zX_2$, we chose the lifting

$$\tilde{g}:(D^2,S^1)\to(\mathcal{F}_k^{1,2},\mathcal{F}_k(L_1))$$

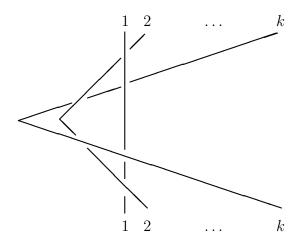
$$\tilde{g}(z) = ((z, 1 - |z|), 2(z, 1 - |z|), \dots, k(z, 1 - |z|))$$

whose restriction to S^1 gives the map

$$\gamma: S^1 \longrightarrow \mathcal{F}_k(L_1) = \mathcal{F}_k(\mathbb{C})$$
$$\gamma(z) = ((z, 0), (2z, 0), \dots, (kz, 0))$$

Lemma 3.1. (see [BS]) The homotopy class of the map γ corresponds to the following pure braid in $\pi_1(\mathcal{F}_k(\mathbb{C}))$:

$$[\gamma] = \alpha_{12}(\alpha_{13}\alpha_{23})\dots(\alpha_{1k}\alpha_{2k}\dots\alpha_{k-1,k}) = D_k.$$



From the above Lemma and the exact sequence in (2) we get that the image in $\pi_1(\mathcal{F}_k(\mathbb{C}))$ of the generator of $\pi_2(Graff^1(\mathbb{C}^2))$ is D_k and the following theorem is proved.

Theorem 3.2. For n > 1, the fundamental group of the configuration space of k distinct points in \mathbb{C}^n lying on a line has the following presentation (not depending on n)

$$\pi_1(\mathcal{F}_k^{1,n}) = \langle \alpha_{ij}, 1 \le i < j \le k \mid (YB3)_k, (YB4)_k, D_k = 1 \rangle$$
.

The case k = i + 1, points in general position.

Lemma 3.3. For $1 < k \le n + 1$, the projection

$$p: \mathcal{F}_k^{k-1,n} \longrightarrow \mathcal{F}_{k-1}^{k-2,n}, \quad (x_1,\ldots,x_k) \mapsto (x_1,\ldots,x_{k-1})$$

is a locally trivial fibration with fiber $\mathbb{C}^n \setminus \mathbb{C}^{k-2}$

Proof. Take $(x_1^0,\ldots,x_{k-1}^0)\in\mathcal{F}_{k-1}^{k-2,n}$ and fix $x_k^0,\ldots,x_{n+1}^0\in\mathbb{C}^n$ such that $< x_1^0,\ldots,x_{n+1}^0>=\mathbb{C}^n$ (that is $< x_k^0,\ldots,x_{n+1}^0>$ and $< x_1^0,\ldots,x_{k-1}^0>$ are skew subspaces). Define the open neighbourhood \mathcal{U} of (x_1^0,\ldots,x_{k-1}^0) by

$$\mathcal{U} = \{ (x_1, \dots, x_{k-1}) \in \mathcal{F}_{k-1}^{k-2, n} | \langle x_1, \dots, x_{k-1}, x_k^0, \dots, x_{n+1}^0 \rangle = \mathbb{C}^n \}.$$

For $(x_1, \ldots, x_{k-1}) \in \mathcal{U}$, there exists a unique affine isomorphism $T_{(x_1, \ldots, x_{k-1})}$: $\mathbb{C}^n \longrightarrow \mathbb{C}^n$, which depends continuously on (x_1, \ldots, x_{k-1}) , such that

$$T_{(x_1,\ldots,x_{k-1})}(x_i^0) = (x_i) \text{ for } i = 1,\ldots,k-1$$

and

$$T_{(x_1,\ldots,x_{k-1})}(x_i^0) = (x_i^0) \text{ for } i = k,\ldots,n+1$$
.

We can define the homeomorphisms φ, ψ by :

$$p^{-1}(\mathcal{U}) \stackrel{\varphi}{\longleftrightarrow} \mathcal{U} \times \left(\mathbb{C}^n \setminus \langle x_1^0, \dots, x_{k-1}^0 \rangle \right)$$

$$\varphi(x_1, \dots, x_{k-1}, x) = \left((x_1, \dots, x_{k-1}), T_{(x_1, \dots, x_{k-1})}^{-1}(x) \right)$$

$$\psi((x_1, \dots, x_{k-1}), y) = (x_1, \dots, x_{k-1}, T_{(x_1, \dots, x_{k-1})}(y))$$

satisfying $pr_1 \circ \varphi = p$.

$$p^{-1}(\mathcal{U}) \xrightarrow{\varphi} \mathcal{U} \times (\mathbb{C}^n \setminus \langle x_1^0, \dots, x_{k-1}^0 \rangle)$$

$$p \xrightarrow{\psi} \mathcal{U} \times (\mathbb{C}^n \setminus \langle x_1^0, \dots, x_{k-1}^0 \rangle)$$

As $\mathbb{C}^n \setminus \mathbb{C}^{k-2}$ is simply connected when n > k-1 and k > 1, we have

$$\pi_1(\mathcal{F}_k^{k-1,n}) \cong \pi_1(\mathcal{F}_{k-1}^{k-2,n}) \cong \pi_1(\mathcal{F}_2^{1,n}) = \pi_1(\mathcal{F}_2(\mathbb{C}^n)) \cong \pi_1(\mathcal{F}_1^{0,n}) = \pi_1(\mathbb{C}^n) = 0,$$

in particular $\pi_1(\mathcal{F}_n^{n-1,n}) = 0$. Moreover, since $\mathbb{C}^n \setminus \mathbb{C}^{k-2}$ is homotopically equivalent to an odd dimensional (real) sphere $S^{2(n-k)-1}$, its second homotopy group vanish and we have

$$\pi_2(\mathcal{F}_{k+1}^{k,n}) \cong \pi_2(\mathcal{F}_k^{k-1,n}) \cong \pi_2(\mathcal{F}_1^{0,n}) = \pi_2(\mathbb{C}^n) = 0.$$

in particular $\pi_2(\mathcal{F}_n^{n-1,n})=0$.

In the case k = n + 1, $\mathbb{C}^n \setminus \mathbb{C}^{n-1}$ is homotopically equivalent to \mathbb{C}^* , and we obtain the exact sequence:

$$\pi_2(\mathcal{F}_n^{n-1,n}) \to \mathbb{Z} \to \pi_1(\mathcal{F}_{n+1}^{n,n}) \to \pi_1(\mathcal{F}_n^{n-1,n}) \to 0.$$

By the above remarks, the leftmost and rightmost groups are trivial, so we have that $\pi_1(\mathcal{F}_{n+1}^{n,n})$ is infinite cyclic.

We have proven the following

Theorem 3.4. For $n \geq 1$, the configuration space of k distinct points in \mathbb{C}^n in general position $\mathcal{F}_k^{k-1,n}$ is simply connected except for k=n+1 in which case $\pi_1(\mathcal{F}_{n+1}^{n,n})=\mathbb{Z}$.

We can also identify a generator for $\pi_1(\mathcal{F}_{n+1}^{n,n})$ via the map

$$h: S^1 \to \mathcal{F}_{n+1}^{n,n} \quad h(z) = (0, e_1, \dots e_{n-1}, ze_n),$$
 (3)

where $e_1, \ldots e_n$ is the canonical basis for \mathbb{C}^n (i.e. a loop that goes around the hyperplane $< 0, e_1, \ldots e_{n-1} >$).

4 The general case

From now on we will consider n, i > 1.

Let us recall that, by Proposition 2.2 and equation (1), in order to compute the fundamental group of the general case $\mathcal{F}_k^{i,n}$, we need to compute $\pi_1(\mathcal{F}_k^{n,n})$ when $k \geq n+1$. To do this, we will cover $\mathcal{F}_k^{n,n}$ by open sets with an infinite cyclic fundamental group and then we will apply the Van-Kampen theorem to them.

4.1 A good cover

Let $\mathcal{A} = (A_1, \ldots, A_p)$ be a sequence of subsets of $\{1, \ldots, k\}$ and the integers d_1, \ldots, d_p given by $d_j = |A_j| - 1, \quad j = 1, \ldots, p$. Let us define

$$\mathcal{F}_k^{\mathcal{A},n} = \{(x_1,\ldots,x_k) \in \mathcal{F}_k(\mathbb{C}^n) | \dim \langle x_i \rangle_{i \in A_j} = d_j \text{ for } j = 1,\ldots,p \}.$$

Example 4.1. The following easy facts hold:

1. If
$$A = \{A_1\}$$
, $A_1 = \{1, ..., k\}$, then $\mathcal{F}_k^{A,n} = \mathcal{F}_k^{k-1,n}$;

2. if all
$$A_i$$
 have cardinality $|A_i| \leq 2$, then $\mathcal{F}_k^{\mathcal{A},n} = \mathcal{F}_k(\mathbb{C}^n)$;

3. if
$$p \ge 2$$
 and $|A_p| \le 2$, then $\mathcal{F}_k^{(A_1,\dots,A_p),n} = \mathcal{F}_k^{(A_1,\dots,A_{p-1}),n}$;

4. if
$$p \ge 2$$
 and $A_p \subseteq A_1$, then $\mathcal{F}_k^{(A_1,...,A_p),n} = \mathcal{F}_k^{(A_1,...,A_{p-1}),n}$;

5.
$$\bigcup_{j\geq i} \mathcal{F}_k^{j,n} = \bigcup_{\mathcal{A}=\{A\},A\in\binom{\{1,\dots,k\}}{i-1}} \mathcal{F}_k^{\mathcal{A},n}.$$

Lemma 4.2. For $A = \{1, ..., j + 1\}, j \le n, and k > j$ the map

$$P_A: \mathcal{F}_k^{(A),n} \to \mathcal{F}_{i+1}^{j,n}, \ (x_1,\ldots,x_k) \mapsto (x_1,\ldots,x_{j+1})$$

is a locally trivial fibration with fiber $\mathcal{F}_{k-j-1}(\mathbb{C}^n \setminus \{0, e_1, \dots, e_j\})$.

Proof. Fix $(x_1, ..., x_{j+1}) \in \mathcal{F}_{j+1}^{j,n}$ and choose $z_{j+2}, ..., z_{n+1} \in \mathbb{C}^n$ such that $\langle x_1, ..., x_{j+1}, z_{j+2}, ..., z_{n+1} \rangle = \mathbb{C}^n$.

Define the neighborhood \mathcal{U} of (x_1, \ldots, x_{j+1}) by

$$\mathcal{U} = \{ (y_1, \dots, y_{j+1}) \in \mathcal{F}_{j+1}^{j,n} | \langle y_1, \dots, y_{j+1}, z_{j+2}, \dots, z_{n+1} \rangle = \mathbb{C}^n \} .$$

There exists a unique affine isomorphism $F_y: \mathbb{C}^n \to \mathbb{C}^n$, which depends continuously on $y = (y_1, \dots, y_{j+1})$, such that

$$F_y(x_i) = y_i, i = 1, ..., j + 1$$

 $F_y(z_i) = z_i, i = j + 2, ..., n + 1$

and this gives a local trivialization

$$f: P_A^{-1}(\mathcal{U}) \to \mathcal{U} \times \mathcal{F}_{k-j-1}(\mathbb{C}^n \setminus \{x_1, \dots, x_{j+1}\})$$

$$(y_1, \dots, y_k) \mapsto ((y_1, \dots, y_{j+1}), F_y^{-1}(y_{j+2}), \dots, F_y^{-1}(y_k))$$

which satisfies $pr_1 \circ f = P_A$.

Let us remark that P_A is the identity map if k = j + 1 and the fibration is (globally) trivial if j = n since $\mathcal{U} = \mathcal{F}_{n+1}^{n,n}$; in this last case $\pi_1(\mathcal{F}_k^{(A),n}) = \mathbb{Z}$ (recall that we are considering n > 1).

Let $\mathcal{A} = (A_1, \ldots, A_p)$ be a *p*-uple of subsets of cardinalities $|A_j| = d_j + 1$, $j = 1, \ldots, p$. For any given integer $h \in \{1, \ldots, k\}$, we define a new *p*-uple $\mathcal{A}' = (A'_1, \ldots, A'_p)$ and integers d'_1, \ldots, d'_p as follows:

$$A'_{j} = \left\{ \begin{array}{l} A_{j}, \text{ if } h \notin A_{j} \\ A_{j} \setminus \{h\}, \text{ if } h \in A_{j} \end{array} \right., \quad d'_{j} = \left\{ \begin{array}{l} d_{j}, \text{ if } h \notin A_{j} \\ d_{j} - 1, \text{ if } h \in A_{j} \end{array} \right..$$

The following Lemma holds.

Lemma 4.3. The map

$$p_h: \mathcal{F}_k^{\mathcal{A},n} \to \mathcal{F}_{k-1}^{\mathcal{A}',n}, \ (x_1,\ldots,x_k) \mapsto (x_1,\ldots,\widehat{x_h},\ldots,x_k)$$

has local sections with path-connected fibers.

Proof. Let us suppose that h = k and $k \in (A_1 \cap ... \cap A_l) \setminus (A_{l+1} \cup ... \cup A_p)$. Then the fiber of the map $p_k : \mathcal{F}_k^{\mathcal{A},n} \to \mathcal{F}_{k-1}^{\mathcal{A}',n}$ is

$$p_k^{-1}(x_1,\ldots,x_{k-1}) \approx \mathbb{C}^n \setminus (L_1' \cup \ldots \cup L_l' \cup \{x_1,\ldots,x_{k-1}\})$$

where $L'_j = \langle x_i \rangle_{i \in A'_j}$. Even in the case when dim $L_j = n$, we have dim $L'_j < n$, hence the fiber is path-connected and nonempty. Fix a base point $x = (x_1, \ldots, x_{k-1}) \in \mathcal{F}_{k-1}^{\mathcal{A}',n}$ and choose $x_k \in \mathbb{C}^n \setminus (L'_1 \cup \ldots \cup L'_l \cup \{x_1, \ldots, x_{k-1}\})$. There are neighborhoods $W_j \subset Graff^{d'_j}(\mathbb{C}^n)$ of L'_j $(j = 1, \ldots, l)$ such that $x_k \notin L''_j$ if $L''_j \in W_j$; we take a constant local section

$$s: W = g^{-1} \left((\mathbb{C}^n \setminus \{x_k\})^{k-1} \times \prod_{i=1}^l W_i \right) \to \mathcal{F}_k^{\mathcal{A}, n}$$

$$(y_1,\ldots,y_{k-1})\mapsto (y_1,\ldots,y_{k-1},x_k),$$

where the continuous map g is given by:

$$g: \mathcal{F}_{k-1}^{\mathcal{A}',n} \to (\mathbb{C}^n)^{k-1} \times Graff^{d'_1}(\mathbb{C}^n) \times \ldots \times Graff^{d'_l}(\mathbb{C}^n)$$
$$(y_1,\ldots,y_{k-1}) \mapsto (y_1,\ldots,y_{k-1},L''_1,\ldots,L''_l),$$

and $L''_{j} = \langle y_{i} \rangle_{i \in A'_{j}}$ for j = 1, ..., l.

Proposition 4.4. The space $\mathcal{F}_k^{\mathcal{A},n}$ is path-connected.

Proof. Use induction on p and $d_1 + d_2 + \ldots + d_p$. If p = 1, use Lemma 4.2 and the space $\mathcal{F}_{j+1}^{j,n}$ which is path-connected. If A_p is not included in A_1 and $d_p \geq 3$, delete a point in $A_p \setminus A_1$ and use Lemma 4.3 and the fact that if C is not empty and path-connected and $p: B \to C$ is a surjective continuous map with local sections such that $p^{-1}(y)$ is path-connected for all $y \in C$, then B is path-connected (see [BS]). If $A_p \subset A_1$ or $d_p \leq 2$, use Example 4.1, (3) and (4).

Let e_1, \ldots, e_n be the canonical basis of \mathbb{C}^n and

$$M_h = \{(x_1, \dots, x_h) \in \mathcal{F}_h(\mathbb{C}^n \setminus \{0, e_1, \dots, e_n\}) | x_1 \notin \langle e_1, \dots, e_n \rangle \},$$

the following Lemma holds.

Lemma 4.5. The map

$$p_h: M_h \to (\mathbb{C}^n)^* \setminus \langle e_1, \dots, e_n \rangle$$

sending $(x_1, \ldots, x_h) \mapsto x_1$, is a locally trivial fibration with fiber $\mathcal{F}_{h-1}(\mathbb{C}^n \setminus \{0, e_1, \ldots, e_n, e_1 + \cdots + e_n\})$.

Proof. Let $G: B^m \to \mathbb{R}^m$ be the homeomorphism from the open unit m-ball to \mathbb{R}^m given by $G(x) = \frac{x}{1-|x|}$, (whose inverse is the map $G^{-1}(y) = \frac{y}{1+|y|}$). For $x \in B^m$ let $\tilde{G}_x = G^{-1} \circ \tau_{-G(x)} \circ G$ be an homeomorphism of B^m , where $\tau_v: \mathbb{R}^n \to \mathbb{R}^n$ is the translation by v. \tilde{G}_x sends x to 0 and can be extended to a homeomorphism of the closure $\overline{B^m}$, by requiring it to be the identity on the m-1-sphere (the exact formula for $\tilde{G}_x(y)$ is $\frac{(1-|x|)y-(1-|y|)x}{(1-|x|)(1-|y|)+|(1-|x|)y-(1-|y|)x}$). We can further extend it to an homomorphism G_x of \mathbb{R}^m by setting $G_x(y) = y$ if |y| > 1. Notice that G_x depends continuously on x. Let $\bar{x} \in (\mathbb{C}^n)^* \setminus \langle e_1, \dots, e_n \rangle$, fix an open complex ball B in

 $(\mathbb{C}^n)^*\setminus \langle e_1,\ldots,e_n\rangle$, in an open complex ball B in $(\mathbb{C}^n)^*\setminus \langle e_1,\ldots,e_n\rangle$ centered at \bar{x} and an affine isomorphism H of \mathbb{C}^n sending B to the open real 2n-ball B^{2n} . For $x\in B$, define the homeomorphism F_x of \mathbb{C}^n $F_x=H^{-1}\circ G_{H(x)}\circ H$ which sends x to \bar{x} , is the identity outside of B and depends continuously on x. The result follows from the continuous map

$$F: p_h^{-1}(B) \to B \times p_h^{-1}(\bar{x})$$
$$F(x, x_2, \dots, x_h) = (x, (\bar{x}, F_x(x_2), \dots, F_x(x_h)))$$

(whose inverse is the map $F^{-1}: B \times p_h^{-1}(\bar{x}) \to p_h^{-1}(B), F^{-1}(x, (\bar{x}, x_2, \dots, x_h)) = (x, F_x^{-1}(x_2), \dots, F_x^{-1}(x_h))$).

The fiber $p_h^{-1}(\bar{x})$ is homeomorphic to $\mathcal{F}_{h-1}(\mathbb{C}^n \setminus \{0, e_1, \dots, e_n, e_1 + \dots + e_n\})$ via an homeomorphism of \mathbb{C}^n which fixes $0, e_1, \dots, e_n$ and sends \bar{x} to the sum $e_1 + \dots + e_n$.

Thus we have, since $n \geq 2$, $\pi_1(M_h) = \mathbb{Z}$, and we can choose as generator the map $S^1 \to M_h$ sending $z \mapsto (z(e_1 + \cdots + e_n), x_2, \ldots, x_h)$ with x_2, \ldots, x_h of sufficient high norm (i.e. a loop that goes round the hyperplane $\langle e_1, \ldots, e_n \rangle$).

Lemma 4.6. For $A = \{1, ..., n+1\}$, $B = \{2, ..., n+2\}$, and k > n+1 the map

$$P_{A,B}: \mathcal{F}_k^{(A,B),n} \to \mathcal{F}_{n+1}^{n,n}, \ (x_1,\ldots,x_k) \mapsto (x_1,\ldots,x_{n+1})$$

is a trivial fibration with fiber M_{k-n-1}

Proof. For $x = (x_1, \ldots, x_{n+1}) \in \mathcal{F}_{n+1}^{n,n}$ let F_x be the affine isomorphism of \mathbb{C}^n such that $F_x(0) = x_1, F_x(e_i) = x_{i+1}$, for $i = 1, \ldots, n$. The map

$$\mathcal{F}_{n+1}^{n,n} \times M_{k-n-1} \to \mathcal{F}_k^{(A,B),n}$$

sending

$$((x_1, \dots, x_{n+1}), (x_{n+2}, \dots, x_k)) \mapsto (x_1, \dots, x_{n+1}, F_x(x_{n+2}), \dots, F_x(x_k))$$
 gives the result.

4.2 Computation of the fundamental group

From Lemma 4.6 it follows that $\pi_1(\mathcal{F}_k^{(A,B),n}) = \mathbb{Z} \times \mathbb{Z}$ and that it has two generators: $((z+1)(e_1+\ldots+e_n), e_1, \ldots, e_n, e_1+\ldots+e_n, x_{n+3}, \ldots, x_k)$ and $(0, e_1, \ldots, e_n, z(e_1+\ldots+e_n), x_{n+3}, \ldots, x_k)$, where x_{n+3}, \ldots, x_k are chosen far enough to be different from the first n+2 points. The first generator is the one coming from the base, the second is the one from the fiber of the fibration $P_{A,B}$.

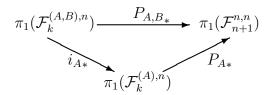
Note that using the map

$$P'_{A,B}: \mathcal{F}_k^{(A,B),n} \to \mathcal{F}_{n+1}^{n,n}, \ (x_1,\ldots,x_k) \mapsto (x_2,\ldots,x_{n+2})$$

we obtain the same result and the generator coming from the base here is the one coming from the fiber above and vice versa. The map $P_{A,B}$ factors through the inclusion $i_A: \mathcal{F}_k^{(A,B),n} \hookrightarrow \mathcal{F}_k^{(A),n}$ followed by the map

$$P_A: \mathcal{F}_k^{(A),n} \to \mathcal{F}_{n+1}^{n,n}, \ (x_1,\ldots,x_k) \mapsto (x_1,\ldots,x_{n+1})$$

and we get the following commutative diagram of fundamental groups:



Since P_A induces an isomorphism on the fundamental groups, this means that i_{A*} sends the generator of $\pi_1(\mathcal{F}_k^{(A,B),n})$ coming from the fiber to 0 in $\pi_1(\mathcal{F}_{n+1}^{n,n})$. That is, the generator of $\pi_1(\mathcal{F}_k^{(B),n})$ (which is homotopically equivalent to the generator of $\pi_1(\mathcal{F}_k^{(A,B),n})$ coming from the fiber) is trivial in $\pi_1(\mathcal{F}_k^{(A),n})$ and (given the symmetry of the matter) vice versa. Applying Van Kampen theorem, we have that $\mathcal{F}_k^{(A),n} \cup \mathcal{F}_k^{(B),n}$ is simply con-

Applying Van Kampen theorem, we have that $\mathcal{F}_k^{(A),n} \cup \mathcal{F}_k^{(B),n}$ is simply connected. Moreover the intersection of any number of $\mathcal{F}_k^{(A),n}$'s is path connected and the same is true for the intersection of two unions of $\mathcal{F}_k^{(A),n}$'s since the intersection $\bigcap_{A \in \binom{\{1,\ldots,k\}}{n+1}} \mathcal{F}_k^{(A),n}$ is not empty.

From the last example in 4.1 with i = n we have $\mathcal{F}_k^{n,n} = \bigcup_{A \in \binom{\{1,\dots,k\}}{n+1}} \mathcal{F}_k^{(A),n}$, and when k > n+1, we can cover it with a finite number of simply connected open sets with path connected intersections, so it is simply connected by the following

Lemma 4.7. Let X be a topological space which has a finite open cover U_1, \ldots, U_n such that each U_i is simply connected, $U_i \cap U_j$ is connected for all $i, j = 1, \ldots, n$ and $\bigcap_{i=1}^n U_i \neq \emptyset$. Then X is simply connected.

Proof. By induction, let's suppose $\bigcup_{i=1}^{k-1} U_i$ is simply connected. Then, applying Van Kampen theorem to U_k and $\bigcup_{i=1}^{k-1} U_i$, we get that $\bigcup_{i=1}^k U_i$ is simply connected if $U_k \cap (\bigcup_{i=1}^{k-1} U_i)$ is connected. But $U_k \cap (\bigcup_{i=1}^{k-1} U_i) = \bigcup_{i=1}^{k-1} (U_k \cap U_i)$ is the union of connected sets with non empty intersection, and therefore is connected.

Now, using the fibration in Proposition 2.2 with n = i + 1, we obtain that $\mathcal{F}_k^{n-1,n}$ is simply connected when k > n.

Summing up the results for the oredered case, the following main theorem is proved

Theorem 4.8. The spaces $\mathcal{F}_k^{i,n}$ are simply connected except

1.
$$\pi_1(\mathcal{F}_k^{1,1}) = \mathcal{PB}_k$$
,

2.
$$\pi_1(\mathcal{F}_k^{1,n}) = \langle \alpha_{ij}, 1 \leq i < j \leq k | (YB3)_k, (YB4)_k, D_k = 1 \rangle$$
 when $n > 1$,

3.
$$\pi_1(\mathcal{F}_{n+1}^{n,n}) = \mathbb{Z}$$
 for all $n \geq 1$, with generator described in (3).

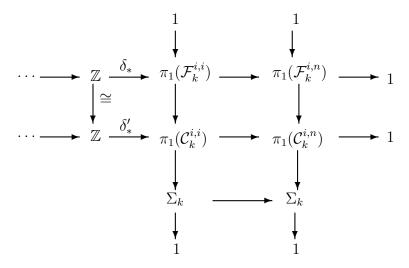
5 The unordered case: $\mathcal{C}_k^{i,n}$

Let $C_k^{i,n}$ be the unordered configuration space of all k distinct points p_1, \ldots, p_k in \mathbb{C}^n which generate an i-dimensional space. Then $C_k^{i,n}$ is obtained quotienting $\mathcal{F}_k^{i,n}$ by the action of the symmetric group Σ_k . The map $p: \mathcal{F}_k^{i,n} \to C_k^{i,n}$ is a regular covering with Σ_k as deck transformation group, so we have the exact sequence:

$$1 \to \pi_1(\mathcal{F}_k^{i,n}) \xrightarrow{p_*} \pi_1(\mathcal{C}_k^{i,n}) \xrightarrow{\tau} \Sigma_k \to 1$$

which gives immediately $\pi_1(\mathcal{C}_k^{i,n}) = \Sigma_k$ in case $\mathcal{F}_k^{i,n}$ is simply connected. Observe that the fibration in Proposition 2.2 may be quotiented obtaining a locally trivial fibration $\mathcal{C}_k^{i,n} \to Graff^i(\mathbb{C}^n)$ with fiber $\mathcal{C}_k^{i,i}$.

This gives an exact sequence of homotopy groups which, together with the one from Proposition 2.2 and those coming from regular coverings, gives the following commutative diagram for i < n:



In case i = 1, $\mathcal{F}_k^{1,1} = \mathcal{F}_k(\mathbb{C})$ and $\mathcal{C}_k^{1,1} = \mathcal{C}_k(\mathbb{C})$, so $\pi_1(\mathcal{F}_k^{1,1}) = \mathcal{PB}_k$ and $\pi_1(\mathcal{C}_k^{1,1}) = \mathcal{B}_k$, and since $\text{Im}\delta_* = \langle D_k \rangle \subset \mathcal{PB}_k$, the left square gives $\text{Im}\delta_*' = \langle \Delta_k^2 \rangle \subset \mathcal{B}_k$, therefore $\pi_1(\mathcal{C}_k^{1,n}) = \mathcal{B}_k / \langle \Delta_k^2 \rangle$.

Im $\delta'_{*} = \langle \Delta_{k}^{2} \rangle \subset \mathcal{B}_{k}$, therefore $\pi_{1}(\mathcal{C}_{k}^{1,n}) = \mathcal{B}_{k}/\langle \Delta_{k}^{2} \rangle$. For i = n = k - 1, we have $\pi_{1}(\mathcal{F}_{n+1}^{n,n}) = \mathbb{Z}$, and we can use the exact sequence of the regular covering $p: \mathcal{F}_{n+1}^{n,n} \to \mathcal{C}_{n+1}^{n,n}$ to get a presentation of $\pi_{1}(\mathcal{C}_{n+1}^{n,n})$.

Let's fix $Q = (0, e_1, \dots, e_n) \in \mathcal{F}_{n+1}^{n,n}$ and $p(Q) \in \mathcal{C}_{n+1}^{n,n}$ as base points and for $i = 1, \dots, n$ define $\gamma_i : [0, \pi] \to \mathcal{F}_{n+1}^{n,n}$ to be the (open) path

$$\gamma_i(t) = (\frac{1}{2}(e^{i(t+\pi)} + 1)e_i, e_1, \dots, e_{i-1}, \frac{1}{2}(e^{it} + 1))e_i, e_{i+1}, \dots, e_n)$$

(which fixes all entries except the first and the (i + 1)-th and exchanges 0 and e_i by a half rotation in the line $< 0, e_i >$).

Then $p \circ \gamma_i$ is a closed path in $\mathcal{C}_{n+1}^{n,n}$ and we denote it's homotopy class in $\pi_1(\mathcal{C}_{n+1}^{n,n})$ by σ_i . Hence $\tau_i = \tau(\sigma_i)$ is the deck transformation corresponding to the transposition (0,i) (we take Σ_{n+1} as acting on $\{0,1,\ldots,n\}$) and we get a set of generators for Σ_{n+1} satisfying the following relations

$$\tau_i^2 = \tau_i \tau_j \tau_i \tau_j^{-1} \tau_i^{-1} \tau_j^{-1} = 1 \text{ for } i, j = 1, \dots, n,$$

$$[\tau_1 \tau_2 \cdots \tau_{i-1} \tau_i \tau_{i-1}^{-1} \cdots \tau_1^{-1}, \tau_1 \tau_2 \cdots \tau_{j-1} \tau_j \tau_{j-1}^{-1} \cdots \tau_1^{-1}] = 1 \text{ for } |i-j| > 2.$$

If we take T, the (closed) path in $\mathcal{F}_{n+1}^{n,n}$ in which all entries are fixed except for one which goes round the hyperplane generated by the others counter-clockwise, as generator of $\pi_1(\mathcal{F}_{n+1}^{n,n})$, then $\pi_1(\mathcal{C}_{n+1}^{n,n})$ is generated by T and the

 σ_1,\ldots,σ_n .

In order to get the relations, we must write the words σ_i^2 , $\sigma_i \sigma_j \sigma_i \sigma_j^{-1} \sigma_i^{-1} \sigma_j^{-1}$ and $[\sigma_1 \sigma_2 \cdots \sigma_{i-1} \sigma_i \sigma_{i-1}^{-1} \cdots \sigma_1^{-1}, \sigma_1 \sigma_2 \cdots \sigma_{j-1} \sigma_j \sigma_{j-1}^{-1} \cdots \sigma_1^{-1}]$ as well as $\sigma_i T \sigma_i^{-1}$ as elements of Ker $\tau = \text{Im } p_*$ for all appropriate i, j.

Observe that the path $\gamma_i': [\pi, 2\pi] \to \mathcal{F}_{n+1}^{n,n}$, defined by the same formula as γ_i , is a lifting of σ_i with starting point $(e_i, e_1, e_2, \dots, e_{i-1}, 0, e_{i-1}, \dots, e_n)$ and that $\gamma_i \gamma_i'$ is a closed path in $\mathcal{F}_{n+1}^{n,n}$ which is the generator T of $\pi_1(\mathcal{F}_{n+1}^{n,n})$ (as you can see by the homotopy $(\frac{\epsilon}{2}(e^{i(t+\pi)}+1)e_i, e_1, \dots, e_{i-1}, \frac{2-\epsilon}{2}(e^{it}+\frac{\epsilon}{2-\epsilon}))e_i, e_{i+1}\dots, e_n)$, $\epsilon \in [0,1]$, where for $\epsilon = 0$ we have the point e_i going round the hyperplane $< 0, e_1, e_2, \dots, e_{i-1}, e_{i+1}, \dots, e_n > \text{counterclockwise}).$

Thus we have $p_*(T) = \sigma_i^2$ for all i = 1, ..., n (and that $\text{Im}p_*$ is the center of $\pi_1(\mathcal{C}_{n+1}^{n,n})$).

Moreover, it's easy to see, by lifting to $\mathcal{F}_{n+1}^{n,n}$, that the σ_i satisfy the relations

$$\sigma_i \sigma_j \sigma_i \sigma_j^{-1} \sigma_i^{-1} \sigma_j^{-1} = 1 \text{ for } i, j = 1, \dots, n$$

and

$$[\sigma_1 \sigma_2 \cdots \sigma_{i-1} \sigma_i \sigma_{i-1}^{-1} \cdots \sigma_1^{-1}, \sigma_1 \sigma_2 \cdots \sigma_{j-1} \sigma_j \sigma_{j-1}^{-1} \cdots \sigma_1^{-1}] = 1 \text{ for } |i-j| > 2.$$

We can represent a lifting of $\sigma'_i = \sigma_1 \sigma_2 \cdots \sigma_{i-1} \sigma_i \sigma_{i-1}^{-1} \cdots \sigma_1^{-1}$ (which gives the deck transformation corresponding to the transposition (i, i + 1)) by a path which fixes all entries except the *i*-th and the (i + 1)-th and exchanges e_i and e_{i+1} by a half rotation in the line $\langle e_i, e_{i+1} \rangle$.

We can now change the set of generators by first deleting T and introducing the relations

$$\sigma_1^2 = \sigma_2^2 = \dots = \sigma_n^2$$

and then by choosing the σ'_i 's instead of the σ_i 's. Then we get that the generators σ'_i 's satisfy the relations

$$\sigma'_i \sigma'_{i+1} \sigma'_i = \sigma'_{i+1} \sigma'_i \sigma'_{i+1}$$
 for $i = 1, \dots, n-1$,

 $[\sigma'_i, \sigma'_j] = 1 \text{ for } |i - j| > 2$

and

$$\sigma_1^{\prime 2} = \sigma_2^{\prime 2} = \dots = \sigma_n^{\prime 2}.$$
 (4)

Namely, $\pi_1(\mathcal{C}_{n+1}^{n,n})$ is the quotient of the braid group \mathcal{B}_{n+1} on n+1 strings by relations (4) and the following main theorem is proved.

Theorem 5.1. The fundamental groups $\pi_1(\mathcal{C}_k^{i,n})$ are isomorphic to the symmetric group Σ_k except

- 1. $\pi_1(\mathcal{C}_k^{1,1}) = \mathcal{B}_k$,
- 2. $\pi_1(\mathcal{C}_k^{1,n}) = \mathcal{B}_k / < \Delta_k^2 > when \ n > 1$,
- 3. $\pi_1(\mathcal{C}_{n+1}^{n,n}) = \mathcal{B}_{n+1}/<\sigma_1^2 = \sigma_2^2 = \dots = \sigma_n^2 > \text{for all } n \ge 1.$

References

- [A] Artin, E. (1947), Theory of braids, Ann. of Math. (2)48, pp. 101-126.
- [BS] Berceanu, B. and Parveen, S. (2012), Braid groups in complex projective spaces, Adv. Geom. 12, p.p. 269 286.
- [B2] Birman, Joan S. (1974), *Braids, Links, and Mapping Class Groups*, Annals of Mathematics vol. **82**, Princeton University Press.
- [F] Fadell, E.R, Husseini, S.Y. (2001), Geometry and Topology of Configuration Spaces, Springer Monographs in Mathematics, Springer-Verlarg Berlin.
- [G] Garside, F.A. (1969), The braid groups and other groups, Quat. J. of Math. Oxford, 2^e ser. 20, 235-254.
- [H] Hatcher, A. (2002), Algebraic Topology, Cambridge University Press.
- [M1] Moran, S. (1983), The Mathematical Theory of Knots and Braids, North Holland Mathematics Studies, Vol 82 (Elsevier, Amsterdam).
- [M2] Moulton, V. L. (1998), Vector Braids, J. Pure Appl. Algebra, 131, no. 3, 245-296.