
LEMLEM
WORKING PAPER SERIES

Non-linear externalities: A computational
estimation method

Giulio Bottazzi *
Fabio Vanni *

* Institute of Economics and LEM, Scuola Superiore Sant'Anna, Pisa, Italy

 2014/01 November 2015
ISSN(ONLINE) 2284-0400

A numerical estimation method for discrete choice models

with non-linear externalities

Giulio Bottazzi ∗

Scuola Superiore Sant’Anna

Institute of Economics

Pisa, Italy.

Fabio Vanni †

Scuola Superiore Sant’Anna

Institute of Economics

Pisa, Italy.

January 2014

Abstract

This paper presents a stochastic discrete choice model with non-linear externalities and

a related methodology to carry out inferential analysis on its parameters. Such frame-

work allows to disentangle the role of the intrinsic features of alternatives from the effect

of externalities in determining individual choices. The stochastic process underlying the

model is demonstrated to be ergodic, so that numerical methods are adopted to estimate

the parameters by χ2 minimization and evaluate their statistical significance. In particu-

lar, optimization rests on computational procedures that consider also iterative methods

such as successive parabolic interpolation. Comparisons among various computational

techniques and simulation implementations are analyzed. For completeness, the χ2 is

compared to the approach of maximum likelihood optimization, underling the advantages

of the first in this model.

JEL codes: C12, C13, C46, C52, R12.

Keywords: Externalities, Heterogeneity, Computational methods, Firm localization.

∗E-mail: giulio.bottazzi@sssup.it; Corresponding author
†E-mail: fabio.vanni@sssup.it

1

1 Introduction

A variety of individual choices are determined by the intrinsic features of the object of choice

as well as by the choices of other individuals. For instance, a firm might choose where to

place its plants looking also at the localization of other firms, be it to cluster with them in a

Silicon Valley style, or to be as far as possible from them so as to escape local competition.

In all these cases, the number of agents that make a certain choice contributes to determining

how many other agents will make the same choice, thus generating interdependencies in the

decisions of agents. The present model belongs to the class of generalized Polya urn schemes

(see Garibaldi and Scalas, 2010). The probability for an alternative to be chosen, however, will

depend also on its intrinsic features, represented by some positive value. As a consequence, the

model is characterized as an irreducible Markov process that converges to a unique asymptotic

distribution,irrespective of initial conditions.

However the purpose of this paper is to address a more precise specification of the compu-

tational methods found in the previous paper Giulio Bottazzi and Vanni (2014) in which the

authors present a more detailed introduction on this topic and a particular application to firm

localization.

2 Model

The discrete choice model presented here extends the one in Bottazzi and Secchi (2007) to the

case of quadratic externalities. In parallel, also the type of inferential analysis introduced in

Bottazzi and Gragnolati (2012) is here modified to account for non linearities. Those papers

deals with the general framework where a population of N agents has to choose among L

alternatives, and each generic agent i does so maximizing individual utility. Labeling as nl the

number of agents that have chosen alternative l and as the configuration n = (n1, . . . , nL) the

corresponding occupancy vector, the utility that agent i associates to alternative l depends on

the choices made by other agents. In terms of firms localization agents are the firms and the

locations are the alternatives. In an operational point of view the linear-case model consists

in new firms entering the economy, and selecting a site in which to place their activities.

Conversely incumbent firms from every location face some probability of leaving them (random

dying process). Once a firm has left the economy the probability of each location to be selected

is proportional to:

pl ∼ al + bnl, (1)

where al represents the intrinsic attractiveness captures the intrinsis feature offered by the

location l (higher demand, lower marginal costs, better infrastructures, etc.). On the other

hand b represents the interdependence factor that captures the presence of positive externalities

of localization which generate and act within the sector, rather than in single locations.

The extension of such model to a non-linear coefficients relies on the function shape of the

probability :

pl ∼ al + bnl + cn2
l , (2)

2

where the c coefficient represents the non- linear externalities. To get the complete probabilities

eqs (2) has to be normalized as:

pl = fracal + bnl + cn2
lA+ bN + c

L
∑

l=1

n2
l , (3)

where A =
∑L

l=1 al, N =
∑L

l=1 nl, with al ≥ 0∀l and b ≥ 0. A positive estimate of the quadratic

parameter would signal that the probability for a firm to choose a certain location grows more

than linearly in the number of rms already settled in the same location. Vice versa, a negative

estimate would signal the presence of spatial congestion.

While still allowing to estimate the presence of externalities in high dimensional problems,

the extension to the quadratic case impedes to derive a closed-form likelihood function with

the aim to evaluate the best parameters that fit the observations. Therefore, the parameter

estimates are here obtained computationally, and so is their variance. In particular, point

estimates are the result of χ2 minimization resting on successive parabolic interpolation Brent

(1973), while their variance is estimated through Monte Carlo simulations. It follows that the

statistical significance of the parameter estimates can be evaluated through their p-values. This

entire methodology has been realized in the Matlab program language.

3 Domain definition

The present model describes the evolution of the choices of a population across alternatives in

probabilistic terms. Given an initial configuration n0 and the set of parameters (a, b, c), the

realization of the stochastic process can be simulated numerically. In the case of non-linear

externalities (i.e. c 6= 0), Both processes (linear and non-linear) have been demonstrated to

be when the transition probabilities are non-zero (see Giulio Bottazzi and Vanni (2014) and

Bottazzi and Secchi (2007)). If this condition is attained, then the process converges asymp-

totically to the equilibrium distribution π(n;a, b, c). Therefore, the values of the parameters

(a, b, c) must be such as to ensure non-zero transition probabilities. In particular, since ul(gl)

maps into R≥0, it must generally hold that gl > 0 for any l ∈ (1, . . . , L). These constraints

allow to identify a relation among the values of the unknown parameters, especially for what

concerns the lower bound of c. In turn, this will inform numerical simulations.

We can obtain a definition of the lower bound of c straightforwardly from the constraint

gl > 0:

c >− al + bnl

n2
l

, ∀l = 1, . . . , L , (4)

>− min{al}+ bmax{nl}
max{nl}2

, (5)

cmin =− min{al}+ bN

N2
. (6)

Equation (6) corresponds to “full concentration”, that is when all N agents choose the same

3

alternative l. If the condition gl > 0 is respected for the alternative l that is chosen by all agents

under this extreme scenario, then it will also be respected for all other alternatives under any

other scenario. In parallel, conditions (4)–(6) imply a restriction also on the denominator of

equation (3), namely

A+ bN + c

L
∑

l=1

n2
l > 0 , (7)

A−min{al} > 0 ,with c ≥ cmin , (8)

where A =
∑L

l=1 al.

Furthermore, the interest of the present analysis is on small deviations from linearity. There-

fore, if an estimate of the “typical” occupancy ñ were available, the value of the non-linear

parameter would be approximately in the order of 1/ñ.

4 Estimation and inferential analysis

Given the observed no, one can investigate whether such distribution is statistically “com-

patible” with a set of predefined parameters (â, b̂, ĉ). Under the assumption that the model

described in Section 2 with a set of parameters (a, b, c) represents the true data generating

process, testing the statistical “compatibility” of (â, b̂, ĉ) amounts to performing an inferential

analysis on the null hypothesis H0(a = â, b = b̂, c = ĉ) against the alternative. Practically,

this translates in estimating the parameters that govern the model through equation (3), while

testing also whether these estimates are statistically different from zero. To simplify the expo-

sition, we illustrate the underlying reasoning by referring to the estimate of a single parameter,

namely c. Specifically, the inferential analysis will evaluate whether the null hypothesis c = 0

can be rejected, at a given significance level, based on the observed distribution no.

The point estimate of c is obtained by searching numerically for the value ĉ which generates

an equilibrium configuration closest to the observed no . The search takes place within a

predetermined set [cmin, cmax], which contains 0. The lower bound of the set, cmin, is defined

according to equation (6), whereas the definition of cmax is set according to the search method

in use. In fact, we will implement the numerical search for ĉ following different procedures,

namely the grid method and successive parabolic interpolations. Each of these approaches is

detailed in Section 4.4. Yet, to conduct the reader toward a first generic understanding of

the estimation procedure, it is convenient to refer hereby to the grid method. Once this is

understood, the rest will follow more easily.

Figure 1a illustrates how the point estimate ĉ is determined in the grid method. Starting

from the observed configuration no, the model is simulated with K different values of c ∈
[cmin, cmax] and fixed values for the other parameters. For each value of c, the model is run

for a transient of tmin time steps which are sufficient to reach the equilibrium configurations

{n′(tmin; c1), . . . ,n
′(tmin; cK)}. Then, each configuration is further evolved for a sufficiently

large number of steps T . Hence, K independent trajectories {n′(tmin + T ; c1), . . . ,n
′(tmin +

T ; cK)} are obtained. The goal is then to identify the particular value ĉ ∈ (c1, . . . , cK) whose

4

observation

no

n′(tmin; c1) . . . n′(tmin; ck) . . . n′(tmin; cK)

n′(tmin + T ; c1) . . . n′(tmin + T ; ck) . . . n′(tmin + T ; cK)

ĉ(no) = argmin
c

{F(n′
o(c),no)}

ĉ

model

n1 . . . ns . . . nS

.

. . .

.

.

.

.

.

. . .

c̃(n1) c̃(ns) c̃(nS)

(c = 0)

c1 ck cK

F F F

Hypothesis testing

0 ĉ c̃

F̂

(a) (b)

(c)

Figure 1: Estimation approach (grid method).

associated trajectory n′(tmin + T, ĉ) is closest as an average over time to no. In particular, the

comparison between any n′(tmin + T) and no is performed according to an objective function

Θ defined in terms of a distance measure F (see subsection 4.1). Formally,

ĉ(no, tmin, T) = argmin
c∈(c1,...,cK)

{Θ(n′(c),no)} (9)

Θ = F(n′(t; c),no), (10)

where tmin is the minimum number of time steps needed to reach convergence. Besides F
represented a generic mean function over the time. Overall, this process delivers the point

estimate ĉ, whose statistical significance has then to be tested.

Figures 1b-c illustrate the Monte Carlo approach that is adopted to test the statistical

significance of ĉ. Initially, the model is run under the null hypothesis c = 0 for s ∈ (1, . . . , S)

different realizations, thus obtaining the set of replicas {n1, . . . ,nS}. Then, the same search

procedure described above is performed for each replica. Namely, each configuration ns is

further evolved for a time tmin + T with different parameter values c ∈ (c1, . . . , cK), thus

reaching the new configurations {n′
s(tmin + T ; c1), . . . ,n

′
s(tmin + T ; cK)}. One of these will be

closest to ns, and consequently its associated value of c will be identified as the solution for

5

Figure 2: Multistage estimation procedure that follows the line of the coordinate descend method.
Each step represents a minimization of a given optimization function. The step forward is realized in
terms of staistical significance of the found value.

the same minimization problem as (9). Since this procedure is repeated for each replica, one

ends up with S independent estimates c̃ under the null hypothesis c = 0. From these it is then

possible to calculate the p-value of the point estimate ĉ(no) under the null hypothesis. Let

F̂ (c) be the empirical distribution associated to the S estimates (c̃(n1), . . . , c̃(nS)) under the

null H0 : c = 0; then, the p-value of ĉ(no) is given by F̂ (c̃ ≤ −|ĉ|) + F̂ (c̃ ≥ |ĉ|).
If focusing on the estimate of a single parameter might have eased the exposition thus

far, the present estimation method relies on a multistage procedure which allows to estimate

multiple parameters. In fact, the kind of estimation exercises that are relevant for the model

presented in Section 2 concern a multidimensional space, where each dimension corresponds to

one of the parameters to be estimated. This leads to a multistage procedure, in which each

single parameter estimate is obtained conditionally to an initial value of the other parameter(s).

Such an iterative cycle stops as soon as convergence is reached. Figure 2 gives an illustration

of this procedure for a two dimensional case. Point A identifies the estimate b̂0 obtained under

the parametric restriction c = 0. From there the algorithm searches for an estimate of c under

the restriction b = b̂0, thus reaching ĉ0 and identifying point B, and so on to points C, D, and

E. In particular, the algorithm stops when the new set of estimates is not statistically different

from the set encountered at the previous search round.

Having provided a general picture of the present estimation method, it is now time to focus

in greater detail on two of its key elements, that is the objective function and the optimization

algorithm through which ĉ and the various c̃ are determined.

4.1 Occupancy and Objective function

As mentioned above, the objective function Θ compares two configurations of the system. In

this respect, we explore two approaches which will be described below. Again, to simplify the

6

exposition, the following description assumes that only the parameter c is unknown.

The first and most natural approach consists in searching for the particular ĉ which max-

imizes the likelihood of the observed configuration no. In this setting, the objective function

compares a simulated configuration n′(t; c) with the observed configuration no according to

F(n′(t; c),n0) = −δ
n

′(t;c),n0
. Hence, F has value −1 when n(t; c) and no are identical and 0

when they differ. This count yields the negative likelihood that n0 is generated by a particular

value of c, and that is the function to be minimized in problem (9).

Unfortunately, the applicability of maximum likelihood estimation turns out to be limited in

the present case due to two intertwined issues. Each of them is further detailed in Appendix A,

but it is still worth to introduce them here by means of an example. The first issue has to

do with ambiguity. To see how, imagine a situation in which N = 2, L = 2, a = (1, 1), and

the observed configuration reads no = (2, 0). In this scenario, externalities are clearly at play

since one alternative is chosen much more frequently than the other despite their homogeneous

intrinsic attractiveness. In particular, the parameter values that generate no = (2, 0) are

necessarily the same as those that would generate n′ = (0, 2). However, F(n′,n0) = −δ
n

′(t;c),n0

regards no = (2, 0) and n′ = (0, 2) as being different one from the other, although they have

the same generating parameters. The second issue reinforces the former through the rise of

computational costs when L is large. More precisely, the probability to regard as different

two configurations that are actually generated by the same underlying parameters increases

with the size of L. To stick to the previous example, when N = 2, L = 2, a = (1, 1) and

no = (2, 0), the observed configuration can be “confused” only with n′ = (0, 2). As soon as

dimensionality increases to L = 3, an observed configuration no = (2, 1, 0) could be “confused”

with n′ = (2, 0, 1), n′ = (0, 2, 1), n′ = (1, 2, 0), n′ = (1, 2, 0), or n′ = (1, 0, 2). Therefore,

the number of time steps for which the model needs to be run in order to generate sufficiently

accurate statistics on no increases more than linearly with the size of L. In this sense, maximum

likelihood estimation entails also high computational costs for large L.

In fact, computational costs can be attenuated by moving from a point to a local estimation

of the maximum likelihood. As further detailed in Appendix A, we have explored this road

by resorting to different techniques ranging from decimation, to convolution smoothing, to the

more advanced k-nearest neighbors estimation. However, while sensibly reducing computation

costs, none of these methods can entirely solve the ambiguity that is intrinsic to the numerical

maximum likelihood approach. To give an idea of these local maximum likelihood methods, let

us turn to the k-nearest neighbors estimation. This method compares the K simulated distri-

butions {n′(c1), . . . ,n
′(cK)} and the observed distribution no according to a distance measure,

which we define as the euclidean distance. The simulated distributions {n′(c1), . . . ,n
′(cK)} are

then ordered according to their distance relative to no, and only the k that are closest to no

enter Θ in equation (9).1 In this sense, the k-nearest neighbors is a local method, which allows

to obtain a smoother estimate. Then, the objective function estimate becomes Θ(no) ∝ 1/RL
k ,

where Rk is the euclidean distance between the estimation point no and its k-th closest neighbor.

Overall, this local maximum likelihood method attenuates some of the “confusion” discussed

1Notice that, for k-nearest neighborhood estimation, the minimization problem in equation (9) does not
longer correspond to the time average Θ = F̄ as discussed in the previous paragraph.

7

(a) (b) (c)

Figure 3: Binning procedure.

in the examples above. For instance, given a uniform intrinsic attractiveness al = a as in the

previous examples, the configurations no = (2, 1, 0) and n′ = (2, 0, 1) would now be regarded

as closer than they were with the point maximum likelihood. Nonetheless, they are still not

considered as identical, even if they are generated by the same underlying parameter values.

In this sense, even local maximum likelihood approaches do not manage to solve entirely the

problem of ambiguity. And this is even more the case for large L.

That is why we move to a χ2 minimization approach. In this alternative setting, the distance

between two configurations is measured through the χ2 function applied on occupancy classes.

An occupancy f(n) is defined as the number of alternatives chosen by n agents. For instance,

f(0) is the number of alternatives chosen by zero agents, f(1) is the number of alternatives

selected exactly by one agent, and so on. It follows that the sum of all occupancies is equal

to the number of available alternatives, that is
∑N

n=0 f(n) = L. Occupancies are then grouped

into classes C1, . . . , CJ of variable width and constant size:



















Cj = [cj, cj+1) j = 0, 1, . . . , J,

f(Cj) =
∑

n∈Cj

f(n),

f(Cj) = f(Ci) ∀i, j = 0, 1, . . . , J,

(11)

The resulting histograms tends to be flat, since each bin counts the same number of occurrences

(see Figure 3b). Notice that classes are computed only on the observed configuration no, and

then they are maintained constant for all other simulated configurations. By doing so, it is

ensured that the bins are chosen according to the real data while the cost of defining new

classes is limited to the moment in which a new observation no is considered. Moreover, this

also allows to have an immediate visual hindsight on how two configurations may possibly

differ (see Figure 3c). Given this definition of occupancy classes, the distance function used to

compare configurations via the objective function Θ.

4.1.1 The χ2 objective function

The reliability of the use of the optimization procedure of the objective function is based on

fine settings of several parameters and values. The main numerical issue is the convergence to

the ergodicity condition of the time series that represents the realizations of the configuration

8

vector.

Stationarity and ergodicity are properties of the underlying stochastic process and not of a

single realization. Stationarity is the property that the expected values of the moments of the

process are independent of the temporal index. Ergodicity is the property that the expected

values of the moments of the process are equal to the time averages of the moments of the

process. Since the expectation operator is the average over all the realizations of the process,

in general it is not possible to say anything for sure with just a single realization of the process.

If, however, we have that the process is ergodic, we can evaluate ensemble averages from the

time average estimated from a single realization. Ergodicity for linear and non-linear models

discussed in the present paper has been proved in Giulio Bottazzi and Vanni (2014). Anyway

as for time series we need some deeper considerations. The ergodicity of the time series of

the configuration vector n = [n1, . . . , nk, . . . , nN]
T can be checked via the wide-sense ergodicity

criteria

nk(t) = lim
T→∞

1

T

∫ T

0

nk(t
′)dt′ = E[nk] , (12)

γ̂nk
(τ) = lim

T→∞

1

T

∫ T

0

nk(t
′)nk(t

′ + τ)dt′ = E[nk(t), nk(t+ τ)] , (13)

where γ̂ is the covariance function. Since we know that the Markov process under study

is ergodic, the first-order stationary processes condition is sufficient to detect if the process

has reached the steady state. So we can check the first two moments of the distribution

n̄k = E[nk] = mk and Var(nk) = E[(nk −mk)
2].

As a rule of thumb, for our purpose as stationary time series we mean a flat looking series,

without trend, constant variance over time, a constant autocorrelation structure over time and

no periodic fluctuations. Since we start from configurations that are close to the equilibrium it

is necessary to wait a time until the trajectory reaches the expected ensemble variance. This

time for equilibrium has be determined according to the starting configuration, the number of

locations and the total number of units. This time is what we have called tmin.

The evaluation of the objective function rests on numerical estimation of the distance be-

tween the compared occupancy distribution.

The ergodic condition is valid in a long run term for time series of our distance between

occupancy distributions F . The rate of convergence also in this case helps us to meet the

stationarity condition for the time average in the computation of the objective function in

terms of occupation distances. That is,

Θ = F(n′(t; c),n0). (14)

In the present work we have used two different pretty equivalent mean function F based on

9

the occupancy frequency :

Θint =
J
∑

j=1

(

ho,j − 1
T

∑tmin+T
t=tmin

ht,j

)2

1
T

∑tmin+T
t=tmin

ht,j

(15)

Θext =
1

T

tmin+T
∑

t=tmin

J
∑

j=1

(ho,j − ht,j)
2

ht,j

, (16)

where the first equation is a distance between the observed occupancy and the mean expected

one, and the second equation is the mean distances between the observed occupancy and the

occupancy calculated at time t. We have use the eq.(15) as the favorite measure because of a

better stability on the estimation of the expected occupancy.

Beside the χ2 function as distance measure we have also used as a double check other kinds

of objective functions, that in the case of the use of an inner mean distance are:

Θ =



















χ2 =
∑J

j=1
(ho,j−he,j)

2

he,j
, χ2 distance ,

dH = 1√
2

(

∑J
j=1(

√

ho,j −
√

he,j)
)1/2

, Hellinger distance ,

dKL =
∑J

j=i ho,j log
ho,j

he,j
, Kullback-Leibler distance .

(17)

We have mainly used the first two distances, in particular, we treat the Hellinger distance as a

double check for the χ2 distance and its behavior close to singularities and

By definition, the Hellinger distance is a metric satisfying triangle inequality. The
√
2 in

the definition is for ensuring that hH(t) ≤ 1 for all probability distributions.

In our optimization procedure we have chosen to use

F = χ2 =
J
∑

j=1

(ho,j − he,j)
2

he,j

(18)

he,j =
1

T

tmin+T
∑

t=tmin

ht,j , (19)

where ho,j is the frequency of class j for the observed configuration no, ht,j is its simulated

counterpart at time step t, while he,j is the frequency class for the mean expected configuration.

J is the total number of classes. According to equation (10), the resulting objective function

is then Θ = χ2. And as a distance the χ2 one.

4.1.2 Discussion on the Empirical Occupancy Frequency

The occupancy frequency f(n) counts the number of alternatives that have to be chosen by

exactly n agents:

f(n) =
L
∑

l=1

δnl,n , (20)

where δnl,n is the Kronecker delta. In general one observes an occupancy distribution with an

high modal value close to zero and long tails in the case where the majority of agents choses the

10

same few alternatives while the others remain basically unchosen. A flat occupancy distribution

instead, is associated with the case where the choices of agents are evenly distributed in all

the alternatives. An intermediate case is represented by a bell-shaped distribution of the

occupancies.

This is the basis why we have chosen to select the classes on the basis of the observed data

and defining the class with ranges following (11). The more the empirical occupancy classes

frequency looks like a flat distribution, the more the simulated configurations are close to the

observed configuration vector.

The theoretical prediction for the occupancy class frequency as defined in (11) is

f(Cj) =
∑

n∈Cj

L
∑

l=1

π(n;N,L, al, A, b) , (21)

where π is the marginal distribution of the number of agents choosing an alternative l derived

from the theoretical model as in Bottazzi and Secchi (2007). Figure 4 shows the case of

the classes definition in terms of the observed data and the respective theoretical occupancy

frequency from equation (21).

In order to make an analytical discussion and comparison with the linear case (pure Polya

distribution) on paper Bottazzi et al. (2008). It is possible to calculate the binning sizes in

such a way the Polya distribution has a flat shape. In this case, the cumulative distribution is

computed as

Fπ(n) =
N
∑

n=0

f(n). (22)

As consequence, it is straightforward to define the classes C1, · · · , Cj, . . . , CJ as in (11). This

choice of class definition makes the bins independent from the observed configuration no. In

this way it is also possible to determine the expected value of the χ2 distance and its variance

that is the amount of fluctuations we expect to observe in the case of c = 0. And it can be

used as stopping criteria in the iterative optimization method.

At this point it is useful to study what it is expected to obtain when the objective function

between occupancies is at play. To give an analytical estimation, let us now explore the χ2

distance in terms of occupancy between the ensemble of configurations generated from a Polya

distribution hj and the theoretical occupancy h
(th)
j . If we take the binning classes procedure

starting from the theoretical Polya distribution, we have that

h
(th)
j =

1

J
,

and
∑J

j=1 h
(th)
j = 1. We can choose two types of χ2 distance according to the fact that we take

the average of the entire objective function or the objective function of the average occupancies.

11

(a) The theoretical occupancy frequency for
the model with c=0, the Polya case of our
null-hypothesis.

(b) The same occupancy frequencies dis-
tributed over classes calculated from the the
observed data.

Figure 4: (a) Theoretical prediction for the occupancy distribution that counts the number of alter-
natives chosen by exactly n agents. (b) White bars represents the occupancy class frequency computed
on observed data, gray bars represents the occupancy class frequency from the theoretical estimation
with the model with c = 0, the classical Polya case. It can be noticed how the observed occupancy is
flat, that is properly how the bins have been selected.

Specifically,

χ2
ext :=

〈

J
∑

j=1

(

hj − h
(th)
j

)2

h
(th)
j

〉

, (23)

χ2
int :=

J
∑

j=1

(

〈hj〉 − h
(th)
j

)2

h
(th)
j

, (24)

where 〈·〉 is the average operation, and where h
(th)
j is a constant value. After some simple

calculation we can write

χ2
ext =

〈

J
∑

j=1

(

hj − 1
J

)2

1
J

〉

,

= 1 + J
J
∑

j=1

〈h2
j〉 − 2

J
∑

j=1

〈hj〉, (25)

χ2
int =

J
∑

j=1

(

〈hj〉 − 1
J

)2

1
J

,

= 1 + J
J
∑

j=1

〈hj〉2 − 2
J
∑

j=1

〈hj〉. (26)

12

So, the difference between the two ways of calculating the objective function consists of a factor

χ2
ext − χ2

in = J
J
∑

j=1

(

〈h2
j〉 − 〈hj〉2

)

,

= J

J
∑

j=1

Var(hj), (27)

which has been verified numerically with Monte Carlo simulations using the random generator.

If occupancies are not normalized we have:

χ2
ext = L+

J

L

J
∑

j=1

〈h2
j〉 − 2

J
∑

j=1

〈hj〉 , (28)

χ2
int = L+

J

L

J
∑

j=1

〈hj〉2 − 2
J
∑

j=1

〈hj〉 . (29)

So differently from what has been done in our simulations, if one build the binning procedure

from a Polya configuration instead of the observed one, it is possible to have an alanytical

evaluation.

4.1.3 Random generator from Polya distribution

The only case in which the model can be analytically described is for the linear case (c=0),

where it is possible to write the equilibrium Polya distribution :

π(n;α) =
N !

n1! · · ·nl!

Γ(
∑L

l=1 αl)

Γ(
∑L

l=1 αl + nl)

L
∏

l=1

Γ(αl + nl)

Γ(αk)
(30)

where αl = al/b and A/b =
∑L

l=1 αl. This equation is the compound probability mass function

for the Dirichlet-multinomial (Ng et al., 2011). Consequently, the random number generation

can be implemented through the composition technique exploiting the the Multinomial and

Gamma random generator in Matlab Statistics toolbox or the corresponding toolbox on Octave

(see Gentle, 2004). For the procedure see Code 2. Starting from the gamma random generator,

one can then recover the Dirichlet random generator as proved in Devroye (1986). For the

purpose of our paper, it can improve computational performance by creating the seeds for our

statistics under the null-hypothesis, thus allowing to avoid the time evolution generation for

c = 0.

4.2 Linear approximation limits

At this point we want to address more precisely the issue of finding an interval of values for c

on the optimization problem. Let us start considering the original purpose of the work that is

to detect the presence of non-linear perturbation.

13

In a vectorial form, eq.the numerator of (69) can be written as:

g(n) = a+ bn+ cn2 (31)

The best linear approximation of g near the configuration point m that is the typical

configuration of the case c = 0 where it is possible derive analytically the expected number of

agents that chose an alternative

m =
N

A
a. (32)

The general setup is

g : RL 7→ R
L, n 7→ g = g(n) (33)

The linear approximation condition we are interested in can be estimated through the linear

map described by the Jacobian matrix Jg(m) near the point m. Namely,

g(n) = g(m) + Jg(m)(n−m) + o(||n−m||) , (34)

where n is close to m, o is the little o-notation, and ‖n −m‖ is the distance between n and

m.

The matrix Jg is the Jacobian of g at m and is given by

Jg =

[

∂gi
∂nk

]

1≤i≤L , 1≤k≤L

. (35)

As a first approximation, we can neglect the constraint
∑

ni = N and consider the Jacobian

to be a diagonal matrix, so as to have the same expression for each element of the vector g.

That is,

gk(n1, . . . , nL) = gk(m1, . . . ,mL) +
∂gk
∂nk

∣

∣

∣

∣

∣

mk

(nk −mk) + . . . , (36)

which yields the first order approximation

g̃k = ak − cm2
k + (b+ 2cmk)nk for k = 1, . . . , L (37)

= ãk + b̃nk . (38)

To fulfill all the properties for the utility function g, we can impose

ãk = ak − cm2
k ≥ 0 , (39)

b̃ = b+ 2cmk ≥ 0 . (40)

Conditions (39) and (40) hold true for every k. Hence, the intervals for the linear approxi-

mation are

Ik =

[

− b

2mk

,
ak
m2

k

]

, ∀k = 1, . . . , L . (41)

14

the intersection of those intervals, Ilin = ∩Ik, brings to the condition for linearity

Ilin =

[

− A

2N

b

max(ak)
,
A2

N2

1

max(ak)

]

, (42)

where we have used equation (32) for the average configuration vector, and A =
∑L

k=1 ak and

N =
∑L

k=1 nk.

It is important to stress that if the function g is an utility function we have to consider the

constraint for which g > 0. Hence, the search interval is the intersection of the Ilin and the

previous condition.

4.3 Bias on distance measures

The optimization technique discussed in the paper rests on equation (10), one can be lead to

think that the minimum distance is obtained with evolution with c = 0 that is “more similar”

to the starting configuration.

Actually, small negative variations of the linear parameter b gives smaller fluctuations of the

occupancy distributions, resulting in a smaller distance measure relative to the same process

with c = 0. In fact, in the first order perturbation regime we can approximately write

g̃l = ak + (b−∆b)nk , (43)

since we want ãk ≈ ak so that
∑

ãk ≈ A. From the theoretical distribution of the linear case

c = 0 we can write the variance of the configuration (see Garibaldi and Scalas, 2010):

E[nl] = N
al
A

(44)

Var(nl) = N
al
A

A− al
A

A+ bN

A+ b
(45)

Cov(nl, nm) = −
(

N + A/b

1 + A/b

)

E[nl]E[nm]

N
. (46)

It is evident how covariance and variance diminish when A grows, that is when the number of

alternatives gets larger.

In the high dimensional case we have A ≫ al and A ≫ b, so we can write the variance

Var(nl) ≈ al
N

A2
(A+ bN). (47)

From equation (47) it is clear that small negative perturbations reducing the value of b result

in a smaller variation of the occupancy frequency inside each bin, while the mean value of the

frequency is unaffected. This impacts on the occupancy distributions that has the same shape

as in the case c = 0 but attenuated fluctuations, thus resulting in smaller distances to the

starting occupancy distribution of n0. However, in real simulations, the value of this bias on is

usually smaller than the order of magnitude of the stopping criteria.

15

4.3.1 Baseline discussion

Let us see in detail the previous discussion in a low-dimensional case with a subsample of the

real data reported in table 1

Table 1: Example data

no 58 85 284 17 40 15 280 118 52 139

a 6.29 5.45 14.25 1.38 1.27 1.38 21.14 12.76 4.77 6.04

Note: Data used in the example in this appendix. The total number of agents
is N = 1088 over L = 10 alternatives with a and the observed no as in the
table.

The following examples are serve to explain in a clear way how the computational procedure

is supposed to work. The inferential analysis is not considered to be reliable for real data.

Table 2: Baseline results

Parameters Example

cmin −0.97 · 10−3

Ilin [−1.06 · 10−3 , 1.46 · 10−4]

Teq ∼ 104

In the example, the time for equilibrium results to be tmin = Teq = 1.6 ·104 as also recovered

from the theoretical prediction

Teq =
N(A+N − 1)

A/b
(48)

. The simulation for a given initial seed for the state n0 is given in Figure 6, and the values in the

computations of the averages are given as an example of the method’s ability to discriminate.

Another important initial parameters to estimate is the stopping criteria, which coincides

with the fluctuations measure of the distance. It is evaluated via a Monte Carlo simulations

of many trajectories that start from different seeds from a configuration drawn from a Polya

distribution and evolved along time with c = 0.

4.4 Optimization methods

Problem (9) can be solved numerically searching for the argument that minimizes χ2, either

via the classic grid method or via successive parabolic interpolation. It is worth to describe

both approaches in some detail to motivate why one is preferable relative to the other in the

applications that can be of interest for the model presented here.

4.4.1 Grid

With the classic grid method, problem (9) is tackled as illustrated in Figure 1 and already

described in Section 4. In particular, the search for ĉ is limited within the interval [cmin, cmax],

16

(a) χ2 distance. The value of the mean dis-
tance are χ2(c = 0) = 0.14 and χ2(c =
cmin) = 0.63.

(b) Hellinger distance. The value of the mean
distance are H(c = 0) = 0.21 and H(c =
cmin) = 0.51.

Figure 5: Distance in terms of (a) the χ2 and (b) Hellinger function have been calculated as in
equation (14)), for two values of c, where cmin is the maximum negative value allow. The gray line
represents the distance measures of the trajectories with c = cmin and the black lines the trajectory
with c = 0. It can be noticed that after a transient of tmin the two series tend to their average.
The time series with c = 0 tends to be the closest in terms of occupancy distribution to the starting
configuration n0

(a) Mean value of the number of agents in
one location. The fluctuations of the temporal
mean (black solid line) are of the order of the
expected standard deviation after a transient
that is of the order of Teq = 1/r ≈ 1.6 · 104 as
estimated in eq.(48)

.

(b) Value of the standard deviation of the
number of agents choosing a certain alterna-
tive. Again we have that starting from the
time Teq the estimated values statistically be-
come equals.

Figure 6: Computational steps to reach equilibrium. Three evaluations have been estimated for (a)
the mean value of agents in a given location, and (b) the standard deviation of the number of agents
in the same location. The gray straight line is the analytical theoretical prediction (expected value),
the dotted black line represents a sample drawn from the Polya random generator (ensemble average
via Montecarlo) and the steps are the number of times we have drawn from the Polya generator. The
black solid line represents the time evolution of the Polya process (temporal mean via Montecarlo). It
can be noticed that more the window for the average calculation becomes big, more the average values
tends to the real expected values. It is important underline how the random generator produces faster
convergence then the time evolution process, about two orders of magnitude.

where cmin is defined by equation (6) and cmax is set according to the specific process under

scrutiny. Specifically, if one is interested on small deviations from linearity, the value of cmax

17

has to be in the order of 1/ñ, where ñ is some “typical” occupancy. To be safe, here we set

cmax = max(1/n1, . . . , 1/nL) where the time average is computed for a trial simulation, i.g the

typical configuration vector derived from the process with c = 0.

Having defined the boundaries [cmin, cmax], the other choice to be made concerns the step size

to be adopted in the search. Intuitively, a finer step size tends to guarantee a higher definition in

the measure of the parameter estimates. Nonetheless, the process under scrutiny is stochastic,

thus making the value of χ2 noisy. As a consequence, an excessively fine step size would be

useless, since it would not manage to discern values beyond a certain resolution. Figure 7 gives

an example in this sense, where the relatively fine step size magnifies the oscillations deriving

from the random nature of the process.

In addition, the time of search R is proportional to the number of points in the interval.

Therefore, when generating a distribution of the statistics of c∗s with S samples, the cost of

the computation is proportional to S · R ∼ S · O(T), where T is the length of the temporal

evolution of the stochastic process. Clearly, this implies that the step size cannot be too fine if

time-efficiency is to be guaranteed for practical purposes.

On the other hand, a coarser step size entails a loss in definition as well as greater fluctuations

around the “true” value of the parameter estimate. Such fluctuations increase the variance of

the estimate, and thus the probability not to reject the null hypothesis. Overall, then, the grid

method entails a choice in the step size which cannot be easily controlled.

Figure 7: Grid search method to detect the minimum of the χ2 function. Two dimension of binning
size are given. The difference is that decreasing the size allows a finer approximation of the minimum
at the cost of a less smooth curve affecting the performance of the optimization procedure.

18

(a) Initial triplet. (b) Parabolic interpolation.

(c) New triplet and interpolation. (d) Convergence.

Figure 8: Successive parabolic interpolation.

4.4.2 Successive parabolic interpolation

An alternative optimization method exploits the quadratic behavior of the distance function

χ2 around its minimum by relying on the method of successive parabolic interpolations. This

approach allows to substantially escape the choice of cmax required by the grid method, while

also guaranteeing a faster convergence. For these reasons, successive parabolic interpolation is

generally more convenient than the grid method.

To give a visual intuition, Figure 8 illustrates the method of successive parabolic interpola-

tion in its four salient moments. Suppose that the objective χ2 follows the shape represented

by the solid line in Figure 8. Then, the aim is to find the minimum of this function, as rep-

resented by the black dot on the solid line in Figures 8a. The function is not required to be

differentiable. The search algorithm starts by drawing three points lying on the function to be

optimized, as represented by the gray dots in Figure 8a. This initial triplet is then interpolated

by a parabola (the dashed line in Figure 8b). Since the functional shape of the interpolated

parabola is known, its minimum can be determined analytically. Hence, the abscissa associated

to the analytical minimum is used to identify a new point on the objective function (the black

dot in Figure 8b). This new point is now taken on board, while dropping the old point that

is horizontally furthest from it. By doing so, a new triplet is formed, which leads to a new

parabolic interpolation and to the identification of a new analytical minimum (see Figure 8c).

This process continues iteratively until it converges to a stable point, which means that the

previous and the successive minimum correspond within a certain range of tolerance. The point

of convergence is the approximate solution to problem (9).

19

The fundamental property supporting this method is that a unimodal function can be

approximated by a parabola over an interval that includes the minimum. More precisely,

having a triplet of points x0, x1, x2 and their function values f(x0), f(x1), f(x2), the second-order

Lagrange interpolation is used to construct a second-degree polynomial which approximates the

parabolic function:

q(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0) +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1) +

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2) , (49)

Clearly, the critical point of equation (49) is given by the first order condition dq(x)/dx = 0.

For practical purposes, however, equation (49) can also be seen as a quadratic polynomial

q(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) , (50)

where a0, a1, a2 have to be such that equation (50) agrees with f(x) at the three points. That

is f0 ≡ f(x0) = q(x0), f1 ≡ f(x1) = q(x1) and f2 ≡ f(x2) = q(x2). It follows that

a0 = f0 , a1 =
f1 − f0
x1 − x0

, a2 =
1

x2 − x1

(

f2 − f0
x2 − x0

− a1

)

, (51)

thus making equation (50) equivalent to equation (49). In this alternative form, the critical

point to be sought by the algorithm is

x̄ =
x1 + x0

2
− a1

2a2
. (52)

Expressions (50)-(52) are used in the implementation of the algorithm. In doing so, one needs

to consider at least two aspects. First, the sign of a2 determines the concavity of our parabola,

thus making the critical point a candidate for a minimum (a2 > 0) or for a maximum (a2 < 0).

Second, the three points involved in equation (52) lie on a line if a2 = 0, thus imposing to

change the step size between the triplet.

Given this parabolic interpolation, another important detail of the algorithm concerns the

stopping criterion. Having to deal with a stochastic process, the objective function χ2 is noisy,

and this introduces the necessity to fix a tolerance criterion based on the variance of the pro-

cess. To this purpose, the standard deviation of the χ2 function is calculated computationally.

Consequently, the algorithm is set to stop when the fluctuations of our minimum values are of

the same order of magnitude of the estimated standard deviation, that is

|f(x̄)− f(xmin)| ≤ σ(fχ2) (53)

Finally, convergence is generally fast. As discussed in Brent (1973), the convergence rate

for a deterministic function is superlinear (i.e. r ≈ 1.3). In the stochastic case, however, it can

happen that the interpolation parabola has a local convex behavior for a given triplet, as shown

in Figure 9. This is due to the random nature of the objective function. In this case, quadratic

interpolation is repeated with the same triplet but recalculating the stochastic function value

of the central point of the triplet. Such recalculation is repeated until that point is associated

20

Figure 9: Local convexity problem.

to a function value that is under the straight line passing through the two external points of

the triplet.

5 Computational costs of the optimization methods

The performance of the two optimization method can be evaluated according to their speed of

convergence. As mentioned above, successive parabolic method can have convergence limita-

tions related to far solutions, point alignment, and convexity. Each of these issues needs ad hoc

control conditions, which also entail some cost in terms of efficiency. Nonetheless, successive

parabolic estimation is much faster than the grid method. In particular, we performed a test

for a given vector of a = (a1, . . . , aL), an elevated number of alternatives L = 1 ·103, and a con-

spicuous number of agents N = 1 ·104. With these parameter values, the grid method manages

to construct the histogram of c∗ in Figure 10a in 120 minutes. On the other hand, successive

parabolic interpolation allowed to construct the corresponding histograms in Figure 10b in 20

minutes, reaching convergence in 8–10 steps on average. Due to this remarkable difference in

performance, successive parabolic interpolation is adopted as the default optimization method

to carry out estimation.

More generally, the algorithm of the stochastic process has asymptotic computational com-

plexity O(T), where T is the length of evolution of the process, which thus generates T config-

urations. Hence, if the first t = 104 steps take 0.7 seconds to be simulated, the computation of

t = 105 steps is achieved in 7 seconds.

This section discusses the computational cost associated to the codes proposed in the paper,

focusing in particular on the code for the evolution of the choice process described in Section 2.

In general, the efficiency of all codes is affected by time and memory costs. The first is the

time required to execute the algorithm, while the second amounts to the quantity of memory

required by the algorithm.

As for the time cost, we make use of asymptotic analysis to estimate the computational

21

(a) Grid method. (b) Successive parabolic interpolation.

Figure 10: Histogram of c̃.

Note: The parameters of this example are L = 1 · 103 and N = 1 · 104.

time complexity O of the algorithm. The basic algorithm to take as a reference is the code

for the evolution of the choice process described in Section 2. It has an asymptotic cost of

C(L, T) ∼ O(T) ·O(L), where T is the number of time steps for which the simulation runs and

L is the number of alternatives in the model. Hence,

C(L, T) = (a0 + a1L) · T , (54)

= (a0T) + (a1T)L , (55)

which represents the time cost of the algorithm with the parameters having the real time

dimension [a0] = [a1] = [sec]. Using linear fit on multiple simulations of the code for fixed T , it

is possible to evaluate the parameters (a0, a1). These values depend on the machine in use, so

that one has to obtain the performance of the program with a preliminary benchmark test for

a specific computer architecture, and then compare it with the performance on other machines.

On the other hand, the memory cost for the choice process described in Section 2 is

M(L, T) = mL · T , (56)

where the dimension of the parameter is [m] = [MBytes]. As an example, we have recovered the

computation of (a0, a1,m) for two different machines using Matlab as programming language.

The first machine specification (considered here as the reference machine in the paper)

mounts an Intel Core i7-3612QM Processor (6M Cache, up to 3.10 GHz) rPGA (with 4 cores and

8 threads), a DDR3 SDRAM of 8 GBytes and an Intel HD Graphics 4000. The operative system

is Windows 7 Professional 64-bit and Linux Mint 15 64bit. With this machine architecture,

resulting estimates of the time and memory cost parameters are a0 ≈ 3.1 · 10−5sec , a1 ≈
5.2 · 10−8sec and m ≈ 7.6 · 10−6MBytes .

The second machine (taken as a comparison machine) uses an Intel Core i3-3220 CPU

22

http://ark.intel.com/products/67356/Intel-Core-i7-3612QM-Processor-6M-Cache-up-to-3_10-GHz-rPGA
http://ark.intel.com/products/65693/
http://ark.intel.com/products/65693/
http://ark.intel.com/products/65693/

(a) Time cost for the choice process algorithm. (b) Memory cost for the choice process algorithm

Figure 11: Computational costs.

@ 3.30GHz (with 2 cores and 4 threads), a DDR3 SDRAM of 4GBytes, and an Intel HD

Graphics 2500. The operative system is Windows 7 Basic 64-bitand Ubuntu-Linux 11 64bit.

In this case the parameter estimates result to be a0 ≈ 3.06 · 10−5sec, a1 ≈ 4.9 · 10−8sec and

m ≈ 7.6 · 10−6MBytes. Hence, the two machines give similar results.

To better understand the behavior of time and memory costs, Figure 11 represents the func-

tions C(L, T) and M(L, T). For example In the empirical application presented in Giulio Bot-

tazzi and Vanni (2014), the number of alternatives is given by the data as L ∼ 7 · 102. Given

this size of L and setting T ∼ 105, the typical time of execution is C ≈ 6.7sec, and the required

memory 530MB of physical space. Therefore, we can determine the waiting time to get the

output vector, but we can also put a limit on T according to the physical capability of the

machine in use. On 32-bit machines the memory is limited to 232 bytes (i.e. 4GB). On a 64-bit

machine this number is virtually increased to 264, but most machines run out of physical re-

sources (RAM and virtual memory). For instance, in the comparison machine described above

we cannot go beyond 4GB even if on a 64-bit system.

The output matrix records the evolution of configuration vectors over time, thus having size

(L×T). Each number in the matrix cell occupies 8-bytes, due to double-precision floating-point

format. Consequently the physical memory occupied by such matrix is L × T · 8bytes. In the

reference machine, the maximum available physical space is from 6 to 8GB; therefore, we can

run the choice process for a limit time of T = 106 since L = 686, i.e. 106 ·686 ·8 bytes = 5.1GB.

Finally we want to offer an alternative to test the codes on a software under free license. A

popular Matlab-like environment is the high-level interpreted language GNU Octave. We have

used the version 3.8.0 of Octave, and the estimation of the parameter on computer architecture

are a0 ≈ 2.7 ·10−4 and a1 ≈ 1.4 ·10−7, with an execution cost of C = 36.9sec for L ∼ 7 ·102 and
T ∼ 105. This results to be a much slower performance relative to the Matlab execution time.

The efficiency of the algorithm depend on many factors (programming language, CPU, type

of data); besides that, its efficiency depends also on the RAM of the calculator and the way

data is stored. Appendix B details the efficiency behavior of the codes presented in this work.

23

http://ark.intel.com/products/65693/
http://ark.intel.com/products/65693/
http://ark.intel.com/products/65693/

6 Conclusion

This paper has spelled out a discrete choice model accounting for different determinants of

individual choices. In particular, the model disentangles the effect of externalities from other

factors such as the intrinsic characteristics of the object of choice and the idiosyncratic prefer-

ences held by agents. Relative to previous works in the same line of inquiry, the present one

has taken a step forward in allowing for non-linear externalities among agents.

Together with the theoretical model, also an entire estimation framework has been devel-

oped. The model’s parameters were estimated numerically through a multistage procedure,

while also testing for statistical significance via Monte Carlo simulations. This involved dif-

ferent numerical optimization techniques, at last finding a preferable approach in successive

parabolic interpolation.

A detailed information about technical issues of the estimation have been addressed in such

a way to have a full command of the entire process of optimization.

24

A Maximum likelihood

This section discusses the numerical implementation of various Maximum Likelihood (ML)

approaches that we have used to carry out the inferential analysis described in Section 4. The

main purpose is to show why we have turned to a χ2-based estimation as an alternative to

ML. This choice entails moving from a point (or local) estimation approach, such as ML, to

an aggregate approach. More precisely, ML compares single configuration vectors (or their

local neighbors), while χ2-based estimation compares occupancy distributions, in this sense

representing an aggregate approach.

The general estimator can be defined with an optimization problem of the form

θ̂ = argmin
θ∈P

{Θ(θ)} , (57)

where the parameter vector θ ∈ P ⊂ R
m and the objective function Θ(θ) : P → R. For

example, in the χ2 optimization described in Section 4.1, we have θ = c, m = 1, and Θ(θ) =

F̄(n′(c),no) as a measure of distance between occupancy distributions. Here, instead, we

consider the maximum likelihood approach to the solution of problem (57). In particular, we

define and discuss the ML computation of the estimator θ̂ through various numerical methods.

We do so considering the case of two unknown parameters θ = (b, c) and a known vector a,

so that m = 2. Given this setting, we first define the various numerical ML techniques we

have adopted in Sections A.1–A.1.3, and then we discuss the problems on which they end up

stumbling in Section A.2.

A.1 Grid search method

The most basic way to attack problem (57) in terms of likelihood is the grid search approach.

The observed data is given by a point no ∈ R
L in the configuration space:

no =













n1

n2

...

nL













o

, (58)

where L is the number of alternatives available to the agent. Given no and a, one has to look

for the simulated configuration n′(b̂, ĉ) which is most likely to have produced the observed data.

In particular, numerical ML estimation does so by seeking for the values (b̂, ĉ) that maximize

the likelihood function (or minimize its negative).

Let P be a two-dimensional rectangular grid in the space of parameters G = [bmin, bmax]×
[cmin, cmax]. Each interval is divided to construct an equally spaced grid on the region G with

gb×gc grid points, which are spaced according to the boundaries [i, i+gbǫb)× [j, j+gcǫc). Here,

ǫb and ǫc are the grid step sizes given by gb = (bmax − bmin)/ǫb and gc = (cmax − cmin)/ǫc and

i, j = 0, 1, . . . , g. For the sake of simplicity we take gb = gc = g.

We evaluate the objective function at each point of the grid, so as to find the point which

25

solves problem (57), which in this setting becomes

(b̂, ĉ) = argmin
(b,c)∈G

{Θ(b, c)} , (59)

where the objective function Θ is the likelihood function. The sample configurations are gen-

erated by simulating the evolution of the configuration state for each couple of values (b, c) on

the grid, so as to have for each point T simulated configurations

{n′
t=1,n

′
t=2, . . . ,n

′
t=T}(b,c) , (60)

where it assumed that the process has already reached the equilibrium.

As a first approach, we use a straight point estimation obtained by counting how many

times in a simulation the observed configuration no is reached for each point in the grid. The

objective function Θ in this case is the likelihood function

L(b, c) = −Θ(θ) =
1

T

T
∑

t=1

δ
n

′(t;b,c),no
, (61)

which compares a simulated configuration n′(t; b, c) with the observed configuration no. The

optimum (b̂, ĉ) that solves problem (59) is the couple of parameter values which, if the under-

lying model is true, make it most likely to observe no. Notably, a couple of tricks can be used

to improve numerical performance.

A.1.1 Decimation procedure

The first trick aims at reducing time of convergence through a decimation procedure that

avoids calculations for those points which are unlikely to solve problem (57). Basically, we

put a threshold in the likelihood estimation procedure and split the time T of every single

simulation in a fixed number of equal time intervals (∆T) {T1, T2, . . . , TD = T}. For each

interval, we neglect all the points which have not reached a given threshold in the ML value.

The aim is to keep only those points that are good candidates to be a maximum.

As an example we define the threshold as a cut factor r < 1. It means that for each time

interval we neglect the r ratio of pixels with lowest likelihood. The total cost of the decimation

procedure is:

CkNN = C(L,∆T)
D
∑

k=1

Nrk = C(L,∆T) ·N 1− rD

1− r
; , (62)

where T = D · ∆T . On the other hand, the straight point estimation has a cost of Ctot =

NC(L, T). Using the property of linearity we have C(L, T) = D · C(L,∆T). Hence, the

computational time cost saved is described by the cost ratio:

CkNN

Ctot

=
1− rD

1− r
· 1

D
. (63)

As an example, splitting the total time in D = 20 pieces and with a cut ratio r = 1/2 (i.e. we

26

(a) Straight point estimation, equation (61). (b) Convolution mask.

Figure 12: Example of numerical maximum likelihood estimation.

Note: The example in the figure has the following parameter values: L = 3, a1 = a2 = a3 = 1, and a grid of 100
points (g = 10). The observed configuration is simulated with parameters (b = 0.5, c = 0) and no = [1, 5, 3].
The sample configuration vectors are run for T = 105 time streps in order to collect a sufficiently large sample
to compute statistics. Darker pixels indicate and higher likelihood value. Empty pixels represent the values of
c lying outside the domain defined in Section 3.

cut half of the sample at every time step), we have a cost ratio of 1/10.

A.1.2 Convolution smoothing

Another trick consists in stabilizing the counting of nearby pixels by considering neighboring

points in the counting procedure of the likelihood estimation. In order to get a better conver-

gence to the estimation of the likelihood we can weight the value of each bin with the values of

its neighbors. In practice, we apply a convolution mask on each point (i, j) in two-dimensional

space:

O(i, j) =
m
∑

k=1

n
∑

l=1

I(i+ k − 1, j + l − 1)K(i, j) , (64)

where I(k, l) is the ML value in each point of the two-dimensional space, and K(i, j) is the

weight of each point of the mask. To carry out this procedure, we adopt a convolution mask

with dimension 3 × 3 in which each element has weight 1. At this purpose we have used the

build-in Matlab function conv2.m.

A.1.3 k-nearest neighbors

An alternative nonparametric method to carry out MLE is referred to as the k-nearest neighbors

(k-NN, see Silverman, 1998). This method tries to adapt the amount of smoothing to the local

density of data, and k indicates the degree of smoothing. The idea is to base estimation on

a fixed number of k observations, which are closest to the reference point according to some

measure of distance.

In particular, at each time step we calculate the euclidean distance between the simu-

lated configuration vectors {n′
1, . . . ,n

′
k, . . . ,n

′
T}(b,c) and the observed vector no. Specifically,

distance is measured element by element (that is, location by location in the application in

27

Giulio Bottazzi and Vanni (2014)) as

Dk = ||no − nk||. (65)

The order statistics for the distances are then Dk are 0 ≤ D(1), D(2),≤, . . . , D(T), defining

Rk = D(k). Hence, the observations corresponding to these order statistics are the “nearest

neighbors” of no. The first nearest neighbors is the closest observation to no, the second nearest

neighbor is the observation second closest, and so on. The observations ranked by distance from

no are then {n′
(1), . . . ,n

′
(k), . . . ,n

′
(T)}. The kth nearest neighbor of no is n′

(k).

The k-NN likelihood estimate is defined as

L =
k

TcLRL
k

, (66)

where cL = πL/2/Γ((L + 2)/2) is the volume of the L-dimensional unit sphere, and T is the

number of samples. The estimator is inversely proportional to the distance Rk. If Rk is small,

this means that there are many observations near no, so L must be large . While if Rk is large

this means that there are not many observations near no, so L must be small. The choice of

the smoothing parameter follows Silverman (1998), thus being k ≈ T 4/(L+4).

The k-NN method is one of many smoothing techniques, among which also kernel density

estimation (KDE) is especially popular. In short, KDE is based on a local choice of the

bandwidth (the smoothing parameter) and a particular choice of a window (kernel) function.

Clearly, both methods have their own advantages and disadvantages; yet, in our particular case,

there are precise reasons to pend for k-NN. First, the main advantage of this estimator in our

case is that smoothing varies according to the number of observations in a region, thus delivering

a smoother estimation with an higher adaptive behavior. This characteristic is crucial in our

setting, and it is even more important in multivariate distributions. That is also the case when

the bias of the estimator becomes of the same order of the one from the kernel method, limiting

one of the disadvantages of the k-NN technique. Another disadvantage is that the estimated

function do not integrate to one over the entire domain. In our case this problem is less relevant

since we typically only care about the point-wise behavior of the estimated function.

A.2 Issues with numerical maximum likelihood estimation

The computation of numerical ML through the basic search grid method entails a high com-

putational cost, especially for high values of L. That is precisely why decimation, convolution

smoothing, and k-nearest neighbors have been used, so as to reduce the computational cost.

This attempt has succeeded, as the computational cost was indeed sensibly reduced. Despite

these improvements, however, numerical ML estimation remains problematic. In particular, two

limitations arise when using ML estimation. The two limitations have to do with ambiguity in

counting and with computational cost.

To clarify these points, it is convenient to expose a simple example with few alternatives

(L = 3) and a small number of agents (N = 9). For the sake of simplicity let us also assume

that ai = aj ∀i, j. We need to look for the likelihood that a given configuration no is detected

28

by counting how many times such configuration is found during a simulation of our model for

some values (b, c).

It is straightforward to notice that a simulated configuration nt is considered to be different

from no even when it appears in an order probabilistically equivalent to no but with a different

redistribution. For instance, suppose that no = [3, 4, 2], then

nt =







3

2

4






6=







3

4

2






.

In this case, nt is not counted as being equal to no. This reduces the ability to discriminate

the real likelihood that an observed configuration has been replicated with a particular set of

parameters. Therefore, to count a sufficient number of instances in which nt = no, one has to

obtain an especially large sample.

The second reason why we discarded numerical ML estimation lies in its high computational

cost. Although the k-nearest neighbors approach reduces this problem, it cannot avoid intrinsic

confusion on what neighborhood is about. Therefore, even when we move from a point ML

estimation to a local estimation via the k-nearest neighbors method, the computing of reliable

measures of ML is still poor for L ≫ 10, like in the application in Giulio Bottazzi and Vanni

(2014). Of course this is a numerical constraint deriving from the high computational cost.

The combination of ambiguity and computational cost is the reason why me moved from a

point (or local) estimation method such as ML to an aggregate method such as the χ2-distances

between occupancies.

B Program languages and performances

The storing of multidimensional arrays in linear memory can be carried out either by row-

or column-major order. Row-major order is used in C/C++, Mathematica, Python, SAS,

and others; column-major order is used in Fortran, OpenGL, MATLAB, GNU Octave, R and

others. In row-major storage, a multidimensional array in linear memory is organized so that

the columns are listed in sequence one after the other. As a consequence, all the codes of the

paper follow the column-major order. In fact, using a row-major order would have made the

program much slower.

In order to estimate the cost performance in the case of row-major order, we run our fit on

equation (54), obtaining parameters a0 ≈ 2.1 ·10−5sec, a1 ≈ 1.4 ·10−7sec and a consequent time

cost of C ≈ 11.9sec. That is almost twice the time cost in the column-major order implemen-

tation of the algorithm. The difference between row- and column-order cost is larger in Matlab

than in Octave, because Matlab (from version 6.5 onward) features the Just-In-Time (JIT)

accelerator. This improves the speed of M-functions, particularly with loops. Furthermore, the

JIT accelerator favors the column-major order implementation over the row one. Specifically,

turning off the accelerator approximately doubles the execution time obtained with the onset

29

of the accelerator (the default condition in Matlab).2 Another reason why Matlab codes have

less computational costs is the use of many built-in functions that have multi-threaded imple-

mentations, which speed up function calls. Besides that, Matlab, internally uses the Intel Math

Kernel Library (Intel MKL) for vector and matrix operations. This gives Matlab a significant

advantage over Octave.3

In terms of memory cost, even if the performance remains the same, Octave distributions

lack of a 64bit version.4 This reduces the maximum amount of virtual memory a single process

can address. Therefore, any official version of Octave has a lower process limit, in terms of

memory space, relative to a 64-bit version of Matlab.

for what regards the optimization estimations, the use of parallel computing increases the

performance of the calculation and speeds up the procedure (both the grid and the succes-

sive parabolic interpolation technique). The use of parallel computing distributes independent

simulations to run them in parallel on multiple MATLAB sessions, also known as workers. Dis-

tributing the simulations significantly reduces the optimization time because the time required

to simulate the model dominates the total optimization time. If we imagine to use the grid

method, the optimization is performed S times for every seed. With the use of parallel comput-

ing, the software distributes the simulations required for constraint and objective computations.

Each workers is devoted to a single computation of the minimum, so that parallel computing

reduces the cost of a factor equal to the number of processors in the machine (excluding the

time overheads associated with configuring the system for parallel computing and loading the

MATLAB workers).

C Procedure to get persistent states of a markovian

chain

The discussion of the domain definition discussed in section 3 maintains the same state space

as the set

SN,L =

{

(n1, . . . , nL)
∣

∣

∣
n≥0,

L
∑

l=1

nl = N

}

. (67)

Each vector of this set can be reached with positive probability and the number of elements of

the state space is

dim SN,L =

(

N + L− 1

N

)

,

that is the maximum dimension of the Markov chain. The sequence of individual choices is

structured so that, at each time step, one agent is selected at random to revise his choice.

In general, also other non-random rules could be adopted to select who is called to operate a

revision, thus affecting the dynamics of the model. In the present case, however, the aim is to

2Use the command feature accel off.
3Use the commands version -lapack and version -blas in Matlab to check the version of MKL that

Matlab is using.
4On Unix-like systems it is possible to compile Octave with 64-bit indexing as shown on gnu.org instructions.

30

http://goo.gl/LQs4Ig

keep the structure of selection as agnostic as possible precisely by attributing to all agents an

equal probability to be selected for choice revision. Under this premise, the evolution of the

system from configuration n at time t to configuration n′ at t + 1 is defined in terms of the

transition probability P{n′
t+1|nt}. Since the agent that is called to revise his current choice m

is selected at random, it follows that Pr{B} = nm/N . This probability must be then multiplied

by the probability pl to select alternative l conditional to the fact that the agent is no longer

among those opting for m, that is without considering self-interaction.

P{n′|n} =
nm

N

al + b(nl,t − δl,m) + c(nl,t − δl,m)
2

∑L
l=1 {al + b(nl − δl,m) + c(nl − δl,m)2}

(68)

where the Kronecker term δl,m is 1 if l = m and 0 otherwise. As proved in Giulio Bottazzi

and Vanni (2014) the Markov chain associated to the non linear model is irreducible, it is also

ergodic.

However, it is also possible to consider values of c such that c < cmin < 0. To see why, let us

first define the numerator Wl and the denominator D starting from the probability pl to select

the new alternative. According to equation (68), such probability is

pl =
al + bnl,t + cn2

l,t

A+ bN + c
∑L

l=1 n
2
l

=
Wl

D
=

gl
∑L

j=1 gj
, (69)

where we consider only the case m 6= l for the sake of simplicity, since we aim merely at

estimating the order of magnitude of Wl/D.

We will find a computational procedure such that even starting for a given negative c and

an initial configuration n0 such that the utility function gl is negative for some l, is still possible

to end up to an irreducible markov chain after an adjustment finite time of steps.

The extreme limit for c is a value for which is not possible to have D positive for any

combination of the configuration vector (n1, . . . , nL). Using Cauchy’s formula:

L

L
∑

l=1

n2
l −

(L
∑

l=1

nl

)2

= 1
2

L
∑

l=1

L
∑

m=1

(nl − nm)
2,

it is possible to recover that:

1

L
N2 ≤

L
∑

l=1

n2
l ≤ N2 (70)

so the minimum c that allows to have a positive denominator in (69) is

c > −A+ bN

N2/L
. (71)

For any other value of c > c it is possible to reduce the set of persistent states and reach the

equilibrium after a transient.

Let us first consider the case in which D > 0 ∀l in equation (69). In this instance, equation

(70) implies c > cp = −(A + bN)/N2, which is close to the extreme condition considered in

31

Section 3. As long as D > 0 ∀l, equation (69) returns zero if

n∗
l >

c
√

b2−4ac
c2

− b

2c
. , (72)

which makesWl negative. This choice forces to decrease the number of agents in the alternatives

with occupancy number nl > n∗
l
5

Let us now consider the case D ≤ 0, but with

−A+ bN

N2/L
< c < −A+ bN

N2
.

If Wl < 0, we follow the same prescription as before setting pl = 0. If Wl > 0, instead, we

set pl = |pl|, so as to force the occupancy configuration to become more distributed among

alternatives. This allows to meet D > 0.

In all these cases, the system starts from initial state nin with c > c. Then, after a finite

number of steps in which the states are not persistent, the dynamics is restricted to a state

space with persistent states. Hence, the transition probability (68) comes to describe again an

irreducible Markov chain with lower cardinality of the state space. This allows to substitute

the more restrictive constraint (6) with condition in (71)

5Note that for all this value one should expect that
∑L

l=1
n∗
l ≥ N in order to have a state space with at least

unitary dimension (only one element).

32

Acknowledgement

We thank professor Enrico Scalas for his precious feedbacks. The present work has been sup-

ported by the Italian Ministry of University and Research as a part of the PRIN 2009 program

(grant protocol number 2009H8WPX5).

33

Code 1: Stochastic evolution of the model.

1 function n=BGVtoo l cho ice evo lut ion (a , b0 , c , n0 ,T)

2 % Non−l i n e a r cho ice model , time e vo l u t i on .

3 % input : N− numero d i f i rms

4 % a=[a1 , a2 , . . .] − pseudo vec t o r (row)

5 % b0= sca l a r va lue equa l f o r every cho ice

6 % c=sca l a r va lue equa l f o r every cho ice

7 % n0= i n i t i a l c on f i g u r a t i on to s t a r t the proces s

8 % T = t o t a l time o f the e v o l u t i on (s imu la t i on time)

9 % output :

10 % n= Matrix each colomn (con f i g u r a t i on vec t o r)

11 %

12 % F. Vanni 2014.

13

14 N = sum(n0) ;

15 L=length (a) ;

16 b=b0 .✯ ones (1 ,L) ;

17 % I n i t i a l i z a t i o n :

18 a=a (:) ’ ; % forced to be a row vec to r

19 n0=n0 (:) ; % forced to be a colomn vec to r

20 n=zeros (L ,T) ;

21 n (: , 1)= repmat (n0 , [1 1]) ;

22 t=1;

23 % time e vo l u t i on :

24 for t=2:T

25 % Ehren fes t term − Random Pro b a b i l i t y f o r Revis ion o f the Choice

26 ra = ce i l (N ✯ rand (1 , 1)) ; % random number between 1 and N f i rms .

27 [k ,˜]= find (ra > [0 ; cumsum(n (: , t−1))]) ;% look f o r the p l ace f o r removal .

n i t ’ s a column vec to r .

28 m=k(end) ;%row index f o r the i n d i v i d u a l to be removed (row=l o c a t i o n)

29 n (: , t)=n (: , t−1) ;

30 n(m, t)=n(m, t−1)−1; % lea v i n g the o ld cho ice

31

32 % Br i l l o u i n term − Pro b a b i l i t y o f the new a l t e r n a t i v e to choose

33 pD=sum(a)+b✯n (: , t−1)−b(m) +sum(c . ✯ (n (: , t−1)’− (m==(1: length (b)))) . ˆ 2) ;

34 pN= a+ b .✯n (: , t−1)’− b . ✯ (m==(1: length (b))) + c . ✯ (n (: , t−1)’− (m==(1:

length (b)))) . ˆ 2 ;

35 p=pN./pD;

36 % i f sum(pN<=0)˜=0, er ror (’ bug in the e v o l u t i on process ’) , end % i f

t h e r e i s some g nega t i v e

37 r=rand (1 , 1) ;

38 [kk ,˜]= find (r > [0 ; cumsum(p ’)]) ; % now p ’ i s a coloumn vec to r

39 in=kk (end) ;

40 n(in , t)=n(in , t)+1; % new cho ice

41 end

Code 2: Random Number Generator with Polya distribution

1 function r=bgv rndpolya (N, alpha ,M)

2 % N=t o t a l l e n g t h o f the genera tor v ec t o r o f random numbers (Mu l t i v a r i a t e

3 % genera tor) . i f N=1 i t i s a un i v a r i a t e d i s t r i b u t i o n .

34

4 % the vec to r o f the parameters a lpha=a l /b ;

5 i f nargin<3,M=1;end

6 alpha=alpha (:) ’ ; % alpha must be a row vec t o r

7 alpha = repmat (alpha ,M, 1) ; % r e p l i l c a t e d a lpha over m−rows

8 G=randg (alpha) ; % Gamma random numbers wi th un i t s c a l e

9 %prob=G./sum(G) ; % norma l i za t ion

10 D = bsxfun (@times , G, 1 . /sum(G, 2)) ; % Di r i c h l e t random va i a b l e s

11 sum(G, 2)==0;

12 r=mnrnd(N,D,M) ; % Mult inomial random numbers o f the p r o b a b i l i t i y

13 r=r ’ ; % i t g i v e s the column of the random vec to r from Polya d i s t r i b u t i o n (

D i r i c h l e t−mult inomia l)

Code 3: Expected Occupancy Distribution

1 function [f , moments , f C]= expected occupancy (a , ni , e b in)

2 % Checked from the paper Se c t o r a l and Geographica l s p e c i f i c i t i e s in the

3 % s p a t i a l s t r u c t u r e o f economics a c t i v i t i e s − Bot tazz iDos i , Fagio lo , Secch i

4 % f= ocupancy f requency

5 % f C= occupancy Class f requency

6 % a i s the vec t o r o f e x t e r n a l i t i e s

7 % ni , i s the input c on f i g u r a t i on ve to r (t y p i c a l l y the observed data nO)

8 L=length (a) ;

9 N=sum(n i) ;

10 b=1;

11 nl =0:N;

12 t ic

13 f=zeros (N+1 ,1) ;

14 r e v e r s e S t r = ’ ’ ;

15 % for a complete d i s t r i b u t i o n f o r a g iven l o c a t i o n :

16 for n l =1:N+1,

17 percentDone = 100 ✯ (n l) / (N+1) ;

18 msg = sprintf (’>> >> >> percentage done : %4.1 f << << << ’ , percentDone) ;

19 fpr intf ([r eve r s eS t r , msg]) ;

20 r e v e r s e S t r = repmat (sprintf (’ \b ’) , 1 , length (msg)) ;

21 f (n l)=sum(marg ina l prob po lya ((1 : L) , a , b , ni , n l −1)) ; % prob . o f having 0 t i l l N

22 %f i gu r e , bar (p)

23 end

24 nn l=repmat (nl , L , 1) ;

25 moments=0;

26 t t o c= toc ;

27 msg=sprintf (’ \n work completed in %4.2 f minutes\n ’ ,round(100✯ t t o c) /(100✯60)) ;

28 fpr intf (msg) ;

29 Sx=s ize (n i) ;

30 i f nargin<3 f C=f ;

31 else

32 for k=1: length (e b in)−1, f C (k)=sum(f (e b in (k)+1 : e b in (k+1))) ; end ,

33 f C=f C ’ . / Sx (1) ;

34 end

35

Code 4: Creation of the uniform binning

1 function [e b in , h ,CF, a]= c r ea un ib i n (x)

2 a=(0:max(x)) ;

3 i =1;

4 nB=5;% number o f b in s

5 CF=zeros (1 , length (a)) ;

6 while i<=length (a) ,

7 CF(i)=sum(x<=a (i)) ;

8 i=i +1;

9 end

10 percent=1+nB;

11 e vec=ce i l (linspace (min(CF) , length (x) , percent)) ; % s c r o l l i n g vec t o r

12 e=1;

13 e b in=zeros (1 , length (e vec)) ;

14 while e<=length (e vec)

15 E=sum(CF <= e vec (e)) ;

16 e b in (e)=E;

17 e=e+1;

18 end

19 e b in (1) =0; % since [0 ; min(CF)] i s empty

20 h=zeros (length (e b in) −1 ,1) ; % i t i s the f requency e q u i d i s t r i b u t e d i n s i d e e b i n s

21 for k=1: length (e b in)−1

22 h(k)=sum(x>=e b in (k) & x<e b in (k+1)) / length (x) ;

23 end

Code 5: Re-binning procedure

1 function h=insM ubi (x , b in edge s)

2 % i n s e r i s c i ne l b inning b in edge s crea to in precedenza con c r ea ub i .m.

3 % e crea l ’ istogramma con que l b inn ing

4 % x− matrix− I expec ted the e v o l u t i on i s a long the row (each time in a d i f f e r e n t

column)

5

6 e b in=b in edge s ; % i f you a l r eady g i v e s the binnning wi th the bins ’ edges

7 Sx=s ize (x) ; % I expec ted the e v o l u t i on i s a long the row (each time in a

d i f f e r e n t column)

8 % i f Sx (1)<=Sx (2) ; e r ror (’ wrong vec to r t r y to t ranspose i t ’) , end

9 h=zeros (length (e b in)−1,Sx (2)) ; % i t i s the f requency e q u i d i s t r i b u t e d i n s i d e

e b i n s

10 %h=zeros (l e n g t h (e b in)−1,Sx (2)) ’ ;

11 for k=1: length (e b in)−1

12 %h(k)=l en g t h (f i nd (x>=e b in (k) & x<e b in (k+1))) / l e n g t h (x) ;

13 h(k , :)=sum(x>=e b in (k) & x<e b in (k+1) ,1) . / Sx (1) ; % f a s t e r

14 end

15 sum(h) ;

Code 6: Distance Measures and Objective Function

1 function [dX2 ,dH]= b g v d i s t r i b d i s t (a , b , c , n , O bin , tmin ,T, f C)

2 % gen e r a l i z a t i o n (matrix) o f d i s t ance o f v e c t o r over the time i n t e r v a l T−tmin

3 % n=i s the con f i g u r a t i on r e f e r enc e s as s t a r t i n g po in t

36

4 % O bin = is ’ t the b inning

5 % tmin = time necessary f o r reach e qu i l i b r i um

6 % T− e v o l u t i on over which to c a l c u l a t e the d i s t an c e s

7 tmax=T;

8 i f length (n (1 , :))==1, disp (’ c on f i gu r a t i on vec to r ’)

9 ne=BGVtoo l cho ice evo lut ion (a , b , c , n , tmax) ; % evo l u z i one a p a r t i r e da l l ’ u l t ima

con f i gu ra z i one

10 ne=ne (: , (tmin : tmax)) ;

11 i f nargin<8 , fq1=insMubi (n , O bin)

12 else fq1=f C ;

13 end

14 f r eq2=insMubi (ne , O bin) ;% se ne dimens iona le f r e q2 ha per colonna per ogni T

15 s f=s ize (f r eq2) ;

16 f r eq1=repmat (fq1 , 1 , s f (2)) ; % cre t e a matrix same s i z e o f f r e q2

17 % di s t ance measure in terms o f ch i square t e s t o f Pearson

18 di =((f r eq2)−(f r eq1)) . ˆ 2 . / (f r eq1) ;

19 di (isnan (d i) | i s i n f (d i)) = 0 ; %se t to 0 non f i n i t e occupancy f requency

20 dX2=sum(d i , 1) ;

21 %He l l i n g e r d i s t ance

22 dH=1/sqrt (2) .✯ sqrt (sum((sqrt (f r eq1) − sqrt (f r eq2)) . ˆ2)) ;

23 num bins=s ize (f r eq1) ;

24 e l s e i f length (n (1 , :))==T, disp (’ c on f i gu r a t i on matrix in evo lu t i on ’)

25 ne=BGVtoo l cho ice evo lut ion (a , b , c , n (: , tmin) , tmax) ; % evo l u z i one a p a r t i r e da l l ’

u l t ima con f i gu ra z i one

26 ne=ne (: , (tmin : tmax)) ;

27 fq1=insMubi (n (: , tmin : tmax) , O bin) ;

28 f r eq2=insMubi (ne , O bin) ;% se ne dimens iona le f r e q2 ha per colonna per ogni T

29 s f=s ize (f r eq2) ;

30 f r eq1=fq1 ;

31 % di s t ance measure in terms o f ch i square t e s t o f Pearson

32 di =((f r eq2)−(f r eq1)) . ˆ 2 . / (f r eq1) ;

33 di (isnan (d i) | i s i n f (d i)) = 0 ; %se t to 0 non f i n i t e occupancy f requency

34 dX2=sum(d i , 1) ;

35 %He l l i n g e r d i s t ance

36 dH=1/sqrt (2) .✯ sqrt (sum((sqrt (f r eq1) − sqrt (f r eq2)) . ˆ2)) ;

37 num bins=s ize (f r eq1) ;

38 e l s e i f length (n (1 , :))˜=T, error (’ input c on f i gu r a t i on wrong in l ength ’) ,

39 end

37

References

G. Bottazzi and U.M. Gragnolati. Cities and clusters: economy-wide and sector specific effects

in corporate location. Regional Studies, 2012. forthcoming.

G. Bottazzi and A. Secchi. Repeated choices under dynamic externalities. LEM Working Paper

Series, September 2007. URL http://www.lem.sssup.it/WPLem/files/2007-08.pdf.

Giulio Bottazzi, Giovanni Dosi, Giorgio Fagiolo, and Angelo Secchi. Sectoral and geographical

specificities in the spatial structure of economic activities. Structural Change and Economic

Dynamics, 19(3):189–202, 2008.

R. Brent. Algorithms for minimization without derivatives. Prentice-Hall Inc., 1973.

Luc Devroye. Non-Uniform Random Variate Generation. Springer, 1986.

U. Garibaldi and E. Scalas. Finitary probabilistic methods in econophysics. Cambridge Univer-

sity Press Cambridge, 2010.

James E. Gentle. Random Number Generation and Monte Carlo Methods (Statistics and Com-

puting). Springer, 2004.

Ugo Gragnolati Giulio Bottazzi and Fabio Vanni. A numerical estimation method for discrete

choice models with non-linear externalities,. LEM Working Paper Series, 2014.

K.W. Ng, G.L. Tian, and M.L. Tang. Dirichlet and related distributions: Theory, methods and

applications, volume 888. John Wiley & Sons, 2011.

B.W. Silverman. Density estimation for statistics and data analysis, volume 26. Chapman and

Hall/CRC, 1998.

38

http://www.lem.sssup.it/WPLem/files/2007-08.pdf

	Introduction
	Model
	Domain definition
	Estimation and inferential analysis
	Occupancy and Objective function
	The 2 objective function
	Discussion on the Empirical Occupancy Frequency
	Random generator from Polya distribution

	Linear approximation limits
	Bias on distance measures
	Baseline discussion

	Optimization methods
	Grid
	Successive parabolic interpolation

	Computational costs of the optimization methods
	Conclusion
	Maximum likelihood
	Grid search method
	Decimation procedure
	Convolution smoothing
	k-nearest neighbors

	Issues with numerical maximum likelihood estimation

	Program languages and performances
	Procedure to get persistent states of a markovian chain

