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Abstract 
 

This work analyzes and models the nature and dynamics of organizational memory, as such an 

essential ingredient of organizational capabilities. There are two sides to it, namely a cognitive side, 

involving the beliefs and interpretative frameworks by which the organization categorizes the states of 

the world and its own internal states, and an operational one, including routines and procedures that 

store the knowledge of how to do things. We formalize both types of memory by means of evolving 

systems of condition-action rules and investigate their performance in different environments 

characterized by varying degrees of complexity and non-stationarity. Broadly speaking, in simple and 

stable environments memory does not matter, provided it satisfies some minimal requirements. In 

more complex and gradually changing ones more memory is better. However there is some critical 

level of environmental instability above which forgetfulness is evolutionary superior from the point of 

view of long term performance. Moreover, above some (modest) complexity threshold stable and 

robust cognitive categorizations and routinized behavior emerge. 
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1. Introduction 

This work analyzes and models the nature and dynamics of organizational memory, as such an 

essential ingredient of organizational capabilities. Indeed, the notion of organizational memory stands 

for an elusive albeit crucial feature of the organizational reproduction of knowledge as distinct from 

the memory of individuals, namely the ability of organizations to elicit stored information from an 

organization’s history that can be retrieved to bear on present decisions (Walsh and Ungson, 1991). 

The property of memory of being “organizational” means that, first, it may well be distributed within 

the organization in ways such that no individual agent or subunit embodies the full representation or 

the full behavioral repertoires contained in the memory itself. Second, the organizational character of 

the memory also implies that it is resilient to environmental shocks.  

       Organizations “remember” because they entail explicit norms and, together, more tacit practices 

addressed to collectively solve practical and cognitive problems, ranging from the production of a car, 

all the way to e.g. the identification of a malaria-curing molecule. This is another way of saying that 

organizations learn, store, elicit and modify over time routines  and other  “quasi genetic action 

patterns “ (Cohen et al., 1996).  

Organizational memory concerns, first, the structure of beliefs, interpretative frameworks, 

codes, cultures by which the organization interprets the state of the environment and its own “internal 

states” (Levitt and March, 1988): in brief, call all this the cognitive memory of the organization. 

Second, organizational memory includes routines, comprising standard operating procedures, rules 

and other patterned actions: call this the operational memory of the organization. In short, the two 

types of memory concern the organizational capabilities to “understand” the characteristics of the 

environment, on the one hand, and to coordinate particular sequences of actions on the other. 

Both cognitive models and operational repertoires are the outcomes of learning processes and 

thus evolve over time in response to experimentation and feedbacks from the environment. However, 

they might often entail quite high degrees of inertia and path-dependent reproduction. As a 
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consequence, a major question we shall address below concerns the role of memory in changing 

environments.  

Cognitive and operational memories entail an “if….then” structure. Signals from the 

environment, as well as from other parts of the organization, elicit particular cognitive responses, 

conditional upon the “collective mental models” that the organization holds, which are in turn 

conditional upon the structure of its cognitive memory. Cognitive memory maps signals from an 

otherwise unknown world into “cognitive states” (“…this year the conditions of the market are such 

that demand for X is high...”). Conversely, the operational memory elicits operating routines in 

response to cognitive states (“…produce X…”), internal states of the organization (“…prepare the 

machine M to start producing piece P…”) and also environmental feedbacks (“…after all X is not 

selling too well…”). In turn, the organizational memory embodies the specific features of what an 

organization “thinks” and does, and what is “good at”, that is its distinct capabilities.
1
 

A promising candidate to model both types of memory finds its roots into the formalism of 

Classifier Systems  (CS’s) (Holland, 1975, Holland et al., 1986). In a nutshell, a CS is a system of 

interlinked condition/action rules which evolve according to the revealed environmental payoffs. The 

model that we shall propose below finds its ascendancy there, and in their application in Marengo 

(1992), albeit with significant modifications.   

In our paper we present a model which links Classifiers Systems and NK fitness landscape 

models (Kauffman, 1993). The former provide a model of a memory system that accounts for both 

cognitive and operational memory, while we use the latter to represent an environment in which 

exogenous environmental traits and organizational actions or policies interact in a complex way to 

determine the organization fitness or payoff. While in standard NK models (e.g. Levinthal, 1997), 

cognition, actions and resulting payoffs are folded together in a mapping between “traits” and their 

“fitness”, here we unfold  such relationships cognition/action/environmental feedbacks and explicitly 

model their (evolving) coupling. This is, we believe, a first major advancement with respect to the 

incumbent literature. Our organization explores a complex and possibly changing landscape in which 

some dimensions are outside (the environmental traits) and some are within (the action traits) its 

                                                 
1
 Within a very large literature, cf. for instance Helfat et al. (2006) and the critical survey in Dosi et al. (2008). 
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control. Since the former contribute to determine the payoff of the latter, the organization must base its 

search over the action landscape on an internal representation (its cognition) of the environmental 

landscape. When the landscape is complex enough and the organization has cognitive and memory 

bounds, such an internal representation can only be partial, imperfect and possibly wrong. However 

through the accumulation of experience organizations can develop better representations that enable 

them to act successfully in such a complex environment. This is a way to say that organizations 

painstakingly and imperfectly learn and develop models of their environment. However, there is an 

exogenous world “out there” which is indeed the object of learning, and which of course is not 

controlled by the organization. Rather the organization has to learn what to do – the know-how – 

conditional on (what it believes to be) the characteristics of the landscape mapping the combinations 

of state-of-the-world and actions into payoffs. This is also another major difference vis-à-vis the NK 

modeling style wherein the “blackboxing” renders all the landscape notionally under the control of the 

agent. Moreover, the CS formalism allows a straightforward study  of learning via non-local search, 

which if undertaken at all in NK frameworks, turns out to be quite arbitrary. 

The model that we propose offers a straightforward (and, to our knowledge, novel) 

formalization of the link between memory and organizational routines. And it is also a promising 

instrument to explore the double-edged role of memory, conditional on different characteristics of the 

environment in terms of its complexity and (types of) its dynamics. Memory may crystallize and 

reproduce the advantages from learning about “good representations” and “good routines” but may 

also entail “competence traps” (Levinthal and March, 1993), harmful in changing environment. The 

analysis of the contrasting roles memory plays in different environments is indeed a major task of this 

work.  

We shall proceed as follows. In Section 2 we attempt a broad even if necessarily concise 

assessment of the state-of-the-art in the incumbent knowledge concerning organizational memory in 

changing environments. Section 3 presents the structure of the simulation model which addresses the 

interpretative questions stemming from the foregoing pieces of evidence and explores the dynamics of 

collective cognition, behavior and ensuing environmental payoff feedbacks. Section 4 discusses the 

major results we obtain by running the model. Finally, in section 5 we draw the main conclusions. 
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2. Organizational Memory, Cognition and Routines  in Changing Environments: A bird-eye 

view 

The existence and importance of organizational memory is associated with the very ability of 

organizations to interpret their environment, learn how to solve operational problems and, by doing 

that, built constructs of knowledge that can be stored and re-used (Argote and Ingram, 2000, Kaplan 

and Tripsas, 2008). 

As already mentioned, one  side of the story is in a broad sense cognitive. The view of 

organizations as fragmented and multidimensional interpretation systems is grounded on the 

importance of collective information processing mechanisms that yield shared understandings (Daft 

and Weick, 1984), or “cognitive theories” (Argyris and Schon, 1978), of the environment in which 

they operate, and assist organizations to bear uncertainty, and, as we shall see, environmental and 

problem-solving complexity. If one subscribes to the notion that organizational learning is a process of 

refinement of shared cognitive frames involving   action-outcome relationships (Duncan and Weiss, 

1979), and that this knowledge is retained –at least for some time- and can be recalled upon, this is 

like saying that organizational learning is in fact the process of building an organizational memory. 

This cognitive part of the memory is made of “mental artifacts” embodying shared beliefs, 

interpretative frameworks, codes and cultures by which the organization interprets the state of the 

environment and its own “internal states” (Levitt and March, 1988). 

Together, there is an operational side to the organizational memory involving the coupling 

between stimuli (events and signals, both external and internal ones) with responses (actions), making 

up a set of rules that remain available to guide the orientation of the organization and execute its 

operations. In this domain the memory largely relates to the ensemble of organizational routines - 

patterned actions that are employed as responses to environmental or internal stimuli, possibly filtered 

and elaborated via the elements of cognitive memory (much more on routines in Nelson and Winter, 

1982; Cohen et al, 1996; Becker et al., 2005; Becker, 2005 and the literature reviewed here ). As 

Cohen and Bacdayan (1994) put it, this procedural side is the “memory of how things are done”, 
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bearing a close resemblance with individual skills and habits, often with relatively automatic and 

unarticulated features (p.554) 

In fact, the characteristics and evolution of organizational memory mirrors the characteristics 

and evolution of organizational routines. In the case of routines, the memory elicits a “relatively 

complex pattern of behavior triggered by a relatively small number of initiating signals or choices” 

(Cohen et al. (1996)). How small or big is the initiating set of signals in itself is an important 

interpretative question, which has to do with the ways the organization categorizes environmental and 

intra-organizational information. And likewise the behavioral patterns are likely to display different 

degrees of conditionality upon particular sets of signals. So, at one extreme the action pattern might be 

totally unconditional and “robust”: “perform a given sequence of actions irrespectively of the 

perceived state of the world”. At the opposite extreme actions might be very contingent on the fine 

structure of their “if” part.  

As we shall explore below, it might well be that the coarseness of the “if” and the “robustness” 

of the “then” parts might well depend on the nature of the environment and its dynamics. A conjecture 

in this respect is that the more complex and unpredictably changing is the environment, the less 

contingent is the behavior (Heiner, 1983; Dosi et al., 1999). After all, routines can be seen as an 

uncertainty reducing device (Becker and Knudsen, 2005; Dosi and Egidi, 1991): robust and largely not 

contingent routines might be those memorized under highly complex and changing environments.  In 

turn, inertia and path dependence are an almost inevitable corollary of the very existence of 

organizational memory. The organization is able to recall specific cognitive frames and behavioral 

repertoires precisely because they are stored and inertially reproduced (possibly with slight 

modifications) over time. Organizations path-dependently carry with them their birthmarks and what 

they have subsequently learned throughout their history. It is true that firms typically live in selective 

environments which tend to “weed out” the most dysfunctional traits and behaviors. However, 

typically their overall “fitness” (say, their revealed competitiveness) depends upon multiple inter-

related traits: in such cases, selection occurs on a fitness landscape with multiple local maxima and 

with adaptation starting with (random) initial conditions. This holds under NK landscapes  (Levinthal, 

1997; Rivkin and Siggelkow, 2003, Castaldi and Dosi, 2006) and plausibly even more so in the 
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environments we try to represent here. Indeed, organizations typically compete on such complex 

landscapes and interrelated technological and behavioral traits are responsible for path dependent 

reproduction of organizational arrangements (Marengo, 1996, Levinthal, 2000, Siggelkow and 

Levinthal, 2005).  

The ruggedness of the landscape is compounded by the fact that the link between what firms do 

and the way they are selectively rewarded in the market is utterly opaque for at least three reasons: (i) 

the complexity of the environments where they operate; (ii) the multiple “epistatic correlations”2 

amongst behavioral and technological traits; and (iii) significant lags between organizational actions 

and performance-revealing feedbacks. In such circumstances, path dependence can also be fuelled by 

behavioral/procedural and “cognitive” forms of inertia (Tripsas and Gavetti, 2000).  

In the model which follows we shall address isomorphic issues by means of simulation 

exercises and will explore the relationships between the “depth” and inertia of memory and path-

dependencies in organizational behaviors.  

Organizational memory carries over time what the organization has learned, directly through its 

past experiences, vicariously by observation of the experiences of other entities, or has been so to 

speak “brought in” by members of the organization.  

Note that learning, on the cognitive side,  - unlike most economists’ account – does not concern 

estimations of the value of some variable or even more far-fetchedly updating Bayesian priors, but 

rather the fuzzy and mistake-ridden categorizations of the signals stemming from the environment. 

Indeed in recent years the economic literature has tried to extend the standard decision making model 

in directions which depart from the assumption that decision makers hold a perfectly rational and 

perfectly knowledgeable model of the world or at least converge to that by acquiring and processing 

information. Models can now account for non-partitional information structures (e.g. Geanakoplos, 

1989), coarse partitions (Mullainathan et al., 2008), sparse representations (Gabaix, 2014), 

unawareness of some states of the world (e.g. Grant and Quinggin, 2013), but in general try to 

accommodate such “imperfect” information structures within the rational decision making paradigm. 

                                                 
2
 More on the application of this notion to the economic domain in Levinthal (1997) and Marengo and Dosi (2005); 

see also below. 
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Conversely, on the operational side, the very  elicitation of some content of the memory tends to 

improve the latter: learning by doing is a general instance of that phenomenon (on the relation between 

memory, forgetting, and the learning curve cf. Bailey,1989 and Benkard,2000). 

A crucial question regards the usefulness over time of the outcomes of such learning activities 

as carried by the organizational memory, an issue that boils down to both the characteristics of 

learning and the depth of environmental changes the organization faces. 

Ultimately, if the world is relatively simple and stable, confirming the  old beliefs and repeating 

the “good” routines is an effective organizational behavior. However, the world is rarely simple 

enough to make experience an infallible teacher (March, 1981; March and Olsen, 1976). 

Moreover, quite independently from any possible cognitive bias, the environment may well 

change in ways that decrease the “fitness” of cognitive and behavioral patterns which were well suited 

to the “old” environment or even make them detrimental. This is indeed what competence traps are 

essentially about (Levitt and March, 1988, Gavetti and Levinthal, 2000). Note that competence traps 

may refer primarily to the cognitive domain or alternatively to the operational one. In the former case 

the “trap” concerns primarily the reproduction beyond their times of usefulness of previously 

successful strategic orientations and heuristics. Call them cognitive traps. Conversely, the “operational 

trap” might concern the “way of doing things” – that is the ensemble of routines and other recurrent 

action patterns. In these circumstances the remedy is likely to involve also procedural and 

organizational changes. In actual fact, cognitive and operational lock-ins are likely to come often 

together.  

Bresnahan, Greenstein and Henderson (2011) present an excellent illustration of this point
3
 in 

two cases of “Schumpeterian transitions” across different technological trajectories and of the 

vicissitudes   of the firms which were market leaders under the old regime - in their examples, IBM 

facing the emergence of personal computers and Microsoft vis-à-vis the arrival of the browser.  Take 

the IBM case. Strong technological capabilities match a commitment to incrementalism in product 

architectures, cumulative learning, vertical integration, proprietary standards, coordinated strategic 

                                                 
3
  Even if, admittedly, the authors are inclined to offer a somewhat different interpretation of the evidence in terms of 

economies and diseconomies of scope in presence of jointly shared assets 
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governance and, on the market side, a reputation for post-sale service. This “IBM model”, as 

Bresnahan, Greenstein and Henderson (2011) insightfully show, is well aligned to market 

requirements under the mainframe/mini computer trajectories, but becomes misaligned to the 

requirements of effective production and marketing of personal computers. It is not that the “raw” 

capabilities are not there. They are. And in fact IBM even proceeds to a rather successful exploration 

of a new combinatorics between elements of technological capabilities, organizational set-ups and 

market orientation well suited to the personal computer world. However, that very success accelerates 

the clash between the “PC organizational model” and the incumbent “IBM (mainframe) model”. This 

latter wins and by doing that IBM ultimately kills its PC line of business. It is a story vividly 

illustrating the path-dependent reproduction of capabilities, shared strategic models, specific 

organizational arrangements and the ensuing traps. To repeat, it is not that IBM lacked any of the 

elements underlying successful “PC-fit” combinations. It is just that capabilities, “visions” and 

organizational set-ups and their specific combinations are better described at least in the short term as 

state variables rather than control variables, - in Winter (1987) characterization. Of course, also 

state variables can and are indeed influenced by purposeful discretionary strategies, that is, by the 

explicit manipulation of control variables. However this takes time and is tainted by initial birthmarks 

and subsequent historical paths the organization has taken with respect to both operational repertories 

and higher level collective visions concerning the very identity of the organization itself.  

In fact, technological and market discontinuities, –quite a few analyses suggest-,   demand 

forgetting and unlearning (Hedberg, 1981; Huber, 1991; Nystrom and Starbuck, 1984; Walsh, 1995; 

Klein, 1989) involving also changes in the organizational structures and the  erasing of at least parts of 

the cognitive and procedural memory of the organization. A revealing example regards the 

“unlearning” activities involved in the Merger-and-Acquisition processes. Kunisch, Wolf and Quodt 

(2010) distinguish three domains of possible “misfit” between the two merging organizations - at the 

level of artifacts, behaviors and corporate cultures. On the ground of a large database on M&A in 

Germany, they find that cultural misfits are particularly conducive to a lower subsequent performance, 

while - irrespectively of the sources of misfit – more unlearning is associated with easier absorption of 

new knowledge and better post-merger performances. 
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Clearly, unlearning comes at the cost of the loss of a good deal of the experiential wisdom of the 

organization itself (Gavetti and Levinthal, 2000): however, whether this is actually a cost, in terms of 

organizational “fitness” is likely to depend upon the depth of the changes in the appropriate 

technological capabilities and in the market environments. The general intuition stemming from the 

empirical literature is in fact that the value, or the cost, of cognitive changes and procedural forgetting 

is a function of the changes in the fitness landscape which the organization faces. Indeed, in the 

following, we shall explore more formally this conjecture by explicitly modeling shocks on such 

landscapes and studying the ensuing impacts upon organizational performances under different 

degrees of cognitive and procedural inertia, or conversely “forgetfulness” of organizations.  

 

3: A model of cognitive and operational memory of organizations 

 

3.1 Formalizing firms as problem-solving organizations  

 

Broadly speaking, the roots of the formalization we present in this paper rest on two 

complementary classes of models, surveyed at much greater detail in Dosi et al. (2011). The first class 

includes models mainly addressing learning in complex and changing environments, and focusing on 

the relationship between learning patterns and ensuing rational performances. Agents are adaptive 

learners who adjust their knowledge of the environment in which they operate and their behavior 

(often conflated together into “organizational traits”) through local trial-and-error procedures. For this 

mode of analysis, see Levinthal (1997), Dosi et al., (1999), Ethiraj and Levinthal 2004, Gavetti and 

Levinthal (2000) Rivkin and Siggelkow (2003), Siggelkow and Levinthal (2005), among others. 

The second class includes models focusing upon the relationship between the division of 

cognitive labor and search process in some problem-solving space, analyzing more directly 

organizations as repositories of problem-solving knowledge. Here the focus is on the problem-solving 

procedures which the organization embodies. Indeed, managing an organization, designing and 

producing cars or software packages, discovering a new drug, etc. can been seen as complicated 

problems whose “solutions” comprise of a large number of cognitive and physical acts. These kinds of 
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activities imply the coordination of large combinatorial spaces of components. Models addressing 

such dynamics of problem solving knowledge include Marengo and Dosi (2005), Marengo (1992) and 

(1996), Denrell, Fang and Levinthal (2004), Valente (2014), Baumann and Siggelkow (2014).  

On the output side, components making up an artifact can take a number of alternative states: 

so, for example, in the case of the production of a car, one combines different characteristics of the 

engine, alternative designs, different materials, etc. At the same time, innovative search may be 

straightforwardly represented in form of combination of multiple “cognitive acts” eventually yielding 

the solution of the problem at hand, e.g. the discovery of a new molecule with the required 

characteristics, a reasonable and coherent software package, etc. Note that in both examples the 

existence of strong interdependencies among the components – which often are only partially 

understood by all agents involved - implies that the effect on the system performance of a change in 

the state of a single component depends on the values assumed by the other ones. An implication of 

such interdependencies in this kind of problems is that it impossible to optimize the system by 

optimizing each single component.   

Let us start by considering those (still few) models whereby information-processing and 

problem-solving activities are represented by ensembles of condition-action (that is, “if…then...”) 

rules.  

Marengo (1992) and Marengo (1996) present models which focus upon the modification of such 

information processing capabilities of individuals or subunits within the organization, i.e. a process of 

"structural" learning. Agents are imperfect adaptive learners, as they adjust their information 

processing capabilities through local trial-and-error. This adaptive learning is (at least partly) driven 

by the information coming from the environment and/or from other members of the organization. 

Using a condition-action rule as the basic building-block of this learning system means that the 

execution of a certain action is conditional upon the agent's perception that the present state of the 

world falls within one of the categories the agent has defined in its mental model.  

Moreover the system must be able not only to select the most successful rules, but also discover 

new ones. This is ensured, in the above cited models, by applying genetic operators which, by 
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recombining and mutating elements of the already existing and most successful rules, introduce new 

ones which might or might not improve the performance of the system.  

A germane family of models, of somewhat more reduced form but also more elegant and living 

in a lower dimensional space involves precisely some “black-boxing”, in particular concerning the 

relationship between organizational traits (including of course behavioral rules) and their actual 

expressions. Such modeling genre prominently includes a family of evolutionary models of 

organizations inspired by S. Kauffman's so-called “NK model” (Kauffman, 1993). This model of 

selection and adaptation in complex environments represents evolving entities characterized by 

nonlinear interactions among their elements, with N the number of elements and K the degrees of 

interaction among them (their “epistatic correlations”). In Kauffman (1993) the “NK-model” primarily 

deals with the evolution of populations of biological entities described by a string of "genes" evolving 

over a fitness landscape, wherein a fitness function is defined assigning a value to each possible string 

as a measure of its relative performance. One of the pioneering applications of the “NK” approach to 

organizational analysis is Levinthal (1997). In that simulation model, populations of randomly 

generated structures (organizations) evolve on a fitness landscape, whereby the evolution is driven by 

variation, selection and retention processes. 

In complex environments the diversity of organizational forms robustly emerges: Levinthal 

(1997) shows that random local search induces mutations in different directions over the landscape. 

Moreover, the case of environmental changes can be modeled by re-drawing the fitness contributions 

of some features after the population has evolved and stabilized over previous optima. If the 

complexity of the landscape is high, even the modification of the fitness contribution of just one 

attribute can cause a large alteration of its shape.    

Levinthal´s analysis has been expanded and broadened by quite a few works which have further 

studied the relationship between organizational design and environmental complexity and turbulence. 

Rivkin and Siggelkow (2002) (cf. also Siggelkow and Rivkin 2006) tackle the issue of multilevel 

organizational search by introducing an explicit representation of organizational structures in NK-type 

models. Decisions over the N policies (bits of the string) are allocated among different departments 

and a superordinate CEO has the function of coordinating departmental decisions. 
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Gavetti and Levinthal (2000) add a further perspective to the analysis of search processes and 

look at the relations between forward-looking and backward-looking search and their effects on 

performance. The roots of the distinction between the two search processes go back to Simon (1955): 

the former involves cognition-ridden, forward-looking choices based on off-line evaluation of 

alternatives, even very distant from current behavior; the latter entails experiential choice based on on-

line evaluation of a limited set of alternatives which are close to current behaviors. In Gavetti and 

Levithal’s model, the organization chooses a policy on the basis of a simplified and incomplete 

“cognitive model” of its environment, entailing “templates” which cannot directly prescribe actions. In 

this context, existing practices function as defaults for elements not specified by the cognitive 

representation and allow the identification of a specific course of action. Thus, it may happen that 

actors with the same cognitive template may engage in different behaviors. 

An organization which chooses according to its cognitive representation explores regions, and 

not single points, of the landscape, while the width of these regions depends on the crudeness of the 

representation. The role of experimental search becomes more and more important as the crudeness of 

the cognitive representation increases. 

Gavetti and Levinthal show that in a context of competitive ecologies in which low performance 

organizations are selected out, organizations which adopt a joint cognitive and experiential search 

dominate the population. This becomes particularly evident under rugged landscapes, in which 

organizations which use purely experiential search are trapped into local optima. In this framework, 

changes in the representation can enhance organizations’ performance when the landscape itself 

changes as the new representation may identify more effectively new (superior) basins of attraction, 

and this can compensate for the loss of experiential wisdom. 

The model that we present in the following refines upon the first family of models and explicitly 

addresses the co-evolutionary dynamics between a cognitive domain (the “if’s” stemming from the 

“interpretation” of environmental signals) and an operational one (the “then’s”). At the same time such 

a learning (or unlearning) dynamics is nested upon, and ultimately driven-by, fitness landscapes of the 

NK type –characterized by different degrees of ruggedness and generally  changing overtime. 
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3. 2 The Model  

 

3.2.1 An informal description 

 

Coherently with the introductory remarks, we build a simple model of organizational cognition and 

action, where past experience is stored in a repertoire of condition-action rules, broadly inspired by 

John Holland’s Classifiers Systems (Holland et al. 1986). Such a repertoire, together with an indicator 

of each rule’s past usefulness constitutes the organizational memory. Rules embed a “know-what” 

component in the condition part, i.e. the capability to make some sense of the environment and 

distinguish different situations, and a “know-how” component in the action part, i.e. the capability to 

perform an appropriate action once a situation has been detected. Such a distinction is, with different 

nuances, common in the literatures on organizational cognition as well as on organizational routines 

and is germane to the distinction between “declarative” and “procedural” memory (Anderson, 1983), 

Cohen and Bacdayan, 1984,  Miller et al., 2012). 

Each rule takes the form of “if a given set of conditions is detected – then a certain action 

pattern is performed” and can be therefore characterized by their degree of generality vs. specificity, 

according to the size of the set of conditions to which they apply. General rules prescribe the same 

course of action for a broad range of environmental conditions, while specific rule apply only to one or 

very few situations. General rules may reflect different phenomena: a) ignorance, i.e. the organization 

does not know what to do in different situations and therefore applies the same rule to a wide range of 

conditions; b) inability to discriminate environmental conditions, which leads the organization to 

consider as equivalent situations which differ; c) routinization, i.e. a conscious or unconscious 

definition of relatively invariant rules which apply to ensembles of environmental conditions, either 

because the organization is not capable of producing more specific rules for sub-ensembles or because 

the cost of finding such more specific rules is higher than the potential benefit they could deliver; d) 

conscious generalization, i.e. the organization deliberately reckons that a broad range of situation must 

be treated as equivalent for action purposes.  

In our simulations we will suppose that the organization starts with one fully general rule, whose 

condition part indicates it may be applied to any possible environmental condition, and a random 
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action part. An adaptive mechanism, based on the feedback received when a rule acts on the 

environment, generates new rules as local modifications of the existing ones. Such local adaptive 

changes may involve both the condition part (increasing or decreasing its specificity) or the action part 

(by mutating of its bits). Each rule is assigned and “strength” parameter, roughly measuring its past 

effectiveness. The strength parameter is used to decide which rule to apply when more than one rule 

satisfy the environmental conditions. In this case, the strongest rule, among those which satisfy the 

current environmental conditions,  i.e. the one that has proven more successful in the past, will be 

preferred for action. 

Rule strength also governs the novelty generation mechanism, as stronger rules will be 

preferably chosen for the generation of “offspring” variant rules (i.e. new rule which are copies of the 

stronger ones but with some small mutations in the condition and or action part).   

In our framework, the repertoire of condition-action rules represents the memory of the 

organization, and its size is given by the number of different rules held in this repertoire. The strength 

of a rule is updated every time the rule is chosen to act on the environment of the organization, and it 

is updated according to the payoff received by the action. Rules that are active because they satisfy the 

current environmental conditions, but have not been chosen for action, have their strength reduced. 

The system records for each rule an indicator of “inactivity”, which keeps track of how frequently a 

potentially active rule has not been chosen for action. A rule is removed (and therefore “forgotten”) 

when the inactivity indicator reaches a given threshold. Thus, by tuning this threshold we control for 

the trade-off between remembering and forgetting. Other things been equal, the higher this threshold 

(indicating higher tolerance for inaction) the larger the size of memory, since rules will be deleted less 

frequently, while a lower the threshold will reduce the size of memory as fewer rules will manage to 

survive the selection on inactivity. Notice that the size of memory is endogenous because, as we will 

show below, it depends on the all features of the environment, which influence how many rules are 

compatible with the environment at each time. 

The overall dynamics of the memory is therefore history-driven (among all the rules which 

apply to the current situation the one which has been more successful in the past will tend to be 

preferred), but also cognition driven (only rules whose condition applies to the current situation can be 
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used, in other words rules define a set of categories in which environmental states are classified), and 

also variation driven (novelty is constantly introduced as variation on existing rules). 

We test the behavior of such a system in different environments, characterized by varying 

degrees of complexity and volatility. We assume that both environment and actions are 

multidimensional objects and that the complexity of the problem the organization faces is determined 

by the interdependencies among the elements forming the environment, among the elements 

composing the action and across the two elements, environment and action. In other words, the 

organization is placed in a “NK landscape” à la Kauffman (1993), but the N dimensions of the 

landscape belong to two different categories. Ne<N dimensions are environmental features, which the 

organization cannot control or modify but can only observe and (try to) categorize according it its set 

of conditions. The remaining Na=N-Ne are instead dimensions (policies) pertaining the action of the 

organization and chosen by the latter according to it repertoire of rules. The payoff for the 

organization will, in principle, be determined by the current configuration of all the N dimensions, 

thus in principle each configuration of the Ne environmental dimensions determines a different 

landscape for the Na action dimensions. However we can, and we will in the simulations below, test 

the behavior of our organization in landscapes characterized by specific structures of 

interdependencies, using the methodology presented in e.g., in Frenken et al., 1999. To simplify, we 

will suppose that, while indeed all the environmental elements contribute to determine the payoff of an 

action, only a subset of them modify the shape of the action landscape, while the other environmental 

dimensions only determine a shift of the payoff values, but no change in their relative value. We call 

the dimensions which together modify the shape of the action sub-landscape core dimensions (or 

core bits in our simulations where all dimensions take only binary values). Thus, the ranking of 

actions (from the most to the least fit) does not change when the core dimensions remain constant and 

the non-core ones change, although their fitness value does change. When instead a core dimension 

change, in general also the ranking of action will undergo random changes.  



17 

 

The organization must therefore learn to discriminate between core and non core bits, in spite of 

the fact that all of them cause changes of the fitness values of actions, and, possibly develop specific 

rules for each configuration of the core dimensions, prescribing a different action to each of them.  

Also the action part of the landscape may be more or less complex. In an action landscape of 

complexity Ka the payoff contribution of each action bit depends upon Ka-1 other action bits (besides 

depending on the environmental bits as described above). Thus when Ka=1 we have a simple action 

landscape (for any configuration of the core bits) where the payoff contribution of each action bit is 

independent from the current value of the other bit; while as Ka grows the action landscape becomes 

more and more complex and uncorrelated. 

It is worth stressing once more this fundamental difference between our model and the usual NK 

fitness landscape model which is, we believe, one of the significant original contributions of this 

paper. We assume  that the landscape is made of both exogenous and endogenous components. Both 

contribute to determining the fitness of the organization, in tune with  familiar representations,  

depending  on the complexity structure, but only the latter are under the control of the organization 

while the former are exogenously determined by what we call “the environment”, which of course 

may well include other organizations or past actions of the same organization itself. Thus exogenous 

components modify the landscape of the endogenous ones and the search process on the latter must be 

based on some cognition of the former. Our if-then rules are a simple (and already widely used in the 

adaptive learning literature) way to model an adaptive system that conditions its action upon a 

categorization of the exogenous states. In short, our organizations must discover both the correct 

categorization of the environmental events and, for each relevant class of events, the appropriate 

action. The only available information is the feedback received by the action actually performed at 

each step (i.e. “on-line” learning), and we explore the results under different settings allowing for 

different sizes of memory for the organizations. 

Concerning the environmental dimensions, we simulate stationary and non stationary 

environments. In the former case the environment-action landscapes are generated (with the desired 

complexity structure) at the beginning of the simulation and never changes. The state of the 

environment (the configuration of the Ne environmental bits fed to the organization) changes at each 
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moment time, but the mapping between each environmental state, actions and payoff remains constant. 

On the contrary, in a non stationary environment the payoff values are subject to change, and therefore 

the shape of the landscape is modified, although the structure of the interdependency links remains 

constant so that the relevant categories do not change. 

In the next subsections we will present the details of our model more precisely and formally and 

then, in section 4, we will examine its behavior in different environments. 

 

3.2.2Environment, states of the world and payoffs 

The environment is fully described by a set of  elementary “states” . For 

simplicity we assume that each environmental feature may take only two values . 

Organizational behavior is characterized by an action vector made of  elementary acts

. Again, for the sake of simplicity, we assume . 

Payoffs or fitness: in general, the payoff for or the fitness (we will use both expressions indifferently) 

of the organization depends upon the entire profiles of organizational acts and environmental states. 

The payoff function is described as . We explore different complexity structures 

concerning the mapping from the  space to the pay-off. There are potentially three sources of 

complexity, namely those due to (i) interdependencies among environmental states, (ii) 

interdependencies among elementary acts and (iii) interdependencies among environment conditions 

and action patterns. 

Task complexity structure: we assume an environment where some environmental features interact 

with the organizations’ actions to determine the payoff, while others do not. More precisely, we define 

as core environmental components those which influence the payoffs of different ensemble of actions 

and also the ranking of different action profiles. Conversely,  non core traits are those environmental 

components which influence the payoffs received by different actions, but not their ranking. Hence, 

suppose that the vector [a1,a2,..am] is the optimal action when the environment is described by vector 

[e1,e2,..en].  Then if ei is a non core bit, a change of its value will affect the overall payoff, but will not 

change the corresponding optimal action (nor of the ranking of all other actions), while if ej is a core 
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bit a change of its value will in general determine a change of the corresponding optimal action as well 

as of the ranking of all other actions. 

The crucial task for a learning organization is therefore to discriminate “action-relevant” or 

“core” environmental signals and “understand” how they interact with the set of elementary acts which 

make up the action. Of course, the number of “core states” is a measure of environmental complexity. 

Note that learning is only driven by payoff, which is the only signal organizations receive on how 

good their actions, coupling the conditions, are. The complexity of the environment is revealed by a 

NK-like fitness function, based on correlations among state yielding specific correlations between 

“cognitive” and behavioral traits of the ensuing fitness. 

 

3.2.3 Organizational cognition and action 

The task of the organization is to develop the capability of correctly detecting states of the 

world and choosing the appropriate behavior. In order to do that, the organization stores a set of 

cognition–action rules that together constitute the organizational memory and action repertoire. These 

rules constitute a Classifiers System (Holland et al., 1986) that performs the two interrelated tasks of 

detecting and memorizing environmental regularities (i.e. partitioning environmental states into 

categories) and applying the appropriate course of action to each of them. Condition-action rules are 

“if... then” rules that map detected environmental profiles into action. Each rule takes the form:  

 
, 

where # stands for “do not care”.  

Each rule is characterized by its specificity , i.e. the number of its condition bits which are 

different from , and is assigned a strength, , which is an indicator of the payoff it has cumulated, 

minus possibly some “tax” (the details will be given below). If the current environmental state 

matches the condition part of a rule, i.e. if either  or , then the rule is considered as active. 

We experiment with an on-line  set-up of rule selection, whereby, if more than one rule is active, 

they bid for action. The bid of a rule  that is active at time  is denoted  and computed according 

to the formula: 
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  (1) 

 

Where  is a parameter representing the relative importance of specificity in bidding,  is the 

specificity of the condition, and Ne is the number of environmental bits. In summary, a bid is higher 

the higher is its strength and, weighed by the  parameter, its specificity. This reflects the principle of 

default hierarchies (Holland et al., 1986), that is, more specific rules, other things being equal, should 

be preferred to more general ones.  

The bid is computed for all the active rules, then one and only one of the latter is chosen for 

action with probabilities proportional to the individual bids. 

After the selected rule has acted and the corresponding payoff has been observed, the strengths 

of all rules are updated, with different formulas, depending on whether the rule has been chosen for 

action or not. 

For inactive rules (not chosen) the strength of the rule is updated as: 

  (2) 

where  is an “inaction” tax (i.e. a depreciation). 

The selected rule pays an additional “tax” proportional to the proposed bid, and receives as reward the 

payoff: 

  (4) 

 captures the cost of “maintenance” that any rule has to bear, while is a scale parameter 

for the cost of bidding. Finally,  allows to tune the “speed” by which a payoff affects the strength of 

rules.  

At the start of each simulation run we assume no knowledge of the environment: the 

organizational memory contains only one rule, whose condition part is formed only by ’s (reflecting 

a state of total ignorance), while the action part is a randomly drawn binary string. 

 

3.2.4 Generation of new rules 
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New rules are normally generated as variation of existing successful ones. New rules can be 

obtained by either specification or generalization of the condition part and/or by mutation of the action 

part. 

Specification means that a rule with some #’s in the condition part generates an offspring rule 

whose condition part is a copy of the parent’s except for the mutation of some #’s into either a 0 or a 

1. Such mutation is controlled by two rule-specific indicators defined as follows: when a rule is 

selected for action, for each un-specified bit  of the condition part (i.e. each ), one defines two 

indicators  or  measuring the payoffs obtained conditional on the environmental states. If the 

environmental string has 0 in the h-th position, i.e.  then , where  

is the payoff received by the rule. If instead , it is  that gets accordingly updated: 

. In short, the two indicators collect the sum of the payoffs received by the rule 

when the environmental bits corresponding to each of its # were 0 or 1, respectively. In order to decide 

if the new rule is worth to generate via specification, the system computes the following indicator: 

  (5) 

This is an indicator of concentration, ranging from 0 (minimal concentration) to 1 (maximal). The 

system will generate a new rule via specification if at least one , where  is a threshold 

parameter which can be varied across experiments. 

If the rule has to generate a new offspring via specification, the system chooses which bit must be 

turned from a  to either a 0 or 1 by assigning each generic bit the following probability: 

   (6) 

where  indicates the sum over all and only the condition bits equal to  and is a parameter 

affecting the concentration of probabilities. The chosen bit is set to 0 if  and to 1 otherwise. If 

there is no bit fulfilling specification conditions, the system generates a new rule either via 
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generalization or via mutation, choosing randomly with equal probability between the two alternatives. 

The action part of the specified offspring rule is instead a perfect copy of the parent’s action part. 

On the contrary, generalization consists of mutating one specified bit  into . Also in 

the case of generalization, the action part of the offspring rule is a perfect copy of the parent’s action 

part. 

Conversely, strings produced via action mutation maintain the same condition part  and 

switch one, randomly chosen, bit of the action part from 0 to 1 or vice versa. Furthermore, a more 

general rule can be introduced in the system when no existing rule can be applied because no 

condition part matches the current state of the environment. In this case, for all existing rules a 

“mismatch ratio” is computed. This is the ratio of the bits that are specific (i.e. equal to 0 or 1) and do 

not match the environment (i.e. ) divided by the number of specific bits. Thus, for instance, a 

rule with only one specific bit (and  everywhere else in the condition), when this bit does not match 

the corresponding environmental one has a mismatch ratio 1. A rule with one mismatching bit, but 

having other 9 specific and matching bits has a mismatch ratio 0.1. The rule with the lowest 

mismatching index is generalized by turning the mismatching bits into . 

3.2.5 Forgetting rules 

Each rule is associated to an indicator reporting how frequently the rule is chosen when its 

condition part is compatible with the environment, i.e. it has the chance to be chosen. This indicator 

 is not modified when the rule is not applicable because its condition part does not match the 

environmental bits. Otherwise, it is updated as follows: 

 

where  is a smoothing coefficient and  equals 1 if the rule i is chosen at time t  and 0 

otherwise. Thus, will approach 0 when the rule is rarely used, and 1 when, on the contrary, it is 

frequently used. At every time step the organization reviews all the rules in its repertoire and removes 

those whose indicator  is below a given threshold. Consequently, the lower the threshold the more 
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rules will remain in the memory of the organization, while the higher the threshold the more selective 

is the organization, retaining only rules used frequently. 

 

 

4. Some Results
4
 

We implemented the foregoing model  and explored its results under different configurations.  

As in  most  agent-based models, there is a relatively large number of parameters affecting the results, 

and we can obviously explore only a small  fraction of the parameter space: our experiments have 

been focused on  the analysis of the revealed fitness values achieved by our artificial organizations 

under different  memory and learning conditions ( e.g. possibility or not of forgetting ),  conditional  

on different degrees  of environmental complexity and patterns of environmental dynamics. 

In all our experiment we consider an overall landscape made of N=14 elements, divided into 

Ne=9 environmental bits and 5 action bits “operationally” controlled by the organization. In each 

simulation run we define a given environmental setup (e.g. number of core bits, type of complexity, 

etc.), and one or more “populations” of organizations.  Each population is a group of independent 

organizations with identical initial conditions and learning set-ups. At each step of a simulation run the 

environment is determined by its stochastic “law  of motion” (if any ), and organizations have to 

choose one rule from their repertoire. Next, given the revealed payoff, organizations update the 

strength of  their rules, and, possibly, generate and/or remove rules from the repertoire. 

For each organization we compute some statistics on its performance and properties of the 

repertoire of rules. The performance of an organization is measured on the basis of the fitness 

produced by combination of the current environmental state (common to all organizations in the 

model)  and  the action part of the rule selected by the organization for that time step. In order to allow 

for comparison between landscapes with different levels of complexity we report  the results on the 

values of the relative fitness, which is the ratio of the organization’s fitness divided by the highest 

fitness attainable with the current environment, i.e. the fitness pertaining to the optimal action. It is 

well known in fact that the maximum fitness value of a NK landscape depends on the value of K, thus 

                                                 
4
 The simulations presented here were implemented in the “Laboratory for Simulation Development”(LSD), a 

simulation platform developed by one of us (Valente, 2008). Code of the model and configurations used are 

available from the authors upon request. 
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if we want to compare the performance across landscapes with a different K value we must use 

relative fitness values instead of absolute one. 

Together with the performance, we compute also the number of rules in the organizations’ 

repertoires - as a proxy for the size of memory -, and the specificity of each rule, i.e. the number of 

bits in the condition part of rules whose value is not #.  

 

4.1 Learning in stationary environment. 

Let us begin by analyzing the behavior of our rule system  for varying degrees of environmental 

complexity, in stationary environments, i.e. characterized by an stable unchanging landscape. We 

consider four  levels of environmental complexity, measured by the number of core bits, from  simple 

(1 core), to  intermediate (3 cores), complex (6 cores) and maximally complex (9 cores) environments. 

For each of these settings we simulate three populations made of 100 organizations, each defined as 

having low, intermediate and high memory levels respectively, determined by the threshold used to 

remove the less often used rules.
5
  

Simple environment (1 core) 

Let us start with the simplest environmental set-up, with only one core environmental bit. 

Figure 1, 2 and 3 show the average fitness, specificity and number of rules across time for the three 

sizes of memory,  respectively.  

 

                                                 
5
 For reasons of space we report here only a brief summary of the results. Detailed statistical analysis, along with 

the computer program are available from the authors upon request. 
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Figure 1: Average fitness over 100 organizations; simple (1 core) environment. 

 

 
Figure 2: Average number of rules over 100 organizations; simple (1 core) environment. 

 
Figure 3: Average specificity of rules over 100 organizations; simple (1 core) environment. 

 

In this setting the “optimal” repertoire consists of two rules made of all #’s but for the core bit 

(hence specificity 1), each applying to either state of the core bit, and containing the appropriate 
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action. The figures show that all the three populations manage to sensibly increase fitness through 

time, although only the organizations with large or intermediate memory size consistently reach the 

maximum fitness levels. Figure 2 shows that the pattern to learning, in this setting, consists in 

generating a lot of rules (almost 10, for the large memory population), which are then selected over, 

until the two populations with large and intermediate memory sizes reduce them to the only 2 

required. Organizations with small memory size remain instead stuck with a larger number of rules 

than that strictly required for optimality. Figure 3 offers the intuition on the reasons underlying this 

pattern. All organizations start their learning by rough and imprecise over-categorizations
6
 of  the 

environment, quickly reaching  levels of specificity much higher than 1, in search of the bits of the 

environment that matter in terms of action. While refining the action part,  they also merge categories,  

therefore reducing the average specificity of rules. Organizations with too small a memory, however,  

cannot perform this winnowing part of learning because more general but imperfect rules are 

discarded too quickly, and therefore continue to generate over-specific, and sub-optimal ones. 

Already this simple case  highlights the tension intrinsic in the role of the memory. Less memory 

implicitly demands tighter selection  - and thus, in a naïve reading, a sharper learning -, but in turn 

tighter selection entails deeper tradeoffs between exploitation and exploration, well in tune with March 

(1991). 

Intermediate complexity (3 cores) 

Let us increase the complexity of the landscape to 3 cores. In this setting we observe  results 

broadly similar to the previous case. However,  with 3 core bits the optimal repertoire generally entails 

a different rule for each combination of states, that is 8=2
3
 rules. Though requiring longer time span, 

we obtain the same outcomes as in the previous exercise: organizations with too small memory fail to 

reach the highest fitness, while the other two populations follow the same pattern of initial over-

specification, discovery of the right categories, and identification of optimal actions for each category. 

                                                 
6
 Incidentally, note that these “categories” are not partitions: their intersection is not the empty set. 
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Figure 4: Average fitness over 100 organizations; intermediate (3 core) environment. 

 

 
Figure 5: Average number of rules over 100  s; intermediate (3 core) environment. 

 
Figure 6: Average specificity of rules over 100 organizations; intermediate (3 core) environment. 

 

The most notable difference with respect to the previous simpler environment is that the gap 
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contrary to what one might expect. It seems that errors due to “premature learning” under very small 

memory are more costly when  (nearly) optimal behaviors entail fewer actions to be fired more 

frequently. On the contrary, in more complex environments there are more chances to get it roughly 

right in at least some of the (many) possible relevant environmental conditions, when apparent 

“disfunctionality”  -at least as defined  on the grounds of short term reinforcement- is kept alive. 

Complex environment (6 cores) 

With landscapes of higher complexity,  our artificial  organizations fail to reach systematically 

the maximum fitness. The specificity statistics  show that organizations fail to map correctly the 

relevant “true” environmental categories but rather develop  cross-cutting categorization/action 

routines. Moreover,  for a long initial period (notice the difference in time scale with respect to the 

previously discussed results), intermediate memory sizes show a consistently better performance than 

larger ones, hinting that excessively large memory starts to be a liability, rather than an asset. 

 

 
Figure 7: Average fitness over 100 organizations; complex (6 core) environment. 
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Figure 8: Average number of rules over 100 organizations; complex (6 core) environment. 

 
Figure 9: Average specificity of rules over 100 organizations; complex (6 core) environment. 
 

Maximally complex environment (9 cores) 

Pushing still higher the environment complexity (all the 9 environmental bits are core bits) 

yields  somewhat different dynamics. Even under such very high levels of complexity,  organizations 

learn and manage to improve  their performance. However, the cost of an excessively large memory 

size becomes all the more apparent: the average fitness of the intermediate memory size is persistently 

and increasingly higher than that achieved by organizations with larger memory.  
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Figure 10: Average fitness over 100 organizations; highly complex (9 core) environment. 

 

 
Figure 11: Average number of rules over 100 organizations; highly complex (9 core) environment. 
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Figure 12: Average specificity of rules over 100 organizations; highly complex (9 core) environment. 

 

 

4.2 Non stationary environments 

    So far we considered stationary environments, in which a good rule, if discovered, remains good 

forever. Let us now consider environments  which persistently undergo regular shocks generating each 

time a new landscape, i.e. a novel mappings between states of the world, actions and payoffs. Shocks 

occur at regular intervals (we test for different frequencies) and imply that all the fitness values of the 

landscape are re-drawn, though the complexity structure of the landscape is kept constant.  Therefore 

the performance of incumbent rules, associating a given action to some conditions of the environment, 

is suddenly and abruptly modified.  

In these circumstances, one is able to explore also whether forgetting current (and suddenly at 

least partly obsolete) knowledge may be desirable in response to a radical shock. In order to do that, 

we compare the performance of two alternative learning strategies  for each memory size. In the first 

setting  organizations  maintain their entire set of rules: in fact they do not “know”  of the shock, but 

painstakingly  amend the existing knowledge facing the new landscapes. Conversely, in the second 

setting  organizations  “reset” completely their memory in response to shocks, starting the learning 

process from  scratch (i.e. from a single  rule with randomly chosen action). In fact, this is equivalent 

to evaluate comparatively the performance of new organizations (without any memory from the past) 
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at each shock. In the tables below we report the results for the average fitness generated by 

organizations exploring a increasingly complex landscapes: 1, 3 and 6 cores
7
. The rows correspond to 

different frequencies of shocks (as reported in the first column). The columns report the size of 

memory and whether the organizations reset their memory or not. The last raw, that we call ”Never”, 

is the equivalent of the previous case for stationary environments (with the  small technical difference 

that for sake of comparability we “force”  exploration for new rules to continue forever, thus 

undermining  a bit the fitness ). 

 

Simple environment (1 core) 

 

 Small Medium Large SmallReset MediumRes. LargeRes. 

300 0.12566 0.0989861 0.0919705 0.10344 0.0837442 0.0606114 

600 0.189397 0.139157 0.115108 0.165856 0.132492 0.120285 

1000 0.243851 0.206673 0.157258 0.228764 0.187792 0.145979 

1500 0.314622 0.253612 0.237312 0.292384 0.265688 0.229637 

2000 0.368529 0.345406 0.308086 0.359418 0.315149 0.26155 

2500 0.410609 0.4001 0.351153 0.403276 0.368321 0.33263 

3000 0.484363 0.457313 0.451933 0.47254 0.442825 0.378531 

5000 0.580595 0.573387 0.538362 0.518848 0.561429 0.496277 

10000 0.69922 0.770904 0.763659 0.690147 0.761173 0.676752 

20000 0.748382 0.770636 0.717614 0.752883 0.80075 0.731601 

Never 0.803684 0.942152 0.931624    

 

Tab.1 Simple landscape (1 core). Average fitness over 50,000 time steps starting from t=150,000. 
 

Results show that in highly volatile environments, with high frequency of shocks, small 

memory size provides higher fitness. In these cases a large memory allows the survival of inefficient 

rules that spoil both  learning patterns and average performance. The advantage disappears as the 

shocks become less frequent providing the opportunity for organizations with larger memory to  better 

deploy their learning potential. In any case, organizations with the largest memory size still pay a price 

in terms of performance, supporting the hypothesis that in simple but volatile environments a large 

memory is not only redundant, but is effectively negative on performance. The reason is that a larger 

                                                 
7
 We skip the analysis of maximally complex landscapes (9 cores) because the results are perfectly in line with 

the other cases. 
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stock of experience takes more time to be replaced than a smaller one, allowing obsolete knowledge to 

linger longer within the organization dragging down its performance. 

The average performance of organizations which reset their memory after a shock is no better, 

and in many cases markedly worse, than the one of organizations with equivalent memory size which 

maintain their (obsolete) experience after a shock. This result hints to the reasons for the advantage of 

smaller memory sizes. Intense competition for scarce memory speeds up learning, favoring recycling 

of useful chunks of existing knowledge, as opposed to generating new knowledge from scratch in a 

context with abundant remembering capacity. This is why the first column (small memory, keep 

obsolete rules after a shock) shows persistently better performance than the last column (largest 

memory, delete all rules after a shock). The advantage is clear at all frequencies, but for the most rare, 

in which performance value are very similar. 

 

 

Intermediate complexity (3 cores) 

With intermediate complexity we obtain similar results (see Table 2), though, of course, 

performance is generally lower due to the increased complexity of the landscape. 

 

 Small Medium Large SmallReset MediumRes. LargeRes. 

300 0.107307 0.0862687 0.0880694 0.0949113 0.0872966 0.082382 

600 0.129952 0.0975477 0.0956609 0.11328 0.0980064 0.0867317 

1000 0.153389 0.103191 0.106947 0.137083 0.121099 0.109123 

1500 0.197236 0.142404 0.128115 0.161011 0.155791 0.132149 

2000 0.218118 0.161657 0.138115 0.175368 0.154216 0.106668 

2500 0.241845 0.183643 0.160308 0.201468 0.183583 0.145434 

3000 0.264002 0.222403 0.198537 0.219785 0.208797 0.160834 

5000 0.314652 0.285477 0.272994 0.260625 0.272635 0.215972 

10000 0.444146 0.487149 0.506658 0.407526 0.425191 0.363751 

20000 0.552035 0.58209 0.607224 0.510752 0.608566 0.536618 

Never 0.671532 0.920983 0.902416    

 

Tab.2 Intermediate complexity landscape (3 core). Average fitness over 50,000 time steps 

starting from t=150,000. 
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It may be worth noting that the distribution of fitness values across the whole landscape is 

highly biased, with few, high values and the vast majority of low values. The performance distribution 

is a power law produced by the function x
30

, with x being the sum of 14 independent uniform random 

variables (the individual fitness contributions) taking values in the range [0,1]). Such distribution has 

an expected value of about 0.032 (=1/31), that is, picking randomly a performance value from the 

whole landscape would generate values in the range [0,1] with most of them being very close to 0 (on 

average 0.032). The fact that all our simulations report far higher performance levels, which are shown 

by only a tiny portion of the points in the landscape, means that our learning mechanism is effective in 

locating, even in the worse cases, high fitness local peaks. 

 

Complex environment (6 cores) 

In this  case of higher complexity, we find, even more so, that smaller memory  provides a 

fitness advantage. Recall that memory plays two roles, storing so to speak “established and old” 

learning, as well as novel candidate rules to be assessed. In that, above some level of environmental 

complexity, the resetting of  memory after a shock provides an advantage to keeping memory across 

radical modifications of the  environment. But, remarkably, this seems to occur if shocks are rare 

enough to allow a relatively thorough learning. Otherwise, cross-cutting robust and relatively blind 

routines seem to better perform, as shown by Table 3 below.  

 Small Medium Large SmallReset MediumRes. LargeRes. 

300 0.081146 0.078099 0.0792957 0.077693 0.0775796 0.0758342 

600 0.0876982 0.0785803 0.0829455 0.0804502 0.0790845 0.0748973 

1000 0.0932931 0.079472 0.0817679 0.0840607 0.0830139 0.0788371 

1500 0.0991952 0.0815934 0.0815307 0.0887702 0.0887166 0.0810441 

2000 0.109788 0.0868158 0.0869898 0.0972125 0.103213 0.0948689 

2500 0.116153 0.0855875 0.0873492 0.096938 0.104273 0.0945893 

3000 0.122875 0.0875066 0.091828 0.0978429 0.11075 0.100329 

5000 0.151306 0.0992009 0.10047 0.110426 0.140738 0.122169 

10000 0.20531 0.13491 0.135438 0.126998 0.178356 0.134209 

20000 0.272416 0.219173 0.20577 0.147881 0.234087 0.175662 

Never 0.514746 0.702701 0.693051    

 

Tab.3 High complexity landscape (6 core). Average fitness over 50,000 time steps starting from 

t=150,000. 
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4.3 Path-dependency 

We showed so far that our artificial organizations adaptively learn, but do they learn the same 

things? That is, do they converge to the same cognition/action patterns facing the same stable 

environment and the same “objective structure of incentives” stemming from the revealed payoffs? Or 

is learning path-dependent in the sense that organizations facing the same environment but starting 

from different initial conditions (rules with the same condition part but different randomly generated 

actions) and undergoing different adaptation will produce different rules?  

In this section we address this question for stationary environments of intermediate complexity.  

The behavior of our organizations depends on the interaction of the whole set of rules and of 

their relative strength. Hence, measuring directly the similitude among organizations is hard. 

Potentially, two identical set of rules with only a slight difference in strength may produce highly 

different results, while, on the contrary, very different sets of rule may produce very similar results. 

Hence, we measure the differentiation of organizations using the indirect measure of the variance 

across the population of the fitness received through time. Figure 13  shows the variance of the relative 

fitness across the population of 10 organizations  in a complex (6 core) but  stationary environment. In 

more simple settings (1 and 3 cores), the time series of variances  show an initial increase but  a 

subsequent fall to zero as all organizations reach the optimal point: the transients converge. In the 

foregoing  case, instead, variance grows and then stabilizes, indicating a persistent dispersion of 

observed fitness, suggesting  that organizations differentiate along  path-dependent trajectories  

leading them to different areas of the landscape. An even stronger  pattern emerges for the maximally 

complex setting (9 cores).  
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Fig. 13. Variance of relative fitness across a population of 100 organizations. Complex 

environment (6 cores), stationary environment. 

 

This general path-dependency property is corroborated  under the non-stationary setting 

showing the relative
8
 variance for the case of 1 core. When the rates of change of the environment are 

of an order of magnitude similar to the rates of learning, the dispersion is very high. When the change 

is more sedate, on the contrary, organizations tend to converge to the global maximum, consequently 

reducing their differentiation.  

 

 

 

  

                                                 
8
 To normalize the variance we divided the absolute variance for the square of average values, removing the bias 

due to the unit of measurement for the indicator of dispersion. 
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Fig. 14. Relative variance in non stationary environments for different shock frequencies. 

 

 

 

 

 

5. Conclusions 

In this work we proposed a formalization of the notion of organizational memory which 

straightforwardly accounts also for its being stored in organizational cognitive frames and operational 

routines. The model allows the analysis of the features of such cognitive and action patterns under 

different degrees of complexity of the environment and of the problem-solving tasks and under diverse 

environmental dynamics. 

Complexity and non stationarity play a crucial role in determining the evolution of our system of 

rules. 

First,  except in the most simple and stationary environments, what organizations learn and 

“remember” thereafter are not fine-tuned detections of the precise states of the environment and 

equally fine-tuned behavioral responses, but rather cognitive states (“categories”) which capture 

ensembles of environmental states and correspondingly patterned behavioral responses, indeed, 

routines.  If the set of relevant environmental states is relatively large and interdependent, the 
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organization limited learning system is not able to discover all the relevant specific rules and hold 

them into memory. Consequently, organizations produce general rules each of which applies the same 

action to sets of states that would each require a different action for optimization, while the 

organization settles for a single action producing a good (“satisficing”), though suboptimal, result. 

Highly specific rules will emerge and survive only if they apply to often experienced environmental 

situations or if they generate very high payoffs. In all other cases, specific optimal rules, even when 

developed, will be forgotten because they are applied too rarely, and provide too small an advantage, 

in respect of more general and (slightly) suboptimal competitors. 

 Second, path-dependence is ubiquitous. With the only exception of the simplest environments, 

different organizations exposed to the same environmental signals and living on the same fitness 

landscapes develop distinct interpretative frames and distinct action patterns stemming from 

idiosyncratic learning processes. In our experiments we study a population of  different organizations 

each facing exactly the same sequence of environmental conditions, and each starting with a single 

rule with the most general condition part and a randomly generated action part. In very simple 

environments, with one or very few core bits, all organizations converge to the same repertoire of 

“optimal” rules which correctly define the optimal action for each state of the core bit(s). Conversely, 

as the complexity increases and the set of core bits becomes larger or the environment becomes non 

stationary, organization develop different sets of rules. This is due to three different factors. First, the 

complexity of the overall landscape (the one combining together environment and action dimensions) 

generates multiple peaks and different organizations will move in the basin of attraction of different 

local optima depending upon random mutations of their rules. Second, there are many rules which 

generate the same or very similar behaviors and therefore have the same or very similar fitness. In 

other words, there is a good amount of neutrality in the selection landscape for rules  and there is a lot 

of neutrality in memory systems (see Jain and Kogut, 2014 and Marengo, 2014 for two recent papers 

that develop this argument). Third, and related, there is also a good amount of redundancy in a 

memory system: if the memory size constraint is not too binding a good number of rules are kept in 

memory (see below for details). Neutrality and redundancy are fundamental for the evolvability of the 

system i.e. its capacity to produce variation and novelty and therefore to adapt to environmental 
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changes. If, at each moment in time, memory contained only the specific rules optimally adapted to all 

and only the environmental situations experiences so far, then adaptation to new environmental 

conditions would be more difficult as the organization would find itself in a competency trap 

(Levinthal and March, 1993). 

 

Third, we explored the impact of different memory sizes. Broadly speaking, “more memory is 

better” for organizational performances, as long as the fitness landscape does not change or changes 

gradually. This does not hold under frequent environmental shocks: in these circumstances, memory is 

associated with the competence traps highlighted by Levitt and March (1988) and Gavetti and 

Levinthal (2000). A more effective evolutionary strategy is to unlearn, that is to erase the memory of 

cognitive frames and routines which were successful in the past but tend to hinder adaptation under the 

new landscape. 

Fourth, somewhat counter-intuitively, above a certain (quite high) threshold of environmental 

and problem-solving complexity and under repeated and massive environmental shocks, an effective 

evolutionary strategy returns to the remembrance of what we call robust interpretative categories and 

robust routines  which yield satisficing outcomes across an array of (imperfectly understood) and 

changing environments.  

Throughout this work we have focused on business organizations. However, the foregoing 

analytical framework is equally apt to represent other institutional forms, including public institutions. 

In such case a good deal of the “if’s” are of course ideologies and “political visions” while a good part 

of the “then’s” are executive routines. Indeed, it is plausible that the features of path-dependence and 

inefficient lock-in identified above are likely to be strengthened in such political contexts, generally 

characterized by high environmental complexity, opaque causal links and blurred landscapes over 

which policies and administrative behaviours are tested.
9
  

Needless to say, there are plenty of exploratory directions ahead. A straightforward one entails 

the “opening up” of the organization in sub-units which learn partly independently from each other 

                                                 
9
 As known, “administrative behaviour” is also the title of the seminal work by Herbert Simon (cf. Simon, 1997) 

in whose tradition the resent work is firmly rooted (see also March and Simon 1993, March et al. 2000). 
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and store different pieces of the overall “memory of the organization”. This is generally the case of 

business organizations, and even more so of political institutions and public policies whereby the 

“if’s” and “then’s” are generally controlled and activated by different groups of agents, so that policy 

makers need to affect in coordinated manners both the if’s and the then’s. 

A second but related venue of research regards the explicit introduction of authority and power. 

We begin doing that in Dosi and Marengo (2015), but there is a long way to go in order to fully model 

the power dimension in all types of economic and political organizations.  

Consider the foregoing model as a first exploratory but, in our view, promising template of a 

family of models trying to capture the co-evolution of “organizational cognition” and organizational 

routines in changing environments.    
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