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1 Introduction

Opinions are an important determinant of economic behavior, as they cru-
cially affect the decisions of individual market participants. But how are
opinions formed? Social learning plays a key role for opinion formation.
Individuals update their opinions by observing the behavior of others and,
above all, by communicating with the individuals they are connected to in
their social network, such as family members, friends and colleagues. It is
therefore important to understand how the structure of social relationships
affects opinion dynamics.1 This paper provides a theoretical and empirical
investigation of boundedly rational opinion formation in social networks.

The economic literature has recently paid increasing attention to opinion
dynamics in social networks (see, e.g., Jackson and Yariv, 2010, Acemoglu
and Ozdaglar, 2011, for comprehensive reviews). Two main approaches can
be identified. A first group of studies focuses on Bayesian updating, under
the assumption that agents optimally process the information about the net-
work structure and the probability distribution of the signals observed by
other agents (e.g., Gale and Kariv, 2003, Acemoglu et al., 2011, Acemoglu
et al., 2014). Since Bayesian updating is generally characterized by high
computational complexity, even under complete information, a second group
of studies focuses on boundedly rational updating rules. These works gener-
ally consider simple and plausible protocols for belief updating, investigating
the role played by the structure of the social network for the convergence of
opinions, the efficient aggregation of information, and the social influence of
individual agents.

The most common approach to boundedly rational opinion formation
is based on the seminal model by DeGroot (1974), whereby agents update
their opinion by taking an average of their neighbors’ opinions.2 This ba-
sic framework has been widely adopted and extended, explicitly assuming
a communication network and modelling opinions as point estimates rather
than probability distributions (e.g., Bala and Goyal, 1998, Golub and Jack-
son, 2010, Möbius et al., 2010, Jadbabaie et al., 2012, Buechel et al., 2014).
In a prominent paper, DeMarzo et al. (2003) start from a general model in
which updating weights can differ among neighbors and change over time, to

1Understanding opinion dynamics in social networks has become even more relevant
with the recent advent of communication technologies, such as Facebook and Twitter, that
provide explicit representations of the previously implicit network of connections.

2DeGroot (1974) does not explicitly refer to a network environment (as French, 1956,
and Harary, 1959, do in their studies on social power, later generalized by Friedkin and
Johnsen, 1990), since all agents can communicate with all other agents. However, each
individual places given weights on the opinions of others, so that the weights implicitly
define a network. These weights, which are constant over time, determine the evolution
and possible convergence of opinions.
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then focus on the case in which individuals place constant and equal weights
on all neighbors. In this framework, failing to account for repetitions of in-
formation leads to persuasion bias : after repeated communication, opinions
converge to a consensus that is biased towards the initial beliefs of the most
influential (i.e., better connected) individuals.3 In this setting, agents’ social
influence depends on their position in the network and, more specifically, on
being listened to, directly or indirectly, by many other agents.

In a recent paper, Corazzini et al. (2012) present an experimental investi-
gation of persuasion bias in communication networks. Their results indicate
that the structure of the network matters for social influence. More specif-
ically, social influence is found to depend not only on being listened to by
many others, consistent with persuasion bias, but also on listening to many
others. In order to explain this finding, they propose a generalized boundedly
rational updating rule according to which individuals place higher weight on
the opinion of neighbors who have more sources of information. In this frame-
work, the social influence of an agent can be positively affected by both her
outdegree (the number of outgoing links) and her indegree (the number of
incoming links), a feature referred to as “influential listeners”.

It should be observed that Corazzini et al. (2012) proposed their gener-
alized boundedly rational updating rule as an ex post interpretation of the
results of an experiment aimed at testing persuasion bias, as predicted by
DeMarzo et al. (2003). Since both outgoing and incoming links of the rele-
vant nodes change at the same time, their experiment does not provide a test
of a causal indegree effect, but only evidence consistent with it. In addition,
despite providing a simple and plausible generalization, the influential lis-
teners updating rule was proposed without an explicit characterization of its
properties, such as convergence to a consensus (do individuals end up shar-
ing the same opinion?) and efficiency (does such shared opinion optimally
aggregate available information?). Therefore, building on Corazzini et al.
(2012), the contribution of this paper is twofold.

First, we study theoretically the class of linear updating models and,
in particular, the model proposed by Corazzini et al. (2012), as a simple
generalization of the updating rule in DeMarzo et al. (2003). We obtain
some positive and negative results on the feasibility of optimal rules of thumb,
and characterize the way in which efficiency depends on the topology of the
underlying network. We show that, in balanced networks (i.e., with indegree
equal to outdegree for each node), placing higher weight on neighbors with
higher indegree is less efficient than placing equal weights on all neighbors.
On the other hand, in unbalanced networks it is generally more efficient
to place higher weight on neighbors with higher indegree, and there exist

3See DellaVigna and Gentzkow (2010) for a recent survey of the evidence on persuasive
communication.
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networks in which it is optimal to place arbitrarily high weight on agents
with higher indegree.

Second, we present a laboratory experiment explicitly designed to test the
causal effect of indegree on social influence. The structure of the directed
network used in the experiment allows us to manipulate the indegree of the
relevant nodes while keeping constant their outdegree, providing a clean test
of the causal effect of indegree on opinion formation. Differently from previ-
ous experimental works, by comparing the social influence of different nodes
we are able to test the null hypothesis that opinions are updated by aver-
aging neighbors’ opinions with equal weights, against the alternative that
updating weights positively depend on neighbors’ indegree. We find strong
evidence of a causal indegree effect on opinion formation: the social influence
of an agent is positively and significantly affected by the number of individ-
uals she listens to. This is an important finding, as it indicates that, when
forming their opinions, agents explicitly take into account the structure of
their communication network, although only to a limited extent.

The remainder of the paper is structured as follows. Section 2 presents
the theory (technical details are in Appendix A). Section 3 describes the
experimental design (experimental instructions are in Appendix B). Section
4 provides the experimental results. Section 5 concludes with a discussion of
the key findings.

2 Theoretical Framework

Following DeMarzo et al. (2003), consider a setting where a setN = {1, ..., n}
of agents, communicating within a social network, want to estimate some
unknown state of the world represented by the parameter θ ∈ R. Each agent
starts with some initial information xi (henceforth referred to as a signal)
about θ. For simplicity, we assume that xi = θ + εi, with εi ∼ N(0, σ2)
independent across agents. The structure of the network is represented as
a directed graph with adjacency matrix q, where qij = 1 if agent i listens
to agent j, and 0 otherwise (we assume qii = 1 for every i).4 We denote as
S(i) ⊂ N the listening set of an individual i, that is, j ∈ S(i) ⇐⇒ qij = 1.
Communication takes place in discrete time: at each t ≥ 0, agents report
their current belief to their neighbors. Defining the vector of initial beliefs as
y0 = x, we assume that, for each t ≥ 0, agent i updates her belief according
to an updating rule

4Notice that in the graphical representations of networks presented below, an arrow
from i to j means that agent i talks to (rather than listens to) agent j, that is, qji = 1.
This is different from standard convention, but consistent with the direction of information
flows and with the instructions of the experiment presented in Section 3.
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yt+1
i = fi(y

t
i1
, . . . , ytiK )

where i1, . . . , iK are the agents in i’s listening set S(i), including i. Once
the network structure q, the updating rules f1, . . . , fn, and the initial signals
x are determined, the evolution of opinions is obtained. Given an agent i, if
y∞i = limt→∞ yti exists, it will be referred to as her convergence or asymptotic
belief. In what follows, we will be particularly interested in the case in which
convergence beliefs exist and coincide for all i: if this is the case, we will refer
to such limit as the consensus belief, and denote it simply as y∞.

The foundations for this framework were laid by DeGroot (1974), who
considers the case in which “opinions” are probability distributions rather
than real numbers and f is linear (in that context, S(i) corresponds to
{1, . . . , n}):

yt+1
i =

∑

j∈S(i)

πijy
t
j. (1)

where πij is a constant representing the weight placed by agent i on agent
j. DeMarzo et al. (2003), following the studies on social power by French
(1956) and Harary (1959), introduce an exogenously given network structure,
and analyze in detail the specific updating rule

yt+1
i =

∑

j∈S(i)

ytj

|S(i)| . (2)

One key feature of the updating rule in (2) is that agents do not take
into account the entire structure of the network: they update their opinion
by averaging all the opinions they get to know. While the rationale for this
rule is its simplicity, the fact that individuals place the same weight on all
neighbors rules out the possibility of placing higher weight on the opinions
of some, possibly more informed, individuals. Consider instead a generalized
boundedly rational (henceforth GBR) updating rule that is still linear, but
with weights defined as follows:

πij =
qijd

ρ
j

∑

h qihd
ρ
h

(3)

where dj is agent j’s indegree (dj = |S(j)| − 1) and ρ ∈ [0,∞) is a
fixed parameter. This rule, which was first introduced by Corazzini et al.
(2012), provides a simple generalization of the updating rule in (2), while
incorporating plausible and interesting features. Intuitively, when weighing
the opinions of neighbors, agents attribute relatively more importance to
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those neighbors who have more direct sources of information, i.e., neighbors
with higher indegree.5 To illustrate, let us consider some examples.

When ρ = 0,

πij =
qij

∑

h qih
=

qij

|S(i)| ,

we obtain the updating rule in equation (2), as in DeMarzo et al. (2003):
agents update their opinions placing equal weights on all neighbors.

When ρ = 1,

yt+1
i =

∑n

j=1 qijdjy
t
j

∑n

j=1 qijdj
, (4)

the opinion of each neighbor is weighted proportionally to her indegree.
In the limit case ρ → ∞,

yt+1
i =

∑

j∈argmaxh qihdh

ytj

| argmaxh qihdh|
, (5)

each agent only listens to the individual(s) with maximum indegree in her
listening set.

DeMarzo et al. (2003) show that in a strongly connected network, i.e. in
which every agent can communicate directly or indirectly with every other
agent,6 any linear updating rule such that πij > 0 whenever qij > 0 guar-
antees convergence to a consensus belief.7 This implies that, in our setting,
convergence is ensured for any ρ ∈ [0,∞).8 Moreover, if we rewrite equation
(1) in matrix form as yt+1 = Πyt, the vector of consensus beliefs ȳ∞ must
satisfy the condition

ȳ∞ = Πȳ∞. (6)

5It is also possible to consider a further generalization of the GBR rule, with updating
weights that are both positively related to neighbors’ indegree and negatively related to
neighbors’ outdegree (we thank an anonymous reviewer for this point). Although this neg-
ative outdegree effect can help to offset persuasion bias, it is harder to justify on behavioral
grounds. While it is plausible that agents place higher weights on more informed neigh-
bors, placing lower weights on neighbors who talk to many other agents is less plausible,
as it requires a higher degree of sophistication.

6Formally, a network is strongly connected if for every pair of nodes i, j, it contains a
path from i to j.

7This is an application of their Theorem 1, in the special case where weights sum up
to 1 and are constant over time.

8Theorem 1 by DeMarzo et al. (2003) does not apply to the limit case ρ → ∞, since
some neighbors can be attributed weights πij = 0. Indeed, the assumption of positive
weights cannot be dispensed with, as illustrated by the simple network with four nodes
and S(A) = {B,D}, S(B) = {A}, S(C) = {B,D}, S(D) = {C}: agents A and C, who
have maximum indegree and are not directly connected, will never change their own beliefs
and therefore, assuming their initial signals differ, agreement will not be reached.
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i.e. y∞ is a right eigenvector of Π, with eigenvalue 1. DeMarzo et al.
(2003) also show that y∞ can be written as a weighted sum of the initial
signals:

y∞ =
n∑

i=1

wixi, (7)

with w being the unique (normalized) solution to

wΠ = w. (8)

If we consider Π as the adjacency matrix of a weighted network, equation
(8) can be interpreted as stating that the social influence wi of individual i
corresponds to her eigenvector centrality (Bonacich, 1972, Jackson, 2010).

Under the GBR updating rule, provided ρ is not too large, social influence
is positively related to outdegree (see Appendix A, Theorem A1): as in
DeMarzo et al. (2003), an agent has higher influence if she is listened to by
more agents. The relation between indegree and social influence results from
the combination of two opposite effects, whose relative importance depends
on the value of ρ. Intuitively, a higher indegree implies lower self-importance
when updating opinions, thus decreasing social influence. On the other hand,
for ρ > 0, a higher indegree implies receiving a higher weight in others’ (and
own) opinions, thus increasing social influence. The larger ρ, the more likely
it is that the latter effect prevails and the overall effect of indegree on social
influence is positive (see Appendix A, Theorem A2). Therefore, whereas
for ρ = 0 social influence is related positively to outdegree and negatively to
indegree, for sufficiently large values of ρ, social influence is positively related
to both outdegree and indegree.

Let us now consider whether consensus beliefs are correct, in the sense of
being optimal aggregates of agents’ initial information. Given that all signals
are equally informative, the consensus belief is correct if wi =

1
n
∀i, i.e.

y∞ =

∑n

i=1 xi

n
= x̄. (9)

Different updating rules can therefore be compared by using the following
measure of efficiency:

E = −
n∑

i=1

(

wi −
1

n

)2

(10)

where E = 0 if consensus beliefs are correct, while E < 0 otherwise
(notice E ∈ (−1, 0]).9

9For a given choice of x1, . . . , xn, let δ = y∞ − x̄. Maximizing efficiency corresponds
to minimizing |δ|. In order to define an absolute measure of efficiency, we observe that

7



DeMarzo et al. (2003) analyzed the GBR rule under the restriction ρ = 0,
showing that it will not, in general, lead to a correct consensus in most
network structures, as more connected agents have excessive social influence.
When ρ > 0, the GBR rule does not always neutralize such inefficiency: while
it may lead to a consensus which is closer to the correct one than for ρ = 0,
this is not always the case. We thus start by asking, more generally, whether
there exist rules of thumb that lead to correct beliefs for any given network
structure. The answer is provided by the following two theorems.

Theorem 1 Given any strongly connected network Ḡ, there exists a linear
updating rule FḠ which guarantees convergence to the correct consensus.

Proof. See Appendix A.

Definition 1 A linear updating rule is local if the weights applied by some
agent i are only determined depending on a subnetwork of limited diameter
around i.

An implicit requirement for a “rule of thumb” is that it should not involve
extended or complex computations: hence, subjects who are part of large
networks will only be assumed to consider a limited subnetwork around them
in order to decide what updating weights to adopt, rather than processing
the entire network structure. This makes the following result particularly
interesting.

Theorem 2 Given any local, linear updating rule F̄ , there exists a strongly
connected network GF̄ on which F̄ does not guarantee convergence to the
correct consensus.

Proof. See Appendix A.

While the result in Theorem 1 is positive, stating that for any given
network it is possible to find an optimal linear rule,10 Theorem 2 ends the
quest for the “perfect” rule of thumb: linear rules cannot at the same time be

δ is a linear combination of the initial deviations xi − x̄ with the elements of the vector
∆w = (w1− 1

n
, . . . , wn− 1

n
) as coefficients. E is, up to a strictly monotonic transformation,

the norm of ∆w. The specific transformation applied (f(x) = −(x2)) is irrelevant, since
E only has an ordinal interpretation.

10It is interesting to consider a constructive proof of Theorem 1: an algorithm which
for any given network Ḡ finds a linear rule which is efficient over it. Such an algorithm
is described in Example 1 of Appendix A, and is based on the existence of a closed path
pn passing through all nodes of the network (possibly more than once). Indeed, it clearly
does not qualify as a “rule of thumb”: in particular, the choice of pn requires significant
ex-ante coordination among agents.
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simple and guarantee convergence to the correct consensus for any network
structure, since finding optimal linear rules may require arbitrarily complex
calculations.

Focusing on the GBR updating rule, for a given value of ρ its efficiency will
depend in a complex way on the topology of the network. In the following, we
will study this relationship by focusing on some relevant classes of networks
where the GBR rule displays particular features in terms of efficiency. We
will denote as Eρ(G) the efficiency of the GBR rule when implemented over
a network G with the given value of ρ, and as ρ∗(G) the value of ρ that
maximizes Eρ(G) (when this value is unique). In all cases, it will be assumed
that networks are strongly connected.

Let us define two nodes (j, k) as equivalent if, after switching their labels,
it is possible to arrange the other labels of the network in order to obtain an
exact copy of the original network. In other words, two nodes are equivalent
if the network structure around them is identical. Then, we can provide the
following definitions:

Definition 2 A network structure is anonymous if all nodes are equiva-
lent.11

Definition 3 A belief updating rule F is anonymous if all fi are symmetric
in arguments ytj and ytk, for any pair of equivalent nodes j, k 6= i.

In other words, a rule F is anonymous if the labels of agents do not play
any role. This is a basic condition for an analytical study of how the network
topology affects opinion aggregation: it guarantees that simply relabeling
the same network structure in a different way will not affect the dynamics
of beliefs. The two definitions provided above allow us to state the following
result, which generalizes Theorems 1 and 2 in French (1956),12 as well as
Theorem 9 in Harary (1959).

Theorem 3 In any given anonymous, strongly connected network G, if all
agents play the same linear anonymous updating rule,

1. The beliefs in each period are uniquely determined by π11, . . . , πnn, the
self attributed weights,

11This is stronger than the concept of regular graph, which only considers the degree
of vertices (rather than their position in the network), and corresponds instead to the
concept of “automorphic group” employed by Harary (1959).

12While Theorem 2 by French (1956) is indeed a special case of our Theorem 3, his
Theorem 1 additionally states that on complete networks, the consensus belief is reached
in one step.
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2. The asymptotic consensus beliefs are correct: w =
(
1
n
, . . . , 1

n

)
.13

Proof. See Appendix A.

Since the GBR updating rule is both linear and anonymous, a direct con-
sequence of Theorem 3 is that, in an anonymous strongly connected network,
opinions will converge to the true average of signals for any choice of ρ. For
an example, see Figure 1, displaying a complete network with four nodes:
since the value of ρ is irrelevant, the efficiency of the GBR rule is constant.
More specifically, since the consensus belief is correct, the efficiency is always
equal to the maximum (i.e. 0).

Figure 1: An anonymous complete network
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The requirement of anonymity of a network is a very strong one. In fact,
the class of networks on which the GBR rule will perform identically for any
given ρ > 0 is significantly larger than that of anonymous ones. To see this,
notice that on any regular network,14 independently of ρ, each agent will
attribute the same importance to the opinion of each neighbor, since all of
them will have the same indegree. Interestingly, the regularity of the network
is also a necessary condition for ρ to be irrelevant, as stated in the following
theorem.

Theorem 4 On a strongly connected network G, the convergence belief and
social weights obtained under a GBR rule with given ρ > 0 coincide with the
ones obtained under ρ = 0 if and only if G is regular.

13One may wonder if anonymity or linearity alone is a sufficient requirement for this
theorem to hold. The answer is negative: two counter-examples are given, respectively,
by the rules “weigh the opinion coming from the highest labeled neighbor as much as the
average of all others” (which is linear but not anonymous) and “weigh the highest opinion
coming from the neighbors as much as the average of all others” (which is anonymous but
not linear).

14A directed network is regular if all nodes have the same indegree and outdegree (the
two must necessarily coincide).
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Proof. See Appendix A.

Theorems 3 and 4 suggest that, for specific classes of networks, the GBR
rule may be redundant: in the first case, because in anonymous networks
any anonymous rule is equivalent, and in the second case because in regular
networks the value of ρ is irrelevant. The results that follow characterize
wider classes of networks in which the GBR rule has instead non-trivial
implications. We first focus on balanced networks.

Definition 4 A network is balanced if each node has indegree equal to out-
degree.15

Notice the inclusion hierarchy of the classes defined so far: all anonymous
networks are regular, and all regular networks are balanced. In addition to
that, the class of balanced networks also includes all undirected networks,
that is, such that qij = qji for all i, j.

In balanced networks, as shown below, the value of ρ begins to matter.

Theorem 5 On any given balanced, strongly connected network G, there is
no ρ > 0 which makes the GBR rule more efficient than ρ = 0.

The proof is in Appendix A, but it can be interesting to consider an
intuitive explanation. In this class of networks, the problem of persuasion
bias is attenuated. Although it is present in the first period, in the long
run agents with higher outdegree exploit their influence to convey richer
information, since they also have higher indegree. Intuitively, their belief
has higher weight, but their own initial opinion gets diluted in their belief.
This does not occur when ρ > 0, which causes agents with higher outdegree
to place even higher weight on their own signal.

Together with Theorem 4, Theorem 5 establishes that on all networks
which are balanced, strongly connected but not regular, any ρ > 0 makes
the GBR rule strictly less efficient than with ρ = 0. As an example, consider
the network structure in Figure 2. While it is not anonymous (nodes B

and D are identical, but they differ from nodes A and C), it shares with
the complete network the feature of being undirected, and hence balanced.
Figure 2 also shows that the optimal value of ρ is 0. Notice that Theorem
5 only holds asymptotically: it is easy to provide counter-examples in finite
time, by replacing in the definition of efficiency (equation 10) the weights wi

with those calculated after a finite number of periods.

15This definition is adopted from Olfati-Saber and Murray (2004). It is more general
than the ones used by Corazzini et al. (2012) and DeMarzo et al. (2003), and corresponds to
the concept of isograph used in graph theory. In particular, all weakly connected isographs
are strongly connected and are also referred to as Eulerian digraphs (see Sridharan and
Parthasarathy, 1972).
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Figure 2: An undirected, and hence balanced, network
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More importantly for our purposes, outside this specific class of networks
things can change radically. The network presented in Figure 3, which is
the one used in the experiment presented in Section 3, is unbalanced and
characterized by an optimal value of ρ that is positive (0.04). For higher
values of ρ, the social influence of B, who has a higher indegree than D,
increases, while the one of D decreases. The following result shows that, by
introducing even a small level of “unbalancedness” in an anonymous network,
the optimal level of ρ becomes positive.

Theorem 6 Given any regular network G and i, j, h such that qij = 1 and
qhj = 0, let G ′ be the result of setting qij = 0 and qhj = 1. If G ′ is strongly
connected, ρ∗(G ′) > 0.

Proof. See Appendix A.

Figure 3: The network used in the experiment
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We already know from Theorem 3 that in a regular network, the coun-
terbalancing action of the GBR rule is null. This result states that if instead
we introduce even a minimal element of unbalancedness (in G ′, the indegree
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of node i is decreased by 1, in favor of h), a strictly positive ρ will allow to
recover at least some of the lost efficiency. The following theorem states that
no value of ρ is in principle “too high”.

Theorem 7 Given any ρ̄ ∈ [0,∞), there exists a strongly connected network
Ḡ such that ρ∗(Ḡ) > ρ̄.

Proof. See Appendix A.

In short, our results for the generalized boundedly rational updating rule
can be summarized as follows. In regular networks, the value of ρ is irrele-
vant, and in balanced, non-regular networks, a positive value of ρ decreases
efficiency. If a network is unbalanced, however, placing a higher weight on
neighbors with higher indegree can lead to recover some of the efficiency loss,
and there exist networks in which the optimal value of ρ is arbitrarily high.
Hence, the key feature of the GBR updating rule, that individuals may place
higher weight on the opinions of more informed neighbors, is not only be-
haviorally plausible, but also generally efficient in unbalanced networks. In
order to assess the empirical validity of the GBR rule, in the next Section
we present an experimental test of the causal effect of indegree on opinion
dynamics and social influence.

3 Experimental Design

The experiment is designed to test the effects of agents’ position in a commu-
nication network on their social influence. More specifically, our experimental
design allows us to manipulate agents’ indegree without affecting their outde-
gree and the corresponding eigenvector centrality. Therefore, it enables us to
provide a clean test of the effect of indegree on social influence, as predicted
by the generalized boundedly rational updating rule studied in Section 2,
that would be absent under either Bayesian updating or boundedly rational
updating à la DeMarzo et al. (2003).

3.1 Task

At the beginning of the experimental task, individuals are anonymously
matched in groups of four. In each group, subjects are connected through a
communication network, and each subject is assigned a label (A, B, C, D)
that defines her position in the network. Each subject is assigned an integer
number randomly drawn from a normal distribution, henceforth referred to
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as a signal, denoted with xA, xB, xC , xD, respectively.
16 The task is based on

a discrete time setting over 8 rounds. In each round the subjects are asked
to guess the average x̄ = xA+xB+xC+xD

4
of the four signals in their group. The

choice of replacing the population mean (θ) with the sample mean (x̄) in the
experimental setting is made to simplify the task, as it allows subjects to
concentrate on aggregation of information rather than statistical inference.

In order to be able to update their beliefs, at the beginning of each round
subjects receive information from the group members they are connected to.
More specifically, at time t each individual is informed about the guesses
at time t − 1 of the other group members connected to her (the network
structure, that defines who receives information from whom, is described in
the next subsection). Therefore, while in the first round subjects only directly
know their own signal, over successive rounds they directly or indirectly
receive information about the signals received by the other group members.
If all four group members optimally process the information they receive,
over successive rounds each of them can correctly guess x̄.

The mechanism for eliciting beliefs is as follows: each individual is in-
formed that at the end of the session, one round will be randomly extracted
to determine earnings. Given the guess y∗ of the individual in that round,
and the average of the signals in the group (x̄), the individual’s payoff is
15 euro minus the absolute difference between y∗ and x̄, in addition to a
show-up fee of 5 euros. This implies that individuals have an incentive to
report in each round their best guess for the group average. We adopt an
absolute deviation scoring rule for three reasons. First, a quadratic scoring
rule, commonly used for belief elicitation, would substantially complicate the
calculation of payoffs, hence increasing the likelihood of mistakes due to mis-
comprehensions. Second, for a given average gain, a quadratic scoring rule
would increase the likelihood of earning very small payoffs, thus adversely
affecting the incentive to exert effort in the task. Third, given normality of
signals, our setting is perfectly symmetric, so that the median of the poste-
rior’s distribution coincides with the mean, and although we cannot directly
control subjective probability distributions, we can test ex post for systematic
biases in expressed beliefs. In addition, experimental subjects were explicitly
instructed to update their beliefs by averaging all known and inferred signals,
and control questions indicated that this instruction was clearly understood.

16The four signals for each group/phase were extracted as follows. An integer number θ
was extracted from a uniform distribution in a range between 200 and 800. Four positive
integers were then randomly drawn from a normal distribution with mean θ and variance
100. The signals ranged between 219 and 790.
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3.2 Treatments

Figure 4 describes the strongly connected directed network structure we use
in the experiment. The number of nodes is small in order to provide a simple
setting for the experimental subjects, but at the same time sufficiently large
to imply interesting opinion dynamics. The network structure implies that
A is informed about past beliefs of C, B is informed about past beliefs of A
and D, C is informed about past beliefs of B and D, while D is informed
about past beliefs of B. The indegree and outdegree of the four nodes are
A = (1, 1), B = (2, 2), C = (2, 1), D = (1, 2), respectively. The reason for
choosing this specific network structure is that, as explained below, it allows
us to cleanly test the key hypotheses of the experiment.

Figure 4: Structure of the communication network

A B

CD

The treatment variable is the node that the subject is assigned to within
the network. The four treatments (nodes A, B, C and D) are implemented in
a within-subjects design. This means that, in an experimental session, each
subject performs the task four times, thus taking part in four subsequent
phases of 8 rounds (32 rounds overall). In each of the four phases, each
subject is randomly assigned to a different node (position) in the network.
Therefore, within a session, each individual is assigned to each node in exactly
one of the four phases.17 Subjects receive a different set of signals at the
beginning of each phase, while the composition of the groups is unchanged
throughout the four phases.

Since we aim at assessing if and how agents’ social influence is affected
by their position in the network, it is important to control for the possible
confounding effects of the labels attached to each node (A, B, C, D) and
of subjects’ visual location in the network (upper left, upper right, bottom

17It should be noted that our within-subjects design, where the treatment variable is the
node that the subject is assigned to within the social network, allows us to compare the
social influence of agents at different nodes while eliminating the effects of individual-level
heterogeneity in updating.
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left, bottom right). It is possible, for instance, that subjects tend to give
more importance (higher weight) to nodes denoted by letters that come first
in the alphabet (e.g. A vs D). Similarly, subjects might tend to give more
importance to nodes located in the top-left of the network visual display, as
opposed to the bottom-right. In order to control for such spurious effects, we
implemented the four treatments in each of four sessions keeping constant the
networks structure, while changing in each session the spatial position of the
nodes, as detailed in Figure 5.18 The same four sets of signals were used in
each of the four sessions. Therefore, by implementing the four network nodes
with all possible labels and visual locations, while keeping signals constant,
we were able to control for any possible confounding effects and cleanly iden-
tify the causal effects of network structure. In what follows, unless otherwise
stated, we will refer to the four network nodes using the labels of session 1.
This means that nodes from sessions 2 to 4 are implicitly relabeled so that
they are topologically the same as in session 1.

Figure 5: Network structure, by session

Session 1
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CD
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Session 3
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3.3 Hypotheses

Consider the network structure in Figure 4. As detailed in Table 1, there
exists a set of strategies that allows each of the four network members to find
out x̄ in just four rounds. Indeed, there exist several possible combinations
of strategies that result in correct beliefs. With such optimal strategies,
the four agents have equal social influence weights in consensus beliefs, i.e.
w = w∗ = [0.25, 0.25, 0.25, 0.25].

Let us now consider the predictions for the GBR updating rule described
in equations (1) and (3). Figure 6 shows how the social influence weights
for each of the four network nodes change as a function of ρ. When ρ = 0,
agents B and D are the most influential. This, loosely speaking, reflects
the fact that both B and D have an outdegree of 2, while A and C have
an outdegree of 1: the agents who are listened to by more other agents are

18This means that, for instance, the node that has label B and upper-right position in
session 1, has then label D and bottom-left position in session 2, label C and bottom-right
position in session 3, label A and upper-left position in session 4, respectively.

16



Table 1: Optimal strategies for each network position, by round

Round A B C D

1 xA xB xC xD

2
xA+y1C

2

xB+y1A+y1D
3

xC+y1B+y1D
3

xD+y1B
2

3
xA+3y2C

4

xB+2y2A+y1D
4

xC+3y2B
4

xD+3y2B−y1D
3

4 yt−1
A yt−1

B yt−1
C

xD+4y3B−y1D
4

≥ 5 yt−1
A yt−1

B yt−1
C yt−1

D

Note: agents’ positions in column headings refer to the network structure displayed in

Figure 4.

the most influential.19 Also note that A is relatively more influential than
C. This reflects indirect social influence, as A communicates to B, who is
one of the two most influential subjects, while C communicates to A. For
ρ > 0, the pattern of social influence weights also reflects agents’ indegree.
In particular, as ρ increases, B becomes progressively more influential, while
the weights of the other three agents decrease.

Figure 6: Social influence weights as a function of ρ
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To summarize, Table 2 compares point predictions of social influence
weights for ρ = 0, ρ = 1 and ρ → ∞. When ρ = 0, as in DeMarzo et al.

19Note that B and D have exactly the same weight since they communicate to the same
individuals (C and each other) and, while the link from A to B implies that the latter
is placing a lower weight ( 1

3
rather than 1

2
) on her own belief, she is hence placing lower

weight also on the information coming from D.
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(2003), B and D have equal social influence weights, similarly to the case of
Bayesian updating. When ρ = 1, so that agents update their beliefs using
weights that are proportional to indegree, B is the most influential agent.
Finally, when ρ → ∞, consensus beliefs tend to agent B’s initial opinion.

Table 2: Predictions for social influence weights for different values of ρ

wA wB wC wD

ρ = 0 0.21 0.32 0.16 0.32
ρ = 1 0.18 0.39 0.18 0.26
ρ → ∞ 0.00 1.00 0.00 0.00

Note: the predictions refer to the updating rule described in equations (1) and (3) for

the network structure displayed in Figure 4.

The pattern described in Figure 6 and Table 2 provides the predictions
tested in the experiment. We start by testing the hypothesis that agents
optimally update their beliefs. Empirically, the null hypothesis is that all
nodes have equal weights in consensus beliefs:

H0 : wA = wB = wC = wD = 0.25 (H1)

Note that this is a general test of Bayesian updating versus an unspecified
alternative. In order to test against the specific alternative of the generalized
boundedly rational updating rule, we focus on pair-wise differences between
individual weights. More specifically, as shown in Figure 6, the updating rule
predicts that, for any ρ ≥ 0, an agent in node B is more influential than
in either A or C. Conversely, for all other pair-wise comparisons between
nodes, the sign of the difference between weights is not independent of ρ.
Therefore, the relevant one-sided hypotheses can be stated as follows:

H0 : wB ≤ wA vs H1: wB > wA (H2)

H0 : wB ≤ wC vs H1: wB > wC (H3)

Finally, we test our key hypothesis about the effect of indegree on social
influence. For ρ = 0, similarly to the case of Bayesian updating, the GBR
updating rule predicts wB = wD. On the other hand, for ρ > 0, the GBR

rule predicts wB > wD (see Figure 6). We can thus test the effect of
indegree on social influence by comparing the social influence weights of
agents B and D:

H0 : wB ≤ wD vs H1: wB > wD (H4)
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3.4 Procedures

The experiment was conducted in the Experimental Economics Lab of the
University of Milan Bicocca between January and March 2013, with 24 sub-
jects participating in each of the four sessions (96 in total). Subjects were
undergraduate students, recruited by email through an online system. The
experiment was ran using z-Tree (Fischbacher, 2007). Subjects on average
earned 7.7 euro (earnings were strictly positive for 63 participants out of 96),
plus the show-up fee of 5 euro, for sessions lasting approximately 80 minutes,
including time for instructions, control questions and payments.

Each session consisted of four eight-round phases. Subjects were informed
that signals and network positions would be randomly determined at the
beginning of each phase, while the composition of the groups would remain
unchanged throughout the session. Subjects were only informed that the
signals would be integer numbers randomly drawn by the system.

All the experimental instructions, reported in Appendix B, were provided
to the participants in written form, and also read aloud at the beginning of
the session. Individuals were then asked to answer some control questions.
Each participant had the possibility to take notes and make calculations on
paper, and also to use an on-screen calculator. Moreover, in each round,
the screen reported all the information available (own past guesses and past
guesses of neighbors since the beginning of the phase), in order to guarantee
perfect recall.

The instructions explicitly suggested that, had an individual known with
certainty a subset of the signals for her group, her optimal strategy was
to report their average. This, together with the fact that individuals had
to target the average of four specific numbers (rather than the mean of an
underlying distribution of signals) helped us to minimize mistakes caused by
inappropriate statistical inference, thus ensuring that individuals could focus
on the process of information aggregation.

4 Results

In each of the four sessions, the experimental task was implemented by 24
subjects over 8 rounds in four different phases (32 rounds in total), resulting
in 384 observations for each round (24 subjects × 4 sessions × 4 phases)
and 3072 observations in total. Overall, although there was substantial het-
erogeneity at individual and group level, subjects generally showed to have
clearly understood the experimental task. In the first round of each phase,
94.2 per cent of the subjects truthfully reported their own signal, while 96
per cent of the subjects reported a number within 10 units from their own
signal. In the final round of each phase, 24 per cent of the subjects correctly
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guessed the average of the four signals within their group and, accounting
for rounding errors, 55.5 per cent of the subjects reported beliefs within 10
units from the average of the four signals.

4.1 Tests of Hypotheses

In order to test hypotheses about the social influence weights of agents in
different network positions, we specify each agent’s final belief as a linear
combination of the initial signals of the four agents in her group:

yTi = µ+ wAxi,A + wBxi,B + wCxi,C + wDxi,D + εi (11)

where yTi is agent i’s belief in the last round (round 8) of each phase, xi,j

is the signal observed by agent j in i’s group, µ is a constant, wj is the social
influence weight of agent j, and εi is an idiosyncratic error term. Equation
(11) is estimated by OLS, under the constraint

∑

j wj = 1. The set of regres-
sors also includes sets of dummy variables for sessions and phases. In order
to take into account the dependence of observations belonging to the same
group within each session, standard errors are clustered by 24 independent
groups (there are 6 independent groups in each of the four sessions).

Table 3 presents the results. Since we are focusing on the final observation
from each of the four phases, the overall sample includes 384 individual obser-
vations. Column (1) reports estimates of social influence weights in absolute
terms, as in equation (11). The weights generally differ from 0.25, with a
pattern that is qualitatively consistent with the predictions of the GBR rule:
social influence is highest for node B and lowest for node C. The hypothesis
that all nodes have equal weight (wA = wB = wC = wD = 0.25), as predicted
under Bayesian updating, is strongly rejected by the data (p < 0.01).

Result 1: Bayesian updating is rejected by the data.

Focusing on pair-wise differences between weights (hypotheses H2-H3),
wB is higher than wC , consistent with the predictions of the generalized
boundedly rational rule, and the difference (+0.080) is strongly significant
(p < 0.01). Similarly, wB is higher than wA, although the difference (+0.026)
is not significant (p < 0.25).

Result 2: Pair-wise differences between social influence weights
are consistent with the GBR updating rule.

Turning to our key hypothesis about the role of indegree, we find that, as
predicted by the GBR rule in this network structure for ρ > 0, wB (0.294)
is higher than wD (0.224) and the difference is large and strongly significant
(p < 0.01). This leads us to reject the null hypothesis that ρ = 0.
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Table 3: Estimated social influence weights, overall

(1) (2)
Absolute weights Relative weights

Signal A 0.268*** 0.018
(0.031) (0.031)

Signal B 0.294*** 0.044***
(0.013) (0.013)

Signal C 0.214*** -0.036**
(0.017) (0.017)

Signal D 0.224*** -0.026
(0.023) (0.023)

Number of observations 384 384
Note: the table reports OLS estimates of social influence weights associated to the node

indicated by the row heading. The weights are expressed in absolute terms (column 1)

and as a difference from 0.25 (column 2), respectively. Dependent variable: individual

beliefs in final round. All specifications include full sets of session and phase dummies.

Standard errors clustered at group level reported in brackets. ***p< 0.01, **p< 0.05,

*p< 0.10.

Result 3: The social influence of an individual is positively af-
fected by the number of individuals she listens to.

This is an important finding, as it provides causal evidence that subjects
do not place equal weights on all their neighbors, but take into account
their neighbors’ indegree when aggregating the information they receive from
them. As a result, ceteris paribus, subjects with higher indegree ultimately
have higher social influence.

In order to shed light on these findings, column (2) reports differences of
social influence weights with respect to 0.25, obtained by expressing individ-
ual final-round beliefs as deviations from the average of the four group sig-
nals. The results indicate that wB is significantly higher than 0.25 (p < 0.01),
while wC is significantly lower than 0.25 (p < 0.02). On the other hand, wA

and wD are not significantly different from 0.25 (p < 0.29 and p < 0.13, re-
spectively, for the corresponding one-sided hypothesis). The findings for the
social influence weights of nodes B and D provide further evidence against
a simple updating rule where all neighbors receive equal weight.

4.2 Robustness

In order to assess the robustness of the results to the possible effects of
outliers, Table 4 reports estimates of (relative) social influence weights ob-
tained by eliminating from the sample the groups containing the 1%, 5%,
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or 10% most extreme observations. Potential outliers are identified by con-
sidering, for each group member, the difference between the reported be-
liefs and the ones predicted under Bayesian updating. This results in a
restricted sample size of 380, 364 and 344 observations, respectively. In
all cases, point estimates and test results are virtually unchanged relative
to the overall sample. The hypothesis that all nodes have equal weight
(wA = wB = wC = wD = 0.25) is strongly rejected by the data (p < 0.01).
The hypothesis that wB = wD is also strongly rejected in all cases. In-
deed, by eliminating potential outliers, the estimated weights are even more
closely consistent with the theoretical predictions of the GBR updating rule.
In column (3), for example, where the 10 per cent of the groups report-
ing the most extreme deviations from optimal predictions are excluded, the
estimated relative weights for the four nodes are 0.005, 0.053, −0.045 and
−0.012, respectively. In all cases, wB (wC) is significantly higher (lower) than
0.25.

Table 4: Social influence (relative weights), robustness

(1) (2) (3)
1 % 5 % 10 %

Signal A 0.013 0.019 0.005
(0.031) (0.032) (0.027)

Signal B 0.049*** 0.051*** 0.053***
(0.014) (0.015) (0.014)

Signal C -0.037** -0.045** -0.045***
(0.017) (0.018) (0.017)

Signal D -0.026 -0.024 -0.012
(0.023) (0.023) (0.017)

Number of observations 380 364 344
Note: the figures reported are estimates of social influence weights, as a difference from

0.25, associated to the subject in the position indicated by the row heading. Dependent

variable: individual beliefs in final round. All specifications include full sets of session

and phase dummies. Standard errors clustered at group level reported in brackets.

***p< 0.01, **p< 0.05, *p< 0.10. Columns (1) to (3): sample restricted by eliminating

groups with most extreme deviations from optimal beliefs (1%, 5%, 10%, respectively).

It should be observed that, although the variance of beliefs held by the
four group members falls steadily over successive rounds in all groups, dis-
agreement persists in many cases, so that beliefs do not converge to a consen-
sus in all cases. In order to assess the potential effects of non-convergence,
Table 5 presents estimates of relative social influence weights by individual
network position. Focusing on nodes B and D (columns 2 and 4), estimated
social influence weights are qualitatively unchanged with respect to the re-
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sults in Table 3: the relative weight of B is positive and significant, while it
is negative and significant for C. Agent D has a negative relative weight in
the final beliefs of agent A. Finally, relative social influence weights are not
different from zero for C.

Table 5: Social influence (relative weights), by node

(1) (2) (3) (4)
Node A Node B Node C Node D

Signal A 0.057 0.015 0.007 -0.009
(0.047) (0.037) (0.040) (0.066)

Signal B 0.038 0.057** 0.015 0.065**
(0.038) (0.024) (0.023) (0.026)

Signal C 0.013 -0.070** 0.024 -0.110***
(0.033) (0.027) (0.022) (0.035)

Signal D -0.109** -0.003 -0.045 0.053
(0.041) (0.025) (0.031) (0.048)

Number of observations 96 96 96 96
Note: the figures reported are estimates of the social influence weights, as a difference

from 0.25, associated to the subject in the position indicated by the row heading.

Dependent variable: individual beliefs in final round. All specifications include full sets

of session and phase dummies. Standard errors clustered at group level reported in

brackets. ***p< 0.01, **p< 0.05, *p< 0.10.

The results in Table 5 also indicate that agents at all nodes place higher
than average weight on their own signal (positive estimates along the main
diagonal). This raises the question of whether indegree is relevant beyond
the role of own signal. That is, whether the test results for H4 are driven by
agents at node B placing higher weight on their own signal than agents at
node D. We thus re-estimated equation (10) by allowing for the coefficients
to differ, at each node, between the two cases of own signal and others’ sig-
nal. The estimated absolute social influence weights of B and D are 0.316
and 0.258, respectively, for own signal, and their difference is not statistically
significant (p < 0.251). For others’ signal, the estimated weights of B and D

are 0.272 and 0.196, respectively, and their difference is instead strongly sig-
nificant (p < 0.001). This indicates that indegree matters for the importance
attributed to others’, rather than own, opinions.

Overall, these results indicate that the effects of network structure on
social influence reported in Section 4.1 are qualitatively and quantitatively
robust to the potential effects of outliers. In addition, they are qualita-
tively unaffected by the possible non-convergence of beliefs within individual
groups.
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4.3 Further Evidence

The experimental data also allow us to investigate the mechanisms underly-
ing the observed treatment effects on social influence weights, by looking at
how agents at specific nodes aggregate the information they receive in each
round. At individual level, there can be two possible, not mutually exclusive,
mechanisms explaining differences in social influence between nodes B and
D. The first and most intuitive mechanism is that C may place a higher
weight on the opinion of B than on that of D, because of B’s higher inde-
gree. The second is that, for the same reason, D may be influenced by B

relatively more than B is influenced by D.
Table 6 sheds light on this issue by presenting estimates of node-specific

(absolute) weights based on all updating rounds. Looking at the estimates for
node C (column 3), the weight of B (0.435) is substantially higher than the
one of D (0.163), and the difference is strongly statistically significant (p <

0.01). This provides support to the first of the two mechanisms described
above. The comparison of the weights given to each other by B and D is
non-trivial, since their respective indegrees are different, as they form their
beliefs on the basis of different numbers of neighbors. However, D appears to
substantially under-weigh the information coming from B (0.104), whereas B
does not substantially under-weigh the information received from D (0.325).
The overall effect of indegree on social influence is therefore mainly explained
by the way in which information is processed by C: node B, whose indegree
is twice the indegree of D, receives a weight that is more than twice as large
as the weight for node D.

Since the hypothesis that ρ = 0 is strongly rejected by the data, it is
interesting to ask what value of ρ provides the best fit for the experimental
data. We simulated the generalized updating rule, searching for the value of
ρ that minimizes the sum of squared deviations, over all individuals, between
observed (experimental) and simulated final-round beliefs:

ρ̂ = argmin
ρ

96∑

g=1

4∑

k=1

(yg,k,T − ȳ
ρ
k,T )

2,

where yg,k,T is the belief of an individual with role k in group g in the final
round, and ȳ

ρ
k,T is the corresponding theoretical prediction. This produces

an estimate of ρ̂ = 0.30. Interestingly, this is higher than the efficient ρ∗ =
0.04 (see Figure 3). This indicates that agents place higher weight on those
neighbors who themselves listen to more peers, as they should, but do so to
a greater extent than would be optimal.
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Table 6: Neighbors’ absolute weights in current beliefs, by node

(1) (2) (3) (4)
Node A Node B Node C Node D

Lagged belief, node A 0.530** 0.000
(0.011) (0.000)

Lagged belief, node B 0.675** 0.435** 0.104**
(0.070) (0.087) (0.018)

Lagged belief, node C 0.470** 0.402**
(0.011) (0.087)

Lagged belief, node D 0.325** 0.163** 0.896**
(0.070) (0.049) (0.018)

Number of observations 672 672 672 672
Note: the figures reported are estimates of neighbors’ weights, based on all updating

rounds. Dependent variable: current belief of agent at the node reported in column

heading, rounds 2-8. All specifications also include full sets of session and phase

dummies. Standard errors clustered at independent group level reported in brackets.

***p< 0.01, **p< 0.05, *p< 0.10.

5 Conclusions

Although the mathematical concept of digraph, i.e., a network based on di-
rected relations, was already central in the pioneering works of French (1956)
and Harary (1959), empirical studies of information diffusion in social net-
works have generally not focused explicitly on the respective roles played by
indegree and outdegree. This may reflect the fact that, while asymmetric
information flows are the norm in opinion formation, most available network
data sets, such as those describing friendship relations on online social net-
works, co-authorships of academic authors, or traffic flows, generally describe
undirected networks. Recently, however, increasing attention has been given,
both theoretically and empirically, to information flows in directed networks
(e.g. Baños et al., 2013, Gleeson et al., 2014).

In this paper, we investigated the properties of the boundedly rational
model of opinion formation in directed social networks proposed by Corazzini
et al. (2012). In this model, that provides a simple generalization of the
updating rule in DeMarzo et al. (2003), agents aggregate the information
they receive from their neighbors’ by using weights that depend positively on
their neighbors’ indegree. Intuitively, when opinions are updated, relatively
more importance is attributed to the opinions of more informed individuals.
Although simple, this generalization introduces an important novelty in that
subjects update their opinion by taking into account not only their neighbors’
opinions but also the features of the structure of the communication network.
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At the theoretical level, our results indicate that, in balanced networks,
placing higher weight on neighbors with higher indegree is generally less ef-
ficient than placing equal weights on all neighbors. On the other hand, in
unbalanced networks, it can be efficient to place higher weight on neighbors
with higher indegree. Indeed, there exist unbalanced networks in which the
optimal weight of indegree is arbitrarily high. At the empirical level, our
experimental results provide clean evidence of a positive causal effect of in-
degree on social influence. Both Bayesian updating and naive updating by
placing equal weights on all neighbors are rejected against the alternative of
an updating rule in which the weight placed on an agent’s opinion is positively
related to the number of individuals she listens to. Indeed, the sensitivity of
updating weights to neighbors’ indegree is found to be higher than would be
efficient.

One possible interpretation of our findings is that agents are aware that,
in the setting considered, placing a higher weight on neighbors with higher
indegree is efficient. However, in their attempt to aggregate information
efficiently while using a simple updating rule, they end up placing excessive
weight on neighbors with high indegree. A second possible explanation is
that, irrespective of any efficiency motivation, agents tend to attribute some
form of authority to peers whom they perceive as better informed, and this
leads them to place a higher weight on the information received from them.
A further possible interpretation of our results is that the weights of the
updating rule could be state-dependent. In the framework by Hegselmann
and Krause (2002), for example, updating weights depend negatively on the
distance between opinions. Since the beliefs of high-indegree agents are, on
average, less extreme than those of low-indegree agents, they can be expected
to be more similar, on average, to the beliefs of the listening agents. In this
perspective, our results could be interpreted as reflecting features of beliefs,
so that network structure, and more specifically indegree, would play a role
only indirectly.

To sum up, our analysis provides causal evidence of an indegree effect
that is at odds with the updating mechanisms most commonly adopted in
the literature on opinion dynamics. When forming their opinion, agents
do not place equal weights on all their neighbors, but use weights that are
positively related to their neighbors’ indegree. As a result, ceteris paribus,
subjects with higher indegree have higher social influence. This is an impor-
tant finding, as it indicates that, despite their inability to fully account for
the structure of their communication network, agents are able to exploit the
information about its local properties. Further research should contribute
to an understanding of the mechanisms explaining the effect of indegree on
social influence.
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Appendix A - Theorems and Proofs

In the following two theorems, it is assumed that the network G is strongly
connected and that it contains no direct link between ī and j̄. The modified
network will be denoted as G ′. The updating weights adopted in the original
and modified networks will be denoted as π and π′, the listening sets as
S(i) and S(i)′, the vectors of updating weights as w and w′, respectively.
∆ = w′ − w represents the vector of changes of social influence weights and
δ = ∆

w
the vector of relative changes.

Theorem A1 Let ī and j̄ be two nodes in G. Under the GBR updating rule,
provided ρ is not too large, adding a link from ī to j̄ increases the social
influence of ī.

Intuitively, Theorem A1 states that, except for extreme values of ρ such
that the indegree effect on the receiving node may dominate, social influence
is increasing in outdegree. In order to prove Theorem A1, we first prove the
following.

Lemma A1 There exists a ρ∗ such that, under the GBR rule with ρ ∈ [0, ρ∗),
δī ≥ δi for all i.

Proof of Lemma A1. Equation (8) allows us to express the social influence
of an agent as a linear combination of the social influence weights of the agents
she talks to, so that, analogously:

δi =
w′

i − wi

w′
i

=
∑

j∈S−1(i)′

π′
jiw

′
j − πjiwj

wi

.

Let us define δ̂i (the component of δi imputed to a change in the listeners’
influence) as:

δ̂i =
∑

j∈S−1(i)

πji(w
′
j − wj)

wi

=
∑

j∈S−1(i)

πjiwjδj

wi

.

We can observe that:

• δī > δ̂ī, since S−1(̄i)′ = S−1(̄i) ∪ {j̄}, while πjī = π′
jī
for all j 6= j̄,

• δj̄ < δ̂j̄ as long as ρ is smaller than some ρ∗, since πj̄j̄ < π′
j̄j̄

for ρ = 0
and the updating weights are continuous in ρ; in particular, ρ∗ > 1 if
dī ≥ dh for all others h ∈ S(j̄),

• δi < δ̂i for any other i ∈ S(j̄), since πj̄i < π′
j̄i
,
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• δi = δ̂i for any i 6∈ S(j̄)′.

Now, assume Lemma A1 is false. That is, there exists h̄ 6= ī such that
δh̄ > δī. Let us assume, without loss of generality, that δh̄ ≥ δi for all i. We
can then write:

δh̄ ≤δ̂h̄ =
∑

j∈S−1(h̄)

πjh̄wjδj

wh̄

≤
∑

j∈S−1(h̄)

πjh̄wjδh̄

wh̄

=
δh̄
wh̄

∑

j∈S−1(h̄)

πjh̄wj = δh̄
wh̄

wh̄

= δh̄.

We can see that both inequalities must be binding. The first implies that
h̄ 6∈ S(j̄)′, and hence h̄ 6∈ S(j̄); the second implies that δj = δh̄ for all
j ∈ S−1(h̄). By applying the same process recursively to any such j, and
exploiting the strong connectedness of the network, it follows that δī = δh̄,
which contradicts the initial assumption.20

Proof of Theorem A1. The sum of social influence weights is by definition
1 in any network, so that the weighted sum of percentage changes must be 0:

n∑

i=1

wi = 1 =
n∑

i=1

w′
i =⇒

n∑

i=1

wiδi = 0

(with all weights wi strictly positive). Since δ̂i is a linear combination of δj
for different j, if we had δj = 0 for all j, then we would have δ̂i = 0 for all

i. Instead, we know that δj < δ̂j for some j. So the maximum δi, which is
guaranteed by Lemma A1 to be δī, must be strictly positive.

Theorem A2 Let ī and j̄ be two nodes in G. Under the GBR updating rule:

(i) for ρ = 0, as long as there is no path from j̄ to ī shorter than dj̄, adding
a link from ī to j̄ decreases the social influence of j̄;

(ii) for ρ > 0 sufficiently large, as long as dī ≤ dj̄, adding a link from ī to
j̄ increases the social influence of j̄.

Intuitively, Theorem A2 states that for ρ = 0 a higher indegree implies
lower self-importance thus decreasing social influence, while for ρ > 0 a higher
indegree implies receiving a higher weight, thus increasing social influence.
Hence, for sufficiently large values of ρ, the overall effect of indegree on social

20If the chosen path from h̄ to ī passes through S−1

1
(j̄), the contradiction will arise even

before reaching ī.
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influence is positive. The additional assumptions cope with the possible
indirect effects due to the change of influence of ī.
Proof. For point (i), notice that the influence of any node j can be decom-

posed as wj =
∑

∞
k=0

πk
jj ·σj

n
=

λj ·σj

n
, where λj = 1

(1−πjj)
= 1

(1− 1

d j
)
describes the

“flow of opinion j” which is transferred to the rest of the network during the
process of opinion formation, and σj describes the effect of the diffusion in
the network (including subsequent passes through j). When the indegree of
j̄ increases from dj̄ to dj̄ + 1, λj decreases by a coefficient 1

dj̄(dj̄−1)
. On the

other hand, for a recursive reasoning analogous to the one used in the proof
of Theorem A1, any increase of influence through σj̄ ultimately depends on
an increase of wī, which is however bounded above by π′

j̄ī
w′

j̄
= 1

dj̄+1
w′

j̄
. In

turn, the benefit accruing to j̄ in terms of influence is bounded above by
1
dj̄
wδ

ī
: since the shortest path between j̄ and ī is long at least dj̄, there are at

least dj̄ classes of nodes (those at distance 0, 1, . . . , dj̄ − 1 from ī on a path
from j̄ to ī) each benefiting from the increase of wī more than j̄. So we have

∆j̄ ≤ − 1

dj̄(dj̄ − 1)
w′

j̄ +
1

dj̄

1

dj̄ + 1
w′

j̄ =⇒ ∆j̄ < 0.

For point (ii), recall from equation 5 that when ρ → ∞ each agent will
only listen to the agent(s) with highest indegree in her listening set. Given
any network G, let C(G) be the network obtained by removing from G each
link from i to j with di < dj (notice that if G is strongly connected C(G)
will be connected, but not necessarily strongly). The social influence21 of a
node in G under ρ → ∞ is equal to the social influence of that node in C(G)
under ρ = 0. Now assume that C(G ′) contains the link from ī to j̄: then the
social influence of ī under ρ = 0 in C(G ′) is larger than in C(G), so that, for
sufficiently large values of ρ this is also true in G ′ compared to G. If instead
C(G ′) does not contain such link, the assumption dī ≤ dj̄ guarantees that

the influence of node j̄ tends to 0 both in G and in G ′. Let î the node with

maximum indegree found in S(j̄): πj̄ī converges in G ′ to 0 as wī ·
(

dī+1
d
î

)ρ

rather than as wī ·
(

dī
d
î

)ρ

, while πij is asymptotically unchanged for any other

i, j. Hence for sufficiently large values of ρ the social influence of ī increases.

21The social influence of a node has been defined only in the case in which opinions
converge to a consensus. Here we implicitly use a more general definition obtained by

simply replacing y∞ with
∑

i
y∞

i

n
in equation 7.
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Proof of Theorem 1. Consider a strongly connected network G: its
adjacency matrix MG = {qij}i,j≤n is necessarily irreducible.22 Perfect and
Mirsky (1965) have shown23 that then there exists another matrix PG, with
coefficients pij such that

• PG is doubly stochastic,24

• pij = 0 ⇐⇒ qij = 0.

The coefficients pij define a new linear updating rule applicable to the network
G.25 Let us calculate the dynamics of the average of beliefs from one period
to another according to this new updating rule:

1

n

n∑

i=1

yt+1
i =

1

n

n∑

i=1

n∑

j=1

pijy
t
j

=
1

n

n∑

j=1

n∑

i=1

pij

︸ ︷︷ ︸

=1

ytj

=
1

n

n∑

j=1

ytj.

Such average is unchanged. By iterating this reasoning, we have that the
average of opinions at any time is equal to the initial mean x̄. When a
consensus is reached, it is by definition the correct consensus.

Proof of Theorem 2. Given a network G, let Ḡ be the corresponding
undirected network (with adjacency matrix q̄ij = 1 ⇐⇒ qij + qji > 0), and
Gi

δ the subnetwork of G restricted to nodes which are distant at most δ ∈ N

from i in Ḡ. Since the weights π̄ij only depend on local properties of the
network, there must exist a δ̄ ∈ N such that they are only determined based
on G δ̄

i . Consider then the networks in figure 7:

22An n× n matrix q is reducible if the set {1, . . . , n} can be partitioned in two subsets
V1, V2 such that qij = 0 whenever i ∈ V1 and j ∈ V2. This implies that nodes in V1 are
not connected to nodes in V2, and hence that the network is not strongly connected.

23It is easy to see that if a network structure is strongly connected, statement (ii) in
their Theorem 1 holds. The matrix representation which they denote by (∗) implies that
there are k nodes with no links to some other n− k nodes. But since in our network each
agent is by assumption linked to herself, those two sets of nodes would have to be disjoint,
and partition the whole network. Hence, there would be no path from the first to the
second.

24A matrix is doubly stochastic if all its elements are non negative, and each row and
column sums up to 1.

25The relation between the double stochasticity of the updating matrix and the correct-
ness of the consensus was already recognized by Harary (1959). The last part of this proof
generalizes his Theorem 14 to a generic linear rule.
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Figure 7: Locally similar networks for node E

C1 C2

B

A1 A2 Aδ̄Aδ̄−1

E

Cδ̄−1 Cδ̄

C1 C2

B

A1 A2 Aδ̄Aδ̄−1

E

Cδ̄−1 Cδ̄

Notice that G δ̄
E is identical in both networks, and hence the vector of

weights π̄E adopted by E must be identical too. Assume, without loss of
generality, that π̄EAδ̄

≥ π̄ECδ̄
. In the second network, E gets to know the

opinion of agents B, C1, . . . , Cδ only through the link coming from Cδ. Hence,
she is weighting the opinions of those δ̄ + 1 nodes less than the opinions of
the other δ̄ nodes A1, . . . , Aδ̄. This rule cannot lead to the correct consensus
on such network.

Example 1 Consider a network G, with agents numbered from 1 to n, and
execute the following steps:

i start from agent 1: since the network is strongly connected, there must
be a path from 1 to 2: let us denote it as s1, and assume without loss of
generality that it has no cycles;

ii again, since the network is strongly connected, there must be a path from
2 to 3: let us assume without loss of generality that it has no cycles, and
denote as s2 the union of s1 with such a path;

iii by repeating the step above, for each i < n, a path si is constructed, which
goes from 1 to i and passes through any i′ < i: let sn be the union of sn−1

with a path (again, without cycles) from n to 1: sn is a cycle which passes
through each node at least once and at most n times;

iv for each pair (i, j) with j 6= i, let πij be defined as 1
n
multiplied by the

number of times that sn passes through the link from j to i (possibly zero).
For each i, define πii as 1−

∑

j 6=i πji.

The updating rule having such πij as updating weights is a valid linear rule.
If we consider sn as a weighted network where the weight of a link is given
by πij, it is strongly connected, and its adjacency matrix is doubly stochastic.
Hence, the resulting updating rule leads to the correct consensus.
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Proof of Theorem 3. Consider the influence weights for the opinion of a
given agent in a given instant in time as a vector in the standard n-simplex,
{ωt

ij}j≤n. For instance,

ω0
i = (0, . . . , 0

︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

n−i

) (A.1)

that is, before receiving any information from neighbors, the opinion of
each agent is entirely formed by her initial signal. With a linear belief updat-
ing rule, the evolution of such vectors is simply described as a straightforward
rewriting of equation (1):

ωt
i =

n∑

j=1

qijπijω
t−1
j (A.2)

= πiiω
t−1
i +

∑

j 6=i

qijπijω
t−1
j .

Since the network is anonymous, all neighbors of a given node are equivalent;
and since the rule is anonymous, each node places an equal weight on each
neighbor. So the above can be rewritten as

ωt
i = πiiω

t−1
i +

(1− πii)

di

∑

j 6=i

qijω
t−1
j . (A.3)

Notice that yti = ωt
i · x, and hence the beliefs are uniquely determined once

πt
ii is fixed for each i.
For what concerns point 2, let us define the system as biased at a given

time t̄ if for some h
n∑

i=1

ωt̄
ih 6= 1.

Let us assume without loss of generality that t̄ is the first time for which this
happens. Notice that t̄ > 0, since

n∑

i=1

ω0
ih = ω0

hh = 1,

and that

n∑

i=1

ωt̄
ih =

n∑

i=1

n∑

j=1

qijπijω
t̄−1
jh

=
n∑

j=1

ωt̄−1
jh

n∑

i=1

qijπij.
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Since the network and the rule are anonymous, the value of the nested sum
must be the same for all j, and since the sum of qijπij across j and i is n,
the value of such nested sum must be n

n
= 1. So

n∑

j=1

ωt̄−1
jh =

n∑

i=1

ωt̄
ih 6= 1.

But this contradicts the hypothesis that t̄ is the first time at which the
system is biased.

Proof of Theorem 4. One implication is obvious: given any agent i, let
d̄ be the (equal, by assumption) indegree of all di + 1 agents in S(i). Then,
by applying equation (3), we have that for each j ∈ S(i),

πij =
d̄ρ

(di + 1)d̄ρ
=

1

di + 1
,

that is, the updating weights do not depend on the value of ρ - hence neither
the consensus belief nor social influence weights do. For the reverse implica-
tion, notice that there is at least a pair of agents i, j with different indegree
and such that i listens to j (if this is not the case, it is easy to show by
induction that the network is regular). Define now as Hk the set of agents
h such that there exist j′, j′′ ∈ S(h) with k = dj′ < dj′′ . Intuitively, we are
considering all agents i whose updating weights are affected by ρ (because the
neighbors have different indegree), and classifying them based on the lowest
indegree of a neighbor: the underlying idea of the remaining of the proof is
that this will allow us to identify an agent who is necessarily disadvantaged,
in terms of social influence, by a strictly positive value of ρ. Let k̄ be the
smallest k such that Hk is non-empty - the non-regularity assumption means
precisely that there exists at least one such k. Let ī ∈ Hk̄, and j̄ ∈ S(i) such
that dj̄ = k̄. Notice that, for each i′ ∈ S−1(j̄), j̄ must have smaller or equal
indegree than all other agents in S(i′) (otherwise, we would have found a
non-empty Hk′ with k′ < k̄). As a consequence, πi′j̄ will be weakly smaller
with ρ > 0 than with ρ = 0, and πīj̄ will be strictly smaller. But since we
know that

wj̄ =
n∑

i=1

πij̄wi,

this means that wj̄ will strictly decrease as a function of its neighbors,
and hence that at least some wi will be affected by a change of ρ.
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Lemma A2 In a balanced network, when the GBR rule is applied with ρ = 0,
the social influence weight of each agent is proportional to her degree (includ-
ing the self-link) di + 1.26

Proof of Lemma A2. Recall from equation (8) that the vector of social
influence weights is the unique element w in R

n satisfying
∑n

i=1 wi = 1 and

wi =
∑

j∈S−1(i)

πjiwj; (A.4)

when ρ = 0, the above translates to

wi =
∑

j∈S−1(i)

1

dj + 1
wj. (A.5)

Assuming the network is balanced, if the social influence weights can be
written as wi = α(di + 1), where α is a constant, then the right hand side of
equation (A.5) becomes

∑

j∈S−1(i)

1

dj + 1
· α(dj + 1) = |S−1(i)| · α = α(di + 1) = wi

that is, equation (A.4) is satisfied for each i. To guarantee that the sum of
social influence weights adds up to 1, it is sufficient to set α accordingly:

n∑

i=1

wi = 1 =⇒ α =
1

n+
∑n

i=1 di

(notice that such α is the inverse of the total number of links, including
self-links).

Lemma A3 Given a network G, let EG : R → (−1, 0] be the function map-
ping each real number to the efficiency of the GBR rule played with such
value of ρ. If G is balanced, ∂EG

∂ρ
(0) < 0.

Proof of Lemma A3. Lemma A2 tells us that on a balanced network,
when ρ = 0, influence weights are an increasing function of degree. Now
consider a generalization of the GBR model in which each node i adopts a
different ρi, and let E∗

G : Rn → (−1, 0] be the corresponding generalization
of EG. We want to study E∗

G around (0, . . . , 0). For small positive variations
of a single ρī, the elements of S−1 (̄i) will be affected by a change in their

26This result was already proved by DeMarzo et al. (2003) (as part of their Theorem 6)
for the specific case of undirected networks.
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social influence weight which is an increasing function of degree (and hence of
social influence weights themselves), so that the sum of (squares of) absolute
differences from the mean, 1

n
, will increase. Now, it may be that the indirect

changes (i.e. on agents connected to agents in S−1(i)) affect social influence
weights in a way that is not an increasing function of degree. However, it
is easy to see that the entity of such indirect changes will be smaller, in
absolute value, than the direct change they originate from. So the same will
hold for the squares of such differences, and as a result

∂E∗
G

∂ρī
(0, . . . , 0) < 0.

Now, the derivative of EG in ρ coincides with the directional derivative of E∗
G

along the vector u =
(

1√
N
, . . . , 1√

N

)

:

∂EG
∂ρ

(0) = ∇uE∗
G(0, . . . , 0) =

1√
N

N∑

i=1

∂E∗
G

∂ρi
(0, . . . , 0) < 0.

Proof of Theorem 5. It is easy to verify that EG is smooth. Assume then
that there exists some ρ∗ > 0 such that EG(ρ∗) > EG(0): since (by Lemma
A3) E ′

G(0) < 0, it must be that EG has a local minimum ρ∗ ∈ [0, ρ∗]. However,
since ρ∗ > 0, the derivative in ρ of a given term (wi − 1

n
)2 is larger the larger

wi. So if the linear combination of such derivatives is 0 in ρ∗, it must be
positive in a right neighborhood of ρ∗, that is, E ′′

G(ρ∗) < 0. So ρ∗ is not a
local minimum.

Proof of Theorem 6. It is easy to verify that in G ′, the node h (respec-
tively: i) has, under ρ = 0, a lower (respectively: higher) influence weight
than any node in S−1(h) \ S(h) (respectively: S−1(i) \ S(i)) (which is neces-
sarily non-empty). Let us now analyze the step-by-step effect of a marginal
increase in ρ. After the first step of the updating process, it simply results
in an increase (respectively: decrease) of social influence for h (respectively:
i), at the expense of nodes in the listening sets of nodes in S−1(h). After the
second step, it will additionally increase (respectively: decrease) the social
influence weights of all nodes in S(h) (respectively: S(i)). Both these effects
strictly increase efficiency. In any subsequent step K, the higher (respec-
tively: lower) weights applied to information coming from h (respectively: i)
will have as additional effects a relative increase (respectively: decrease) of
influence for nodes l such that there is a path of length less than K from l to
h (respectively: i). However, in the composition of the beliefs of h (respec-
tively: of i), the opinion of such nodes has a lower weight than the opinion of
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any node in S(h) (respectively: in S(i)). As a consequence, there is a ρ̄ > 0
such that for any ρ ∈ (0, ρ̄), the increases of influence for nodes in S(h) and
the decreases of influence for nodes in S(i) are larger than any other varia-
tions in social influence weights. In such interval, the GBR is guaranteed to
perform strictly better than with ρ = 0.

Proof of Theorem 7. Given a natural number K, consider a network
having the following binary tree-like structure:

• an agent A1 listens to two other agents A2,1, A2,2,

• each agent Ak,i listens to two other agents Ak+1,2i−1, Ak+1,2i, for each
k < K,

• each “leaf” agent AK,i listens to A1 and to her “close relatives” AK,i−1

and AK,i+1 (AK,1 listens to AK,2K and AK,2, while AK,2K , listens to
AK,2K−1 and AK,1).

Notice that,

• the structure is perfectly symmetric, in the sense that all the agents
positioned on a given “layer” will exhibit the same vector of updating
weights (which for simplicity we will denote respectively as πk−1,k and
πk,k, rather than πAk−1,iAk,j

and πAk,iAk,i
) and the same social influence

(which we will hence denote as wk rather than wAk,i
),

• for most of the layers of this structure, the updating weights are inde-
pendent from ρ; namely, for any k such that 1 ≤ k < K − 1,

πk,k = πk−1,k =
2ρ

3 · 2ρ =
1

3

and hence

wk =πk,kwk + πk−1,kwk−1

=
1

3
wk +

1

3
wk−1

=
1

2
wk−1;

• since the number of agents on a given layer doubles at each level, the
sum of social influences of all agents in a given layer, which we will
denote as Wk, is the same for any k from 1 to K − 1.
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Now consider the social weight of A1. The updating weights adopted by
a leaf (which has indegree 3, rather than 2) can be calculated as:

πK,1 =
2ρ

2ρ + 3ρ + 3ρ + 3ρ
=

2ρ

2ρ + 3ρ+1
; πK,K =

3ρ

2ρ + 3ρ+1
.

and since 2K leafs listen to A1,

w1 =π1,1w1 + 2KπK,1wK

=
1

3
w1 + 2K

2ρ

2ρ + 3ρ+1
wK

=2K
3 · 2ρ−1

2ρ + 3ρ+1
wK

=⇒ W1 =
3 · 2ρ−1

2ρ + 3ρ+1
WK .

Assume the optimal level of ρ is bounded above by some ρ̂. This means
that for K → ∞, this last ratio will also be bounded by positive numbers
from above and from below. That is, asymptotically,

WK ∼ W1 = W2 = · · · = WK−1

and hence, since the sum of all wi is 1, w1 = W1 will converge to 0 asymptot-
ically as α

K
, where α is a constant. Now, it easy instead to verify that since,

for given K̄,

2K̄
3 · 2ρ−1

2ρ + 3ρ+1

ρ→∞→ 0

and such term is continuous in ρ, we can define ρK̄ such that

2K̄
3 · 2ρK̄−1

2ρK̄ + 3ρK̄+1
= 1;

moreover, it is straightforward to verify that ρK̄
K̄→∞→ ∞. When the GBR

rule is applied with such ρK , we have, by definition, that w1 = wK . That is,

WK

2K
= W1 = W1 = W2 = · · · = WK−1.

The nodes with maximum influence are now 2K +1 (all leafs, and A1) so
each influence weight will converge to 0 as 1

2K
(or faster), rather than as α

K
.

Now, observe that the correct weights converge to 0 as 1
n
= 1

2K+1−1
. Hence,

the sum of square deviations in the case of any finite ρ will converge towards

at least
(
α
K

)2
= α2

K2 , while in the case of ρ = ρK it will converge towards at
most

2K+1 ·
(

1

2K

)2

=
2K+1

22K
=

1

2K−1

K→∞
<

α2

K2
.

Hence the most efficient ρ for K → ∞ must also tend to ∞.
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Appendix B - Experimental Instructions

[Translated from Italian]
Welcome and thank you for taking part in this experiment. During the

experiment talking or communicating with other participants is not allowed
in any way. If you have a question at any time, raise your hand and one of
the assistants will come to answer your question. By carefully following the
instructions you can earn a sum of money that will depend on the choices
made by you and the other participants. On top of that amount, you will
receive in any case 5 e for the participation in this experiment.

General Rules

• 24 subjects will take part in this experiment.

• The experiment takes place in 4 phases of 8 rounds each, for a total of
32 rounds.

• At the beginning of the experiment 6 groups of four subjects will be
randomly and anonymously formed by the computer.

• You will be assigned to one of the 6 groups. You will interact only with
those in your group, without knowing their identity. The composition
of each group will remain unchanged throughout the experiment.

The development of a phase

• In the first round of each of the four phases, in all groups, each subject
will be randomly and anonymously assigned a different role: A, B, C,
and D.

• The computer will randomly generate four integers that we will refer
to as signals. Each component of the group will be shown only one of
the four signals. Signals will be denoted as xA, xB, xC , and xD.

• In each of the 8 periods of the phase, each subject will be asked to
guess the mean of the four signals extracted by the computer for that
phase: x̄ = (xA+xB+xC+xD)

4
.

• For making each guess, there is a maximum time of 120 seconds (which
will be shown by a counter in the top right corner of the screen).

• At any moment, it is possible to open a calculator by simply clicking
its icon, in the bottom left corner of the screen.

How earnings are determined
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• Individual earnings will depend on how close the guess comes to the
value of x:

– At the end of the experiment, the computer will randomly extract
one of the 32 periods.

– The earnings will be equal to 15 euros minus the difference (in
absolute value) between x and the guess made in the selected
round.

– If this difference turns out to be negative, the subject will earn 0
euros.

• Examples:

– if x = 1424 and the guess is 1424, the difference is 0 and earnings
are 15 euros.

– if x = 308 and the guess is 311.5, the difference is 3.5 and earnings
are 11.5 euros.

– if x = 803.25 and the guess is 792, the difference is 11.25 and
earnings are 3.75 euros.

– if x = 62.5 and the guess is 30.5, the difference is 32 and earnings
are 0 euros, since 15− 32 < 0.

In each of this cases, the participant will also receive 5 euros for par-
ticipating in the experiment.

• In each round, the optimal guess (which allows to get the maximum
earnings) depends on the information that each subject has on the
signals:

– if she knows only her own signal, the optimal choice is her own
signal,

– if she knows or can infer two signals, her optimal choice is the
mean of the two signals;

– if she knows or can infer three signals, her optimal choice is the
mean of the three signals;

– if she knows or can infer four signals, her optimal choice is the
mean of the four signals.

Information

• In each of the tree phases
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– In the first round, each subject knows her own signal.

– From the second round onwards, before making his choice, each
subject will be informed by the computer of the choices made
in the previous rounds by some of the components of her group,
based on the structure represented in the following figure:

• Therefore, before making his choice

– A will be informed of the choices made by C.

– B will be informed of the choices made by A and D.

– C will be informed of the choices made by B and D.

– D will be informed of the choices made by B.

• The roles (A, B, C, D), the signals (xA, xB, xC , xD) and by consequence
their mean will change at each phase: the computer will generate them
randomly before the first period of the phase.

Feedback and payments

• At the end of each phase the computer will show to each subject the
four signals of his group, their mean, and the choices made.

• At the end of the experiment each subject will be shown the round the
computer has selected to determine payments, the value of x̄ for her
group, the choice she made and the corresponding amount earned in
euro.

• The experiment will terminate and the amount earned by each subject
will be paid in cash.

Control questions
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1. If you knew only your signal (a), what would be your optimal guess?
...............

2. If you knew your signal (a) as well as the one of another member of
your, group (b), what would be your optimal guess? ...............

3. If you knew your signal (a) as well as the ones of two other members
of your group (b and c), what would be your optimal guess? ...............

4. If you knew your signal (a) as well as the ones of three other members of
your group (b, c, and d), what would be your optimal guess? ...............
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