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Abstract

We provide sufficient conditions for the persistence or transience of stochas-
tic processes on the real line based on the behavior of the first and second
moment of their conditional increments at the boundaries. Our findings ex-
tend previous results in the literature (Lamperti, 1960) to the large class of
discrete-time processes with bounded increments. We present some exam-
ples of application in the domain of economics.

Keywords : Discrete-time stochastic processes; asymptotic behavior; persistence
and transience.

JEL Classification: C02

1 Introduction

Many economic dynamic phenomena can be represented by a real stochastic pro-
cesses in discrete time. The dynamics of consumption, capital, and output in a
growth model with shocks to the production process; the dynamics of equilibrium
allocation and asset prices in stochastic exchange economy; the dynamics of opti-
mal strategies, populations shares, and payoffs in repeated (evolutionary) games

1



are understood examples. In all these processes, an exogenous state st with his-
tories σt moves the endogenous state xt(σ

t) making it a process adapted to the
filtration generated by the histories σt. This is typically the case in economies
with heterogeneous agents, the standard in evolutionary game theory and now
more and more popular also in macroeconomics and finance, where an important
state variable is the relative consumption, wealth or payoffs of different groups of
agents. Assessing the asymptotic dynamics of these quantities is instrumental to
the characterization of the long-run behavior of the model.

The aim of this paper is to propose sufficient conditions for a process xt on the real
line to be persistent or transient. The process is persistent when with probability
one it keeps visiting a bounded interval, it is transient when it diverges. We propose
two sets of sufficient conditions. The first set of conditions is based on the sign of
the asymptotic drift. The second set is more general and is based on a suitable
quantity computed starting from the asymptotic first and second moment of the
conditional increment. Thus, the second set of conditions can be applied also to
the situation, often arising in practice, in which the drift is asymptotically zero.
Both sets of conditions are inspired to and extend the seminal work of Lamperti
(1960) and are presented in Section 3 for persistence and in Section 4 for transiency.
As a novelty with respect to incumbent approaches, the proposed conditions work
under minimal assumptions on the process. In particular, the Markov property is
not required and they also apply to the case of a finite set of states.1

The first set of conditions, based on the asymptotic sign of the drift, are rather
intuitive. In summary, if the drift conditional on a large enough positive state is
negative and, at the same time, the drift conditional on a large enough negative
state is positive, then the process is persistent. In this case either the process
converges, to a deterministic value or to a random variable, or keeps fluctuating.
Conversely, if the drift conditional on a large enough positive state is positive and,
at the same time, the drift conditional on a large enough negative state is negative,
then the process is transient. In this case, the process diverges, possibly displaying
path dependency, that is, it could diverge to either extreme of the line depending
on the initial condition and the realization of the underlying exogenous process.
Finally, a positive (negative) drift for large enough, both positive and negative,
states implies that the process is transient and diverges to plus (minus) infinity.

The second set of conditions relaxes the prescriptions on the asymptotic sign of
the drift. For example, having a negative drift for large enough positive states can
be replaced by having a drift that, for large enough positive states, approaches

1Meyn and Tweedie (1993) is the reference for Markov process in discrete time with a con-
tinuous support, as we have here. Another important reference with economic applications is
Bhattacharya and Majumdar (2007).
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zero at a rate which is fast enough if compared to the asymptotic behavior of the
second moment of the conditional increment. Similar conditions can be derived
for other limit values of the drift.

In Section 5, we apply the drift conditions to three specific examples. First, in
Section 5.1, we consider the dynamics of population shares in an evolutionary
game with stochastic payoffs (see e.g. Cabrales, 2000).2 In this example we show
how our sufficient conditions, not requiring the Markov property, can be used on
aggregate variables, such as the ratio of the population shares of two groups.

Then, in Section 5.2, we consider a stochastic exchange economy with complete
markets and two SEU-CRRA agents having heterogeneous beliefs, discount factor,
and risk aversion. Here the endogenous process under study is the logarithm of
relative consumption. The drift conditions are used to link survival and dominance
to a survival index which is agent and history specific. The example belongs to the
literature on the Market Selection Hypothesis (see e.g. Blume and Easley, 2010,
for a survey) and extends Yan (2008) to general endowment processes. Although
here we restrict to a 2-agent economy, the analysis can be easily extended to two
groups of agents as done in the previous example.

In the last example, Section 5.3, we study the convergence of a Bayesian learner
who under-reacts to information and has a misspecified prior support, combining
Berk (1966) and Epstein et al. (2008). Under the special assumption that the
support has only two models, we use the prior distribution as a state.

2 Persistency and Transiency

Consider a discrete process on the real line, {xt}, and let (P,Σ,=) be its underlying
filtered probability space with Σ a subset of sequences of real numbers σ, {=t} a
filtration of Borel σ-fields on Σ, and P an associated probability measure. We
are interested to investigate whether, in the long run, the process persistently
visits a finite set or, alternatively, it diverges to infinity. In particular, we want
to investigate if the asymptotic sign of the conditional drift allows us to decide
between to the two alternatives. The results we present concern specifically the
following3

Definition 2.1. A real stochastic process {xt} is persistent if there exists a real

2Another source of randomness in evolutionary games is the (random) matching process when
the population is finite (see e.g. Taylor et al., 2004; Traulsen and Hauert, 2009).

3In what follows, the expression almost surely (a.s.) means “apart from a set of histories of
measure zero with respect to P”.
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interval A = (a, b) such that for any t it is Prob{xt′ ∈ A for some t′ > t} = 1. If a
process is not persistent, then it is transient.

A process is persistent when there exists a recurrent set A, a set that is visited
in finite time with full probability. If a process is not persistent, then there is
a positive probability that limt→∞ |xt| = +∞. Notice that, in general, it is not
sufficient to characterize the supremum or infimum limit of a process to know if it
is persistent or transient. This is immediately clear if one considers the following
list of persistent processes:

• a convergent process, Prob{limt→∞ xt = x∗} = 1 with x∗ finite; any interval
A that contains x∗ can be used to show that Definition 2.1 applies. In this
case it is Prob{lim supt→∞ xt = x∗} = 1 and Prob{lim inft→∞ xt = x∗} = 1;

• a process for which there exists a set A ⊂ R and a T ∈ N such that Prob{xt ∈
Awhen t > T} = 1. In this case it is Prob{lim supt→∞ xt ≤ supA} = 1 and
Prob{lim inft→∞ xt ≥ inf A} = 1;

• the symmetric random walk on the line, xt = xt−1 +bt where bt is a Bernoulli
variable taking values 1 and −1 with the same probability. In this case it is
Prob{lim supt→∞ xt = +∞} = 1 and Prob{lim inft→∞ xt = −∞} = 1;

• a sub-martingale bounded from above; in this case the Martingale Converge
Theorem guarantees that the process converges to a finite random variable
x̂. Any interval A that contains the support of the random variable applies.

Examples of transient processes are instead

• the asymmetric random walk on the line, xt = xt−1+bt where bt is a Bernoulli
variable taking values 1 and −1 with different probabilities; in this case
Prob{lim supt→∞ xt = lim inft→∞ xt} = 1 and these limits are ±∞ depending
on the sign of the drift;

• the process with exploding increments xt = xt−1+2tbt, where bt is a Bernoulli
variable taking values 1 and −1 with fixed probabilities; in this case
Prob{lim supt→∞ xt = lim inft→∞ xt} = 0 but Prob{lim supt→∞ |xt| = +∞} =
1.

The last process, with exploding fluctuations, is somehow bizarre and we are happy
to constrain our analysis to processes that comply with the following
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Definition 2.2. A process {xt} has bounded increments if there exists a B > 0
such that Prob {|xt+1 − xt| < B} = 1.

Definition 2.1 is different from the one provided in Lamperti (1960) for a recur-
rent process. The reason is that there only non-negative processes, xt ≥ 0, with
Prob{lim supt→∞ xt = +∞} = 1, are considered. While the two definitions are
similar in spirit, here we consider more general real processes (albeit bounded).

3 Persistent processes

Let µt(x) = E [xt+1|xt = x,=t]− x be the drift of the process in x, that is, condi-
tional on the event {xt = x}. The first result clarifies that a process that has a
positive drift for sufficiently small realizations is bounded away from minus infinity.

Theorem 3.1. Consider a bounded increments process {xt}. If there exists M > 0
such that, for all x < −M and definitely in t, it is µt(x) > 0 almost surely, then
Prob {lim supt→∞ xt > −M} = 1.

Proof. Let B > 0 be such that |xt+1 − xt| < B almost surely. Without loss of
generality we can take M > B. For any fixed integer T consider the process

Y T
t =

{
xT+t if xl < −M for T ≤ l ≤ T + t− 1 ,

0 otherwise .

The state 0 is clearly absorbing, so that if Y T
t = 0, then Y T

t+1 = Y T
t = 0. If

Y T
t < −M then xT+t = Y T

t < −M and consequently Y T
t+1 = xT+t+1 < 0 almost

surely. Let I(.) be the indicator function, that is I(x) is equal to 1 if x > 0 and 0
otherwise. On the events such that Y T

t = XT+t one has

E[Y T
t+1|Y T

t ,=t] = E[I(−xT+t+1 −M)xT+t+1|xT+t,=t] ≥ E[xT+t+1|xT+t < −M,=t].

The latter is greater than xT+t = Y T
t by the assumption on the drift. Thus,

E[Y T
t+1|Y T

t ,=t] ≥ Y T
t and the process Y T

t is a sub-martingale bounded from above
by 0. By the Martingale Convergence Theorem there exists a finite random variable
Ŷ T such that limt→∞Y

T
t = Ŷ T almost surely.

Assume that for some T it is Ŷ T < −M with positive probability. Then on a
positive measure set of realizations it would be {Y T

t } = {xt+T} and limt→∞xT+t =
Ŷ T < −M . The latter is absurd given the strictly positive drift of the process
when x < −M . It follows that for any T it is Ŷ T = 0 with probability 1. This
implies that for any T there exists a t such that xT+t > −M a.s. and proves the
assertion.
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In other terms, the previous result proves that the event xt > −M is recurrent for
the process {xt}. The expression “definitely in t” means that the possible violation
of the condition for a finite number of t’s does not change the result.

It is also possible to find a weaker sufficient condition based on the second condi-
tional moment of the process increment.4

Let vt(x) = E [(xt+1 − xt)2|xt = x,=t] be the second moment of the increment in
x, that is, conditional on the event {xt = x}.

Corollary 3.1. Consider a bounded increments process {xt}. If there exist ε, δ > 0
such that, definitely in t and almost surely, it is

lim inf
x→−∞

µt(x)− vt(x)

2x
− ε

|x|2−δ
≥ 0 , (1)

then there exists an M > 0 such that, definitely in t and almost surely, it is
Prob {lim supt→∞ xt > −M} = 1.

Proof. Let B > 0 be such that |xt+1−xt| < B almost surely and let Fx,t(u) denote
the conditional distribution of the increment ut = xt+1 − xt. Consider the process

yt =

{
ln(1 + xt) xt ≥ 0 ,

− ln(1− xt) xt < 0 .

Notice that the process {yt} has bounded increments. Assume x < −B and let
µyt (x) = E [yt+1 − yt|yt = − ln(1− x),=t]. Using the Taylor expansion and the
Lagrange form of the remainder one has

µyt (x) =

∫ B

−B
dFx,t(u) ln(1− x)− ln(1− x− u) ≥

µt(x)

1− x
+

vt(x)

2(1− x)2
− B3

3 (1− x−B)3
,

which by the inequality in (1), after a rearrangement of terms, implies, for negative
and large enough value of x,

µyt (x) ≥ ε

(1− x)|x|2−δ
+

vt(x)

2x(1− x)2
− B3

3 (1− x−B)3
.

When x → −∞, the first term of the right hand side is the leading term and
it is positive. This implies that there exists a sufficiently large M such that if

4The derivation is based on an intuition in Lamperti (1960) but the statement is made more
general here.

6



x < −M , it is µyt (x) > 0 a.s. and definitely in t. Thus the process {yt} satisfies the
hypothesis of Theorem 3.1 and Prob {lim supt→∞ yt > − log(1 +M)} = 1, hence
the assertion.

The previous result guarantees that the process is bounded away from minus in-
finity also when its conditional drift for large negative values is negative, provided
it goes to zero sufficiently fast.

Along the same lines of Theorem 3.1, one can easily obtain an analogous result for
the process at plus infinity.

Corollary 3.2. Consider a bounded increments process {xt}. If there exist M > 0
such that, for all x > M and definitely in t, it is µt(x) < 0 almost surely, then
Prob {lim inft→∞ xt < M} = 1.

Analogously, a weaker condition can be derived, based on the second moment of
the conditional increment.

Corollary 3.3. Consider a bounded increments process {xt}. If there exist ε, δ > 0
such that, definitely in t and almost surely, it is

lim sup
x→+∞

µt(x)− vt(x)

2x
+

ε

|x|2−δ
≤ 0 , (2)

then there exists an M > 0 such that, definitely in t and almost surely, it is
Prob {lim supt→∞ xt < M} = 1.

Proof. Consider the process {yt} as defined in the proof of Cor. 3.1. For sufficiently
large x its drift read µyt (x) = E [yt+1 − yt|yt = ln(1 + x),=t] and one has

µyt (x) =

∫ B

−B
dFx,t(u) ln(1 + x+ z)− ln(1 + x) ≤

µt(x)

1 + x
− vt(x)

2(1 + x)2
+

B3

3 (1 + x−B)3
.

Substituting the inequality in (2), one observes that the leading term of the ex-
pansion is negative and lim supx→+∞ µ

y
t (x) < 0. Following a reasoning analogous

to the one in the proof of Cor. 3.1, one easily derives the statement.

Starting from the previous results, a set of sufficient conditions for the persistence
of the process can be derived. First, we propose a theorem based on the asymptotic
sign of the conditional drift, based on the results of Theorem 3.1 and Corollary 3.2.
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Theorem 3.2. Consider a bounded increments process {xt}. If, definitely in t
and almost surely, for sufficiently large positive values of x it is µt(x) < 0 and for
sufficiently large negative values of x it is µt(x) > 0, then the process is persistent.

Proof. Let M > 0 be such that it is µt(x) < 0 if x > M and µt(x) > 0 if x < −M ,
for any t and almost surely. Let B > 0 be such that |xt+1−xt| < B almost surely.
Without loss of generality we can take M > B. For any positive integer T define
the process

Y T
t =

{
|xT+t| if |xl| > M for T ≤ l ≤ T + t− 1 ,

0 otherwise .

The state 0 is clearly absorbing so that if Y T
t = 0, then Y T

t+1 = Y T
t = 0. Let I(.)

be the indicator function, that is I(x) is equal to 1 if x > 0 and 0 otherwise. If
Y T
t > M , then either xT+t > M or xT+t < −M . In the first case, it is xT+t+1 > 0

almost surely and on the events such that Y T
t = xT+t one has

E[Y T
t+1|Y T

t ,=t] = E[I(xT+t+1 −M)xT+t+1|xT+t,=t]
≤ E[xT+t+1|xT+t,=t] < xT+t = Y T

t .

In the second case, it is xT+t+1 < 0 almost surely and on the events such that
Y T
t = xT+t one has

E[Y T
t+1|Y T

t ,=t] = −E[I(−xT+t+1 −M)xT+t+1|xT+t,=t]
≤ −E[xT+t+1|xT+t,=t] < −xT+t = Y T

t .

Summarizing, it is always the case that E[Y T
t+1|Y T

t ,=t] ≤ Y T
t . Hence Y T

t is a
super-martingale bounded from below by 0 and by the Martingale Convergence
Theorem there exists a random variable Ŷ T , such that limt→∞ Y

T
t = Ŷ T almost

surely.

If for some T it is Ŷ T > M with finite probability, then on a positive measure
set of realizations it would be limt→∞ |x|T+t = Ŷ T . The latter is absurd given the
non-zero drift of the process in those regions. Thus Ŷ T = 0 with probability 1.
This means that for any T there exists a t such that yT+t ∈ (−M,M) and the
assertion is proved.

The second set of sufficient conditions can be obtained from Corollaries 3.1 and
3.3.
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Corollary 3.4. Consider a bounded increments process {xt}. If there exist ε, δ > 0
such that, definitely in t and almost surely,

lim inf
x→−∞

µt(x)− vt(x)

2x
− ε

|x|2−δ
≥ 0 and

lim sup
x→+∞

µt(x)− vt(x)

2x
+

ε

|x|2−δ
≤ 0 ,

(3)

then the process is persistent.

Proof. Consider the process {yt} as defined in the proof of Cor. 3.1. Derive the
expressions of the left and right asymptotic conditional drift of {yt}, as in Cor. 3.1
and 3.3 respectively. If (3) applies, then the process {yt} fulfills the hypothesis of
Theorem 3.2, whence the assertion.

4 Transient processes

Having derived sufficient conditions for the process to be persistent, we want to
do the same for transience. For this purpose, we need to restrict our investigation
to processes that do not have finite fixed points.

Definition 4.1. A process {xt} has finite positive increments if there exists a εL >
0 such that a.s. Prob {xt+1 > xt + εL} > εL. A process {xt} has finite negative
increments if there exists a εL > 0 such that a.s. Prob {xt+1 < xt − εL} > εL.

For the present discussion, the essential feature of a process with finite positive
increments is that its asymptotic supremum (limsup) cannot be a finite number,
apart, possibly, for a zero-measure set of realizations. In the case of a process with
finite negative increments, the same is true for the asymptotic infimum (liminf).

The following result shows that a bounded process with finite positive increments
and positive drift outside a finite set diverges to positive infinity and, consequently,
is transient.

Theorem 4.1. Consider a bounded increments process {xt} with finite positive
increments. If there exists ε, δ > 0 such that, definitely in t and almost surely,

lim inf
x→±∞

µt(x)− vt(x)

2x
− ε

|x|2−δ
≥ 0 (4)

then the process is transient and Prob {limt→∞xt = +∞} = 1.
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Proof. Since the process satisfies the condition of Cor. 3.1, there exists an M ′ such
that Prob {lim supt→∞ xt > −M ′} = 1. Together with the fact that the process
has finite positive increments, the latter implies that lim supt→∞ xt = +∞. Let
B > 0 be such that |xt+1 − xt| < B almost surely and consider a positive real
number M > max{B, 1}. Define the process

yt =

{
1− 1

xt
if xt > M ,

0 otherwise .

Since M ≥ 1, the process {yt} is bounded in [0, 1]. Moreover one has that
Prob {lim supt→∞ yt = 1} = 1. Let K ≥ 1 − 1/(M + B). If yt > K, then
xt > 1/(1−K) ≥M +B and, with probability one, xt+1 > M , thus

E[yt+1−yt|yt > K,=t] =

∫ B

−B
dFxt,t(u)

1

xt
− 1

xt + u
≥ µt(xt)

x2
t

− vt(xt)
2x3

t

− B3

3 (x−B)4
,

where Fx,t(u) denote the conditional distribution of the increment ut = xt+1 − xt
if xt = x. For sufficiently large xt, substituting inequality (4), one gets

E[yt+1 − yt|yt > K,=t] ≥
ε

x4−δ
t

− B3

3 (xt −B)4
.

Upon choosing K large enough, the above condition applies, so that E[yt+1−yt|yt >
K,=t] > 0. Thus, the process {yt} satisfies all the requirements of Theorem 2.2
in Lamperti (1960) and, consequently, Prob {limt→∞ yt = 1} = 1. The assertion
immediately follows.

Along the same lines it is possible to prove the divergence to negative infinity of a
process with finite negative increments and asymptotically negative drift.

Corollary 4.1. Consider a bounded increments process {xt} with finite negative
increments. If there exist ε, δ > 0 such that, definitely in t and almost surely,

lim sup
x→±∞

µt(x)− vt(x)

2x
+

ε

|x|2−δ
≤ 0 (5)

then the process is transient and Prob {limt→∞xt = −∞} = 1.

The case of a homogeneous random walk with non-negative drift falls in one of the
two cases of Theorem 4.1 or Corollary 4.1, with δ = 2. In general, if the process
has asymptotic drifts at plus and minus infinity with definite signs, it is transient.
When the drifts of the process outside a bounded set have a different sign, as long
as they point away from the origin, the process is still transient as clarified by the
following
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Theorem 4.2. Consider a bounded increments process xt with positive and nega-
tive finite increments. If there exist ε, δ > 0 such that, definitely in t and almost
surely

lim sup
x→−∞

µt(x)− vt(x)

2x
+

ε

|x|2−δ
≤0 and

lim inf
x→+∞

µt(x)− vt(x)

2x
− ε

|x|2−δ
≥0 ,

(6)

then the process is transient and, with probability one, either limt→∞ xt = +∞ or
limt→∞ xt = −∞.

Proof. The process {|xt|} has bounded and finite increments and by hypothesis
satisfies the condition of Theorem 4.1. Thus, limt→∞ |xt| = +∞ almost surely.

Assume that on a positive measure of trajectories it is lim inft→∞ xt = −∞ and
lim supt→∞ xt = +∞. Consider a M > B. Then on those trajectories, for any t
for which xt > M there exists a t′ for which xt′ < −M . Since M > B, this implies
that there is a t′′ such that t < t′′ < t′ and xt′′ ∈ [−M,M ], that is |xt′′| ∈ [0,M ].
Hence the set [0,M ] would be recurrent for the process {|xt|}, but this is absurd
given the previous result. The statement follows directly.

According to the previous theorem, if one defines two sets Σ−∞ and Σ+∞ of tra-
jectories converging, respectively, to minus and plus infinity, it is P (Σ1 ∪Σ2) = 1.

All the previous results can also be applied to diverging processes, e.g. by removing
an unconditional drift µ̄. In this case, it is the sign of the relative drift µt(x)−µ̄ for
large positive and negative x that can be used to decide whether the trajectories
of the process visit with probability one a neighborhood of µ̄ t or accumulate far
away from it.

5 Applications and Examples

In this section, inspired by problems in the economic discipline, we briefly discuss
simple examples that clarify the domain of application of the previous results.
We shall consider the problem of characterizing long-run populations shares in
an evolutionary game with stochastic payoffs, long-run relative consumption in a
dynamic stochastic exchange economy with heterogeneous agents, and long-run
posterior beliefs of a Bayesian learner who has a misspecified prior support and
undereacts to information.
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In all examples we assume that in each period t a state of nature st ∈ {1, . . . , s, . . . , S}
can occur. σt ∈ Σt is the history of states till t and σ is a path ∈ Σ. = is the
σ-algebra generated by the partial histories. The measure P on (Σ,=) is kept
general or derived from an i.i.d. Bernoulli process with π = (π1, π2, . . . , πS) � 0,
depending on the example.

5.1 Discrete-time stochastic replicator dynamics

We are concerned with a stochastic version of the discrete-time replicator dynamics
(Taylor and Jonker, 1978; Bishop and Cannings, 1978; Weibull, 1997) describing
the competition of strategies in repeated games or, equivalently, of species in a
varied fitness landscape. Assume to have N strategies (species) and let pt =
(p1
t , . . . , p

N
t ) be the fraction of each strategy in the whole population at time t.

Then the fraction of strategy h at time t+ 1 is

pht+1 = pht
fh(pt)∑N
i=1 p

i
tf
i(pt)

, h = 1, . . . , N , (7)

where fh(p) > 0 is the fitness (payoff) of strategy h when p is the vector of
population shares.

First, we shall make the simplifying assumption that the fitness fh does not de-
pend on the relative abundance of strategy p but instead on some external factor
described by the i.i.d. process {st} with probability π(s) > 0.5 Then fh(s) > 0 is
the fitness of strategy h if the external condition s is realized. On a realization σ
of the process, the evolution of the population shares reads

pht+1 = pht
fh(st+1)∑N
i=1 p

i
tf
i(st+1)

, h = 1, . . . , N . (8)

The assumption that fh does not depend on p makes the deterministic version
of model in (7) rather trivial: if h is the strategy with the highest fitness, it is
limt→∞ p

h
t = 1. For the stochastic version (8), one has the following

Theorem 5.1. If strategy h is such that the geometric average of its fitness is
greater that the geometric average of the fitness of any other strategy,

S∏
s=1

fh(s)πs >
S∏
s=1

f i(s)πs ∀i 6= h ,

then a.s. limt→∞ p
h
t = 1.

5Examples of external factors are aggregate demand or technological shocks in a model where
firms compete for market shares.
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Proof. Consider k 6= h and let xt = log pht /p
k
t , so that xt−xt−1 = log fh(st)/f

k(st).
By hypothesis, for at least one s, it is log fh(st)/f

k(st) > 0 so that the process {xt}
has finite positive increments (c.f. Definition 4.1). For each strategy i, define the

lowest and greatest fitness f i = mins f
i(s) and f

i
= maxs f

i(s). Then log fh/f
k ≤

xt − xt−1 ≤ log f
h
/fk so that the process {xt} has bounded increments (c.f. Defi-

nition 2.2). Notice that, by hypothesis, E[xt − xt−1] =
∑S

s=1 log fh(s)/fk(s) > 0.
Thus, according to Theorem 4.1, it is limt→∞ p

k
t = 0 almost surely. Since this is

true for any k 6= h, the statement follows.

The stochastic version is qualitatively similar to the deterministic one. The appro-
priate quantity to measure the dominance of strategies is the geometric average of
their stochastic fitness.

Consider now the case in which there are two strategies and the fitness of strategy
h = 1, 2 depends on random external factors as before but also, linearly, on the
fractions of the two strategies composing the population fh(p, s) =

∑2
i=1 a

h
i (s) p

i,
with aij(s) > 0 for any i, j = 1, 2 and any s. Thus on a realization σ, the evolution
of the population shares reads

pht+1 = pht

∑2
j=1 a

h
j (st+1)pjt∑2

i=1

∑2
j=1 p

i
t a

i
j(st+1) pjt

, h = 1, 2 . (9)

Let āij =
∏S

s=1 a
i
j(s)

πs . Then we have the following

Theorem 5.2. If ā1
2 > ā2

2, then a.s. lim inft→∞ p
1
t > 0. If ā1

1 < ā2
1, then a.s.

lim inft→∞ p
2
t > 0.

Proof. We prove the first part of the statement. Let xt = log p1
t/p

2
t and define

the lowest and greatest fitness a1 = mins,i a
1
i (s) and a1 = maxs,i a

1
i (s). Then

log a1/a1 ≤ xt − xt−1 ≤ log a1/a1 so that the process {zt} has bounded incre-
ments (c.f. Definition 2.2). Define µt(x) = E[xt+1|xt = x] − x and notice that
limx→−∞ µt(x) = log ā1

2 − log ā2
2. Since the latter is positive by hypothesis, the

statement follows from Theorem 3.1. The second part of the statement is proved
analogously.

The case in which both conditions of the previous theorem are satisfied is that
of heterophilic interactions between strategies. The result is consistent with the
shares of the two strategies reaching an equilibrium but also with persistent, pos-
sibly huge, fluctuations in the composition of the population.
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The analysis can be extended to two groups g = 1, 2 of a finite populations of
strategy h = 1, . . . , N . Without loss of generality assume that the first M1 strate-
gies are in group g = 1, and the other M2 = N −M1 agents are in group g = 2.
We name pg,t the aggregate size population of group g so that

p1,t =

M1∑
h=1

pht and p2,t =
N∑

h=M1+1

pht .

Let φhg,t ∈ ∆Mg be the share of population h in group g at date t, so that pht =
φhg,tpg,t. From eq. (9), the group population dynamics is

pg,t+1 = pg,t

∑2
f=1 l

g
f (φ1,t, φ2,t, st+1)pf,t∑2

e=1

∑2
f=1 pe,t l

e
f (φ1,t, φ2,t, st+1) pf,t

, g = 1, 2 .

where
lgf (φ1,t, φ2,t, st+1) =

∑
h∈Mg

∑
j∈Mf

ahj (st+1)φhg,tφ
j
f,t .

Note that the process xt = log(p1,t/p2,t) is real, adapted, and, given an initial
state z0 its value in (t, σt) depends on the whole history σt. That is, in general,
the process is not Markov. Nevertheless, if the drift conditions are valid for all
possible realizations, or even more, for all possible composition of the fractions,
then we can still use them to characterize long-run survival. Let l̄gf (φ1, φ2) =∏S

s=1 l
g
f (φ1, φ2, s)

πs . Then we have the following

Theorem 5.3. If minφ1∈∆M1 ,φ2∈∆M2

{
l̄12/l̄

2
2

}
> 1, then a.s. lim inft→∞ p1,t > 0.

If minφ1∈∆M1 ,φ2∈∆M2

{
l̄11/l̄

2
1

}
> 1, then a.s. lim inft→∞ p2,t > 0.

Proof. Along the lines of the proof of Theorem 5.2, define µt(x) = E[xt+1|xt = x]−
x and notice that limz→−∞ µt(x) > minφ1∈∆M1 ,φ2∈∆M2

{
log l̄12(φ1, φ2)− log l̄22(φ1, φ2)

}
.

Since the latter is positive by hypothesis, the statement follows from Theorem 3.1.
The second part of the statement is proved analogously.

5.2 Market selection in growing CRRA economies

In what follows, we consider an endowment economy populated by two agents
with heterogeneous beliefs and, possibly, preferences. The latter are represented
by a time separable subjective expected utility with constant relative risk aversion.
The question is to determine the long-run consumption distribution when agents
can engage in speculative trades. Sandroni (2000) and Blume and Easley (2006)
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provides results for bounded economies with complete markets, we shall instead
look at possibly unbounded economies.

The measure P on paths is kept general and all states occur with positive probabil-
ity. We denote with πt,s(σt) = Pt+1(σt, s)/Pt(σt) the probability of the realization
of state (σt, s) conditional upon the history σt. Each agent i = 1, 2 observes
the realization of the process {st} and assigns to partial histories σt a marginal
probability P i

t . We assume that for each i and each t, P i
t and Pt are absolutely

continuous with respect to each other.

There is a unique good after each history. Agent i receives an endowment {eit} and
is allowed to trade in a complete market. We assume that the expected aggregate
endowment et = e1

t + e2
t is growing (or shrinking) at a (possibly stochastic) rate

gt+1 = log et+1/et and that the process has bounded increments. We denote ḡt
the expected log growth rate, ḡt(σt) =

∑S
s=1 πt,s(σt) log (et+1(σt, s)/et(σt)). Under

date 0 trading, naming q(σt) the price of consumption in node σt, each agent
i = 1, 2 solves

max
{cit}(t,σ)

∑
t≥0,σt∈Σt

(βi)tP i(σt)u
i(cit(σt))

such that ci0 +
∑

t>0,σt∈Σt

q(σt)c
i
t(σt) ≤ ei0 +

∑
t>0,σt∈Σt

q(σt)e
i
t(σt),

where ui(c) = c1−γi when γi > 0 and γi 6= 1, and ui(c) = log c when γi = 1. Using
F.O.C. and the expression of the Bernoulli utility ui(c) one gets

cit(σt) =

(
(1− γi)(βi)tP i

t (σt)

λiq(σt)

)1/γi

,

where λi is the Lagrange multiplier of the individual intertemporal budget con-
straint. Prevailing prices q(σt) and the Lagrange multipliers can be computed
using budget constraints and the market clearing condition et = c1

t + c2
t . In gen-

eral, they are only implicitly defined. The relative consumption dynamics can be
derived from Euler equations and reads

cit+1(σt+1) = cit(σt)

(
βiπit,st+1

(σt)
q(σt+1)

q(σt)

)1/γi

, (10)

where πit,s(σt) = P i
t+1(σt, s)/P

i
t (σt) is the probability assigned in t to the realization

of state (σt, s) conditional upon the history σt. For each agent i = 1, 2 define a
survival index

I i(σt) = log βi − γi ḡt(σt)− Πi
t(σt) (11)
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where Πi
t(σt) =

∑S
s=1 πt,s(σt) log(πt,s(σt)/π

i
t,s(σt)) is the relative entropy of the

individual conditional probabilities with respect to the truth. Thus the following
applies

Theorem 5.4. Consider a bounded increments process {et}. If for all (t, σ)
I1(σt) > I2(σt), then a.s. limt→∞ c

1
t (σt)/c

2
t (σt) = 0.

Proof. Consider the process xt(σt) = log c1
t (σt)/c

2
t (σt). From (10)

xt+1(σt, s)− xt(σt) =
β1

γ1
− β2

γ2
+
π1
s(σt)

γ1
− π2

s(σt)

γ2
+

(
1

γ2
− 1

γ1

)
log

q(σt, s)

q(σt)
. (12)

If c1 → 0, that is x → −∞, agent 2 consumption becomes equal to the whole
endowment so that by (10) it is

q(σt, s)

q(σt)
= β2π2

s(σt)

(
et(σt)

et+1(σt, s)

)γ2
.

By direct substitution in (12) and taking expectation, the drift of the process xt
at −∞ becomes

µ(−∞) =
1

γ1

(
I1(σt)− I2(σt)

)
.

By the same argument, when c2 → 0 one can write the drift of the process xt at
+∞ to obtain

µ(+∞) =
1

γ2

(
I1(σt)− I2(σt)

)
.

Thus, if we can prove that the process x(σt) has bounded and finite positive
increments, we can apply Theorem 4.1 and conclude that a.s. limt→∞ x(σt) = +∞,
hence the assertion.

Having, by assumption, I1(σt) > I2(σt) for all (t, σ), implies that for all (t, σ) there
exists an s such that

β1π1
t,s(σt)

(
et+1(σt)

et(σt, s)

)γ1
> β2π2

t,s(σt)

(
et+1(σt)

et(σt, s)

)γ2
. (13)

Now notice that, due to market clearing conditions, it is(
βiπit,s(σt)

q(σt)

q(σt, s)

)1/γi

≤ et+1(σt, s)

et(σt)
≤
(
βjπjt,s(σt)

q(σt)

q(σt, s)

)1/γj

(14)

for i 6= j with i, j = 1, 2. But according to (13) it must be i = 2, so that
c1
t+1(σt, s)/c

1
t (σt) > et+1(σt, s)/et(σt) and c2

t+1(σt, s)/c
2
t (σt) < et+1(σt, s)/et(σt),
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which in turn implies xt+1(σt, s) > xt(σt). Hence, the process xt has finite positive
increments. Moreover for (14) for all (t, σ) it is

q(σt, s)

q(σt)
≤ max

i=1,2

{
βiπit,s(σt)

(
et(σt)

et+1(σt, s)

)γi}
.

Since by assumption the process {et} has bounded increments, then the process
{xt} has bounded increments too.

The agent with the lowest survival index asymptotically consumes a negligible
fraction of the aggregate endowment and disappears from the economy. When ḡt
is positive, a large intertemporal elasticity of consumption (low γ) denotes a high
propensity to transfer consumption to future dates and it is thus advantageous for
survival, in line with results of the incumbent literature (see e.g. Yan, 2008). If
Bernoulli risk aversions are equal, γ1 = γ2, the aggregate growth rate of the econ-
omy does not matter and the agent with the highest value of log βi−Π(πi) domi-
nates, asymptotically consuming the whole aggregate endowment. If intertemporal
discount factors are also equal, β1 = β2, it is the agent with the most accurate
beliefs, in relative entropy terms, who dominates. This is the only case in which
one is certain that prices reflect wholly, in the long run, the most accurate model
initially available in the market.

5.3 Bayesian learning with under-reaction and miss-pecified
models

Assume that states st ∈ {1, 2, . . . , S} are generated by Bernoulli process with
probability π = (π1, . . . , πS)� 0. The measure P on paths is derived accordingly.

Consider a Bayesian learner with a prior w0 = (w1
0, w

2
0) on the two Bernoulli models

{π1, π2} with π1 6= π2 and πi � 0, i = 1, 2. We shall also assume that neither
model coincides with the truth: πi 6= π, i = 1, 2. For simplicity we consider only
two models and each model is a Bernoulli process. Note however that we could
generalize the analysis and each model could be quite complicated, as in Bayesian
model averaging.

A Bayesian learner under-react to the news, giving a weight α ∈ [0, 1) to the old
posterior as in Epstein et al. (2008), if the map from prior to posterior is

wit+1(σt+1) = (1− α)
πist+1

wit(σt)

π1
st+1

w1
t + π2

st+1
w2
t (σt)

+ αwit(σt) i = 1, 2 . (15)

Define the stochastic process xt = logw1
t /w

2
t . One has the following
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Lemma 5.1. The process {xt} has bounded and finite positive and negative incre-
ments.

Proof. Having π1 6= π2 implies that there exists an s such that π1
s > π2

s and an
s′ such that π2

s′ > π1
s′ . It is immediate to verify that if st+1 = s then xt+1 > xt

and if st+1 = s′ then xt+1 < xt. Thus the process has finite positive and negative
increments. Let π+ = maxi,s{πis} and π− = mini,s{πis}. It is immediate to verify
that

log
π−

π+
≤ xt+1 − xt ≤ log

π+

π−

so that the increments of the process are bounded.

Define the relative entropy of the model πi with respect to the truth6

Iπ(πi) = −
S∑
s=1

πs log
πs
πis

.

Based on the previous Lemma one can easily prove the following

Theorem 5.5. If Iπ(π1) < Iπ(π2) then a.s. limt→+∞ xt > −∞.

Proof. Consider the asymptotic conditional drift

µ(−∞) = lim
x→−∞

E[xt+1 − xt|xt = x] = Iπ(π2)− Iπ((1− α)π1 + απ2) .

By the concavity of the log function

Iπ((1− α)π1 + απ2) < (1− α) Iπ(π1) + α Iπ(π2)

so that, substituting in the expression of the asymptotic drift, one gets

µ(−∞) > (1− α)
(
Iπ(π2)− Iπ(π1)

)
> 0

and the statement follows from Theorem 3.1.

The meaning of the previous theorem is that, also with under-reaction updating,
the Bayesian learner always assigns a positive weight to the strategy that is better
in terms of entropic divergence. But one can say more.

Theorem 5.6. Assume Iπ(π1) < Iπ(π2). If, furthermore, Iπ(π1) < Iπ(απ1 + (1−
α) π2), then the process {xt} is transient and a.s. limt→+∞ xt = +∞. If instead
Iπ(π1) > Iπ(απ1 + (1− α) π2) then the process {xt} is persistent.

6Using the notation of the previous example, the relative entropy of πi is Πi.
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Proof. First note that having assumed Iπ(π1) < Iπ(π2), Theorem 5.5 applies.
Consider the asymptotic conditional drift

µ(+∞) = lim
x→+∞

E[xt+1 − xt|xt = x] = Iπ(απ1 + (1− α) π2)− Iπ(π1) .

If the first hypothesis is true, then µ(+∞) > 0 and, according to Cor. 4.1, the
process is transient. If the second hypothesis is true, then µ(+∞) < 0 and,
according to Theorem 3.2, the process is persistent.

The previous theorem provides sufficient conditions for the learner to converge to
the best model: the relative entropy of the best model should be lower than the
entropy of an appropriate mixtures of the two. As expected, in the case of pure
Bayesian learning, α = 0, the best model gets all the weight in the long run. More
generally, the case in which the learner does not converge to a specific model but
rather keeps on updating her model indefinitely results generic.
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