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Abstract
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1 Introduction

The Market Selection Hypothesis (MSH) applied to financial markets implies that
traders’ beliefs heterogeneity can be only a short-run phenomenon. In the long-run,
the trader with the most accurate beliefs about asset’s future dividends should gain
all the wealth and price assets accordingly. Indeed, benchmark equilibrium asset
pricing models, such as Lucas’ model and the CAPM, just dismiss heterogeneity
away and assume that all traders have correct beliefs about the assets’ returns
distribution. Despite these models provide an insightful characterization of the
relation between assets equilibrium returns and risk preferences, they have not
been validated by data1. In this paper we investigate whether relying on the MSH
is a possible source of failure. Are financial markets likely to select for the most
accurate beliefs?

The formal investigation of the MSH has started only many years after its for-
mulation by Alchian (1950) and Friedman (1953). The seminal works by DeLong
et al. (1991) and Blume and Easley (1992) have led to two strands of literature. In
the first group, agents are expected utility maximizers, have rational price expec-
tations, but disagree on the dividend process; see e.g. Sandroni (2000); Blume and
Easley (2006); Jouini and Napp (2006) for discrete time models and Jouini and
Napp (2007); Yan (2008); Cvitanić et al. (2012) for continuous time models. The
main finding is that when markets are complete they do select for a unique trader.
Both saving behavior and accuracy of beliefs are important and only the agent
who maximizes a given survival index has positive wealth in the long-run.2 Beliefs
heterogeneity is only transient and assets are priced by the surviving agent.3,4

Another strand of literature has instead focused on market selection in economies
where agents behavior can be modeled directly in terms of saving and portfolio
rules, not necessarily coming from expected utility maximization under rational
price expectations. These works contend that agents are able to coordinate on
having perfect foresight on future prices, especially when they disagree on the div-
idend process, and prefer to assume that agents’ investment strategies are given
adapted process. The question is whether also in this more realistic set-up the

1For a list of puzzles and asset pricing anomalies see e.g. the entries “Financial Market
Anomalies” and “Finance (new developments)” in the New Palgrave Dictionary of Economics.

2The survival index takes into account the trade-off between beliefs accuracy and saving
behavior; see e.g. Yan (2008).

3See however, Cvitanić and Malamud (2011) for a distinction between the price and portfolio
impact of a vanishing agent and Cvitanić et al. (2012) for an appraisal of the impact of vanishing
agents on cumulated returns.

4Heterogeneity may be persistent when markets are incomplete, see e.g. the examples in
Blume and Easley (2006) and their extension in Beker and Chattopadhyay (2010) and Coury
and Sciubba (2012), when agents have recursive preferences (Borovička, 2015; Dindo, 2015), or
when agents are ambiguity averse (Guerdjikova and Sciubba, 2015).
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market selects for a unique agent. An interesting result is that when saving is ho-
mogeneous across agents there exists a portfolio rule that dominates against any
other combination of adapted rules. This portfolio, named generalized Kelly after
Kelly (1956), invests on each asset proportionally to its expected dividends, see
e.g. Evstigneev et al. (2009) for a survey. In particular Evstigneev et al. (2008)
establish the global dominance of the generalized Kelly rule in an i.i.d. exchange
economy where agents can trade multiple long-lived assets. However, a character-
istic of the generalized Kelly rule is that it relies on the exact knowledge of the
dividend process. On the one hand, when the rule is used by some agents the
market converges to a representative agent economy. Moreover, since when alone
in the economy a generalized Kelly trader holds the same portfolio of an agent
who has the same beliefs and maximizes an intertemporal expected log-utility, the
economy converges to a Lucas’ log-economy, validating the MSH. On the other
hand, it is not known what happens when no agent with correct beliefs is in the
market.5

In this work we investigate the implication of the MSH for pricing assets in
a standard exchange economy with a finite number of agents having homoge-
neous saving rates6 and heterogeneous portfolios. Agents can transfer consump-
tion across time and states by means of long-lived assets. The states of the world
follow an i.i.d. process and we consider both complete and (exogenously) incom-
plete markets. We assume that agents purchase assets according to the generalized
Kelly rule of Evstigneev et al. (2008), that is, agents invest on each asset a fraction
of wealth proportional to its expected dividends. Since we assume that both rela-
tive dividends and beliefs are i.i.d., each agent’s portfolio is fixed-mix and invests
a constant fraction of wealth on each given asset. Moreover, heterogeneous beliefs
are chosen such that each agent holds a different portfolio.

Validating the MSH in this context would imply that, even when no agent
knows the truth, only the agent with the most accurate beliefs has positive wealth
in the long-run and prices assets. In particular, given that the asymptotic log-
optimality of the generalized Kelly portfolio, the prediction of Lucas’ model (with
a log-utility maximizer) would be recovered in the limit. Otherwise, when more
agents have positive wealth in the long-run, we shall show that beliefs heterogeneity
cannot be ignored for characterizing assets’ returns.

5Bottazzi and Dindo (2014) investigate the same issue in an economy with short-lived assets,
finding that the MSH does not generally hold. Bektur (2013) shows that the agent whose rule
is the “closest” to the generalized Kelly rule derived using correct beliefs survives almost surely.
In a market for short lived assets, Lensberg and Schenk-Hoppé (2007) find that the generalized
Kelly rule that relies on correct beliefs comes out as the asymptotic outcome of a Darwinian
model of selection and reproduction implemented through genetic programming.

6As we shall see this can be related to the homogeneity of discount factors.
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We assume that agents choose how to allocate their wealth across assets using a
fixed-mix portfolio (such as the generalized Kelly rule) rather than using a portfolio
that maximizes an intertemporal utility for three reasons. First, in a market for
long-lived assets, the optimality of a trading rule relies on agents having perfect
foresight on future prices, an hypothesis much stronger than that of agents not
knowing the dividend process.7 We view our fixed-mix rules as a first step in
relaxing the hypothesis of rational price expectations. In fact, a generalized Kelly
portfolio is still log-optimal, conditional on the beliefs used to derive it, in the
limit when it determines assets’ prices. As a result, if in our model an agent with
accurate beliefs fails to dominate, it is not because, conditionally on her beliefs, she
ends up using a non-optimal rule when he has gained a large amount of wealth but,
rather, because of the non-optimality of the portfolio rules used by her opponents
in this limit. Indeed, although one can question that ’smart’ traders use non-
optimal rules, we do not see strong arguments that prevent ’noise’ traders to do
so.

Second, simple trading rules have attracted the attention of several scholars in
recent works. Using a genetic algorithm, Allen and Karjalainen (1999) prove that,
after transaction costs, complicated technical trading rules do not earn superior out
of sample returns with respect to a simple strategy that buys and hold the market
portfolio. Gigerenzer and Brighton (2009) argue that when agents face uncertainty
instead of risk, they tend to use simple heuristics such as fixed-mix rules. This
view is confirmed in the work of Benartzi and Thaler (2007): people confronted
with the decision of how to allocate their savings for retirement usually rely on
naive diversification. That is, given N different alternatives, people tend to invest
a fraction 1/N of their saving in each alternative. Brennan et al. (2005) consider
the data of the Center for Research in Security Prices (CRSP) for the period
from December 1925 to December 2003 and shows that investing in a monthly
rebalanced portfolio which allocates 50% of the wealth in the market portfolio and
50% in the risk-less bond outperforms a strategy that buys and holds the market
portfolio or that buys the market portfolio according to the so-called Dollar Cost
Averaging.8 DeMiguel et al. (2009) test naive diversification against sophisticated
optimal rules and find that it does not under-perform. They use seven different
database of financial prices and show that the fixed portfolio rule of investing 1/N
of the wealth in each asset provides no-worst results than investment strategies
derived from Mean-Variance optimization.9.

7In particular, why should (endogenously determined) prices be easier to forecast than (ex-
ogenously given) dividends?

8The result can be reconciled with the one of Allen and Karjalainen (1999) noticing that
Brennan et al. (2005) do not consider transaction costs. For an appraisal of buy and hold and
fixed-mix portfolios see e.g. Perold and Sharpe (1988).

9This result is driven by the fact that a Mean-Variance strategy relies on the estimation of
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Third, in an economy of fixed-mix traders it is already known that the gener-
alized Kelly rule derived under correct belies dominates almost surely (Evstigneev
et al., 2008). Moreover, when nobody plays the generalized Kelly rule with cor-
rect beliefs, if there is a rule properly “close” to it, then it survives almost surely
(Bektur, 2013).10 Finding that the rule with most accurate beliefs also dominates
would indicate that the MSH should have asset pricing implications also in finan-
cial markets where portfolio rules rely neither on perfect foresight on future prices
nor on the exact knowledge of the dividend process.

Working directly with fixed-mix rules has the advantage that the dynamics of
wealth and asset prices can be derived from the intertemporal budget constraints
and market clearing equations.11 Although the two dynamics are coupled -since
assets are long-lived their payoffs determine the new wealth distribution but the
wealth distribution determines, through prices, assets payoffs- we are able to solve
them explicitly and find an expression of assets payoffs that depends only on
agents rules and wealth distribution. Long-run outcomes of the market dynamics
can then be studied by means of the Martingale Converge Theorem. In particular,
we provide sufficient conditions for a group of agents to have a positive, null,
or unitary, fraction of wealth in the long-run. In the simplest case of a 2-agent
economy, the sufficient conditions are also necessary (but for hairline cases) and
particularly easy to check. Based on these results we are able to characterize when
long-run heterogeneity occurs.

Our main finding is that the MSH does not hold generically. Depending on
the initial agents’ beliefs distribution there exist cases where agents with heteroge-
neous beliefs, and heterogeneous portfolios, have positive wealth in the long-run.
When this is the case the relative wealth distribution changes over time, so that
different portfolios have a different impact on asset prices in different periods. The
distribution of risk neutral probabilities depends on the distribution of relative
wealth and has as support the subset of the simplex defined by agents’ beliefs.
Moreover, we find that these cases occur in all economies, that is, no matter the
exact asset structure and the number of agents, and are generic, that is, they do
not disappear if agents beliefs are locally perturbed. We explore numerically the
occurrence of long-run heterogeneity by analyzing some examples and find that

the covariance matrix over past returns. Such estimation can be heavily biased and this lets the
portfolio be characterized by extremely unprofitable positions.

10“Close” for Bektur means component by component. As we shall show that the appropriate
“distance” is instead the relative entropy of the whole portfolio.

11The use of rules has also disadvantages, for example the fact that one cannot rule out
arbitrage by relying on agents demand being optimal. However we are still able to give conditions
that exclude arbitrage by working directly with the (endogenously determined) payoff matrix.
Generalized Kelly rules naturally satisfy these conditions, see Proposition 3.1.
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the areas of beliefs combinations where heterogeneity occurs are large. It appears
that the survival of different agents is related to portfolios and dividends being
anti-correlated: if an agents invests more in the asset that pays more in one state
while the other agent invests more in an asset that pays more in another state,
then the outcome is long-run heterogeneity.12

The possibility to work with both complete and incomplete markets lets us
study whether the survival of heterogeneous beliefs is more or less likely when
markets are completed. We show that both cases occur. This result can be related
to what Fedyk et al. (2013) argue about the welfare effects of enlarging the asset
span. A simple example shows that when no one knows the truth and the investing
rules are fixed-mix, adding assets may actually lead to long-run survival of multiple
agents, and possibly increasing total welfare.

The contrast between our results and those of the general equilibrium literature
with complete markets of Sandroni (2000) or Yan (2008) lies in the non-optimality
of generalized Kelly rules. Consider an economy with two agents, i and j and
assume that the beliefs of i are more accurate. When both agents hold log-optimal
portfolios, agent i dominates and agent j vanishes. If instead we find that j does
not vanish, then it must be that agent j non-optimal portfolio is “better” then the
optimal portfolio derived under her beliefs, at least in the limit when agent i has
most of the wealth. Thus, the non-optimality of agent j portfolio ’corrects’ for the
non-optimality of her beliefs, leading to “better” portfolios and to her survival.

In order to provide an intuition of the interplay between non correct beliefs and
non optimality for the formation of portfolios, we define the “effective” beliefs of an
agent as those (time-varying) beliefs such that the generalized Kelly rule derived
using the original beliefs coincides with the log-optimal portfolio rule derived using
effective beliefs (and rational price expectations). Since a generalized Kelly port-
folio is log-optimal in the limit of the agent using it having all the wealth, when an
agent has most of the wealth effective beliefs and beliefs coincide. However, when
assets’ returns are determined by both agents, they differ. In particular, given two
agents, the effective beliefs of each agent turn out to be a combination of his beliefs
with the beliefs of the other agent. The larger the wealth share of one agent, the
larger her impact on equilibrium returns, the larger the weight of her beliefs in
determining both agents effective beliefs.13 Long-run heterogeneity occurs when
agent i effective beliefs are more accurate than agent j beliefs when assets’ returns

12The result seems related to the analysis of the impact of pessimism and optimism on asset
prices performed in Jouini and Napp (2010). Note however that their result is non-generic in
that it holds only when agents’ bias is equal, so that they have the same survival index. See also
Blume and Easley (2009). Our results are instead non-generic.

13Given that the relative importance of capital gains and dividend yields for assets’ returns
depends on the market discount rate, the latter plays also a role for how much each agent effective
beliefs incorporate the other agent beliefs.
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are determined by agent j (because she holds most of the endowment) and, at the
same time, agent j effective beliefs are more accurate than agent i beliefs when
assets’ returns are determined by agent i. The latter is typically the case when
the truth is “in between” agent i and agent j beliefs.

The structure of the paper is as follows. In Section 2 we introduce the model.
In Section 3 we characterize the coupled dynamics of asset prices and wealth shares
and show how and why arbitrages are excluded. In Section 4 we investigate the
long-run behavior of our exchange economy and provide sufficient conditions for
an agent, or a group of agents, to gain all wealth in the long-run. In particular,
in Section 4.2 we characterize long-run heterogeneity and show that it is a generic
outcome of an economy with long-lived assets. In Section 5 we discuss our results
in terms of effective beliefs and log-optimal portfolios and show, by mean of a
numerical exploration, that long-run heterogeneity occurs for a wide range of the
economy parameters. Section 6 concludes. All the proofs are collected in the
Appendix.

2 The Model

Time is discrete and indexed by t ∈ N0 = {0, 1, 2, . . .}. At each date t ∈ N one
of the possible S = {1, . . . , S} states of the world occurs.14 We assume that at
each date the state is drawn from the same distribution π over S, with π(s) =
πs, and that subsequent trials are independent. Without loss of generality π ∈
∆S

+ := ∆S ∩ RS
++.15 We denote by st ∈ {1, . . . , S} the state that occurs in t,

by σ = (s1, s2, ..., st, ...) an entire realization, and by σt the partial history up to
date t included. The set of all possible realizations is Σ. For each t ∈ N, the
σ-algebra generated by the realizations that share the same partial history till t is
=t and =0 := {∅,Σ}. We name = the smallest σ algebra that contains all =t, so
that {=t ; t = 0, 1, . . .} is a well-defined filtration of =. The probability measure
P on Σ is obtained as the product of all the measures π on S. The expected
value operator E [·] integrates with respect to the measure π or P depending on
the context. (Σ,=,P) is the probability space on which we construct our economy.
It is understood that all the random variables on (Σ,=) that we shall introduce
(dividends, asset prices, portfolios, wealth...) are adapted to the filtration {=t}.
For this reason we may use Xt(σt) in place of Xt(σ). Unless otherwise noted, all
our statements are true almost surely with respect to the probability measure P.

14Throughout the paper we use the same capital letter to denote a set and its cardinality,
when finite.

15Given RS , ∆S denotes its simplex, RS+ is the subset of vectors with non-negative components
(excluding the null vector), and RS++ is the subset of vectors with all positive components.
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We consider an exchange economy populated by I agents whose aggregate en-
dowment in each date t is Et units of the consumption good (apples, the numérarire
of the economy). The aggregate endowment dynamics can be any adapted stochas-
tic process on (Σ,=,P), we only assume that Et(σ) > 0, ∀ t ∈ N. Portions of the
aggregate endowment can be traded by exchanging K long-lived assets (trees).
Asset k ∈ K traded in t ∈ N0 pays a dividend Dk,t′ in t′ > t. Without loss of
generality, each asset is in excess unitary supply and the dividend of the market
portfolio is the aggregate endowment.

D1
K∑
k=1

Dk,t(σt) = Et(σt) , ∀ t ∈ N0 .

Each agent is endowed in t = 0 with a quantity of goods and a portfolio of assets.
In every period, agents consume dividends and trade assets to transfer future
consumption across time and states. Let hit = (hi1,t, . . . , h

i
K,t) be the asset holding

of agent i at time t. At the beginning of period t agent i holds as many assets as
those purchased in the previous period hit−1 = (hi1,t−1, . . . , h

i
K,t−1). Then a state

of the world is realized, st, and agent i receives an amount of dividends equal to
hi0,t =

∑K
k=1 h

i
k,t−1Dk,t(σt), with σt = (σt−1, st). After that agent i decides about

her current consumption and portfolio holding, Ci
t and hit respectively, and trades-

in dividends hi0,t and assets hit−1 to purchase them.16 Denoting the vector of date-t
asset prices as Pt = (P1,t, ..., PK,t), agent i budget constraint in t ≥ 1 is thus17

Ci
t +

K∑
k=1

Pk,th
i
k,t = hi0,t +

K∑
k=1

Pk,th
i
k,t−1 . (1)

Asset prices are fixed in competitive markets. Having assumed that assets are
in unitary supply, date-t asset-k market clearing condition reads

I∑
i=1

hik,t = 1 . (2)

The existence and uniqueness of positive clearing prices depends on agents’ de-
mands. We postpone to Section 3 the proof that under appropriate assumptions
there exists a unique vector of arbitrage free prices such that (1) and (2) holds.

A central quantity to our analysis is agents’ wealth. We define agent i wealth
in t as her pre-consumption net worth

W i
t =

K∑
k=1

Pk,th
i
k,t−1 + hi0,t =

K∑
k=1

hik,t−1(Pk,t +Dk,t) , ∀ i ∈ I . (3)

16In period t agent i net demand for asset k is thus hik,t − hik,t−1.
17The budget constraint in t = 0 is similar but dividends and assets’ holdings on the right

hand side of (1) come from the initial endowment of, respectively, apples and trees.
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Wt = (W 1
t , . . . ,W

I
t ) denotes the vector of agents wealth. Eqs. (1-2) can be re-

written in terms of W i
t and W i

t−1. To this end, it is convenient to express each
agent i ∈ I consumption and portfolio decision in t as a function of her wealth W i

t .
We denote with δit the fraction of wealth she saves, so that 1− δit is the fraction of
wealth she consumes, while xik,t is the fraction of the saved wealth which is used
to purchase asset k. We obtain

Ci
t = (1− δit)W i

t , and hit =
δitx

i
k,tW

i
t

Pk,t
. (4)

The vector xit = (xi1,t, ..., x
i
K,t) is agent i portfolio rule and the vector αit = δitx

i
t is

agent i investment rule. Given the budget constraint (1),
∑K

k=1 x
i
k,t = 1 ∀ i ∈ I

and ∀ t ∈ N0. Moreover, δit must be in (0, 1) to guarantee that consumption is
positive in every period. These conditions are naturally satisfied given the choice
of investment rule that we shall explicit in Section 2.2.

Using investment rules and agents wealth, budget constraints (1) and market
clearing conditions (2) can be re-written for all agents and for all assets as

W i
t =

K∑
k=1

(Pk,t +Dk,t)
δit−1x

i
k,t−1W

i
t−1

Pk,t−1
, ∀ i ∈ I , (5)

Pk,t =
I∑
i=1

δitx
i
k,tW

i
t , ∀ k ∈ K . (6)

Since assets are long-lived, the dynamics of agents’ wealth and assets’ prices is
coupled. Before solving (5-6), we further characterize assets dividends and agents
demands.

2.1 Assets

Together with D1 we assume that each asset relative dividend process, Dk,t/Et,
does not depend on partial histories.18 In other words there exists a K×S dividend
matrix D = [dk,s] such that

D2 Dk,t((σt−1, st)) = dk,stEt((σt−1, st)), ∀ k ∈ K and ∀ t ∈ N0 .

The vectors ds and dk denote, respectively, the s-th column and the k-th row of D.
The latter can also be viewed as a random variable on S.19 By D1,

∑K
k=1 dk,s = 1

for every s ∈ S. We also assume that dividends are non-negative and that every
asset pays a positive dividend in at least some states

18Given our modeling assumption this is also a restriction on initial endowments.
19Thus, under D2, E P[Dk,t|=t−1] = E π[dk] E P[Et|=t−1] for every k ∈ K and t ∈ N0.
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D3 dk,s ≥ 0 ∀ s ∈ S and E π[dk] > 0, ∀ k ∈ K;

then, we rule out the existence of redundant assets

D4 Rank(D) = K ≤ S.

As we shall show, the dividend matrix D, rather than the aggregate process {Et},
is central to the analysis of agents’ relative wealth dynamics. Some examples of
dividend matrices follow.

Diagonal Dividends Assume that there are as many assets as states, K = S,
and that the dividend of asset k in t is the entire aggregate endowment if and only
if state st = k is realized. Using our notation, and using δi,j for Kronecker’s delta,
asset k traded in t′ pays the dividend

Dk,t = δk,stEt for all t > t′ .

The dividend matrix D is just the S × S identity matrix, D = Is and D2−D4
are satisfied. Asset k traded in t′ is a bet on the occurrence of state st = k for all
t > t′. By construction assets dividends are anti-correlated.

Binomial Tree Here we construct the matrix D that replicates the simplest
canonical model of financial markets. Assume that the aggregate endowment fol-
lows a geometric random walk:

Et =

{
guEt−1 if st = 1
gdEt−1 if st = 2

,

with gu > gd. Two assets in unitary supply are available. The first, k = 1, is risky
and when purchased in t′ has dividends in all t > t′ equal to

D1,t =

{
(gu − gd)Et−1 if st = 1

0 if st = 2
.

The second asset is risk-free and has dividend in all t > t′ equal to gdEt−1 inde-
pendently of the state st, like a perpetual bond with a time-varying coupon. Since
the first asset is equivalent to a long position in the aggregate endowment and a
short position in the second asset, the market is equivalent to one with a risk-free
asset in zero supply and a risky asset, that pays the aggregate endowment as divi-
dends, in unitary supply. The dividend matrix D is found by imposing D1−D2.
Defining r = gd/gu ∈ (0, 1):

D =

[
1− r 0
r 1

]
.

It can be easily checked that also D3−D4 are satisfied.
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Trinomial Tree In both previous examples, market completeness relies on the
full payoff matrix given by the sum of future dividends and prices. Thus, even
if D is non-singular, the market might still be incomplete. However, when there
are fewer assets than states, K < S, we know for sure that asset markets are
incomplete. A strength of our approach is that we are able to analyze the long-run
outcomes of the economy also for these incomplete markets.

Consider for example an economy as the one just described in the previous
paragraph but with S = 3 and three possible aggregate endowment growth rates:
gu ≥ gm > gd. Only two assets are traded. As in the previous example the first
contract is a long position in the aggregate endowment and a short position in the
risk-free asset paying the dividend gdEt′−1 for all t′ > t. The dividend matrix D
is now

D =

[
1− ru 1− rm 0
ru rm 1

]
,

where ru = gd/gu ≤ rm = gd/gm (also in this case also D3−D4 are satisfied).
Assume now that the first contract is replaced by two contracts that can disentan-
gle the position in the first and second state of the economy. Simple computations
show that the dividend matrix is now complete and given by

D =

1− ru 0 0
0 1− rm 0
ru rm 1

 .

2.2 Investment Rules

Although one could investigate the market dynamics with general investment rules
(xit, δ

i
t), throughout this work we concentrate on a special class of portfolios, fixed-

mix portfolios. In particular we assume that agents derive their portfolios by using
the generalized Kelly rule.20

R1 Each agent i ∈ I has discount factor δi ∈ (0, 1), subjective i.i.d. beliefs
πi ∈ ∆S, and for all t ∈ N0 uses a fixed-mix investment rule (xit; δ

i
t) = (xi; δi)

with xik = E πi
[dk] for all k.

Moreover, we further assume that each agent believes that all states are possible21

R2 πi ∈ ∆S
+ ∀ i ∈ I.

20In so doing, we depart from the standard approach that derives consumption and portfolio
decision from the maximization of an objective function subject to beliefs about the distribution
of future assets payoffs (both dividend and prices)

21The same condition is assumed in the market selection general equilibrium literature (see
e.g. Axiom 3 in Blume and Easley, 2006) to guarantee existence of a competitive equilibrium.
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By choosing generalized Kelly rules, R1, we exclude that rules might depend on
market prices or on agents’ wealth. Moreover, since beliefs are fixed, rules do
not depend neither on the history of assets’ dividend nor on the price processes,
and thus belong to the class of fixed-mix rules.22 Given R2, each agent invests
at least a positive amount of wealth in all assets. Rules do allow some form of
short selling, as long as the aggregate position in the existing assets is positive
(see the examples in the previous section). It is particularly important to realize
that, given restrictions R1−R2, the set of consumption allocations that agent i
can purchase by trading assets depends critically on D. In particular, given two
different dividend matrices D and D′, and two sequences of prices {P} and {P ′}
such that law of one price holds, there might not exist a pair of portfolio rules
x and x′ satisfying R1−R2 such that the stream of payoffs is the same with x
under D and P and with x′ under D′ and P ′. For this reason, the actual choice of
D is relevant for the long-run dynamics.

Evstigneev et al. (2008) show that the generalized Kelly rule obtained under
correct beliefs is a benchmark in that, when it trades with other fixed-mix rules, it
gains all the aggregate endowment in the long run. In particular when D = IS, the
rule suggests to bet on the realization of state s proportionally to its underlying
probability πs, see also Kelly (1956); Evstigneev et al. (2009).

For the interpretation of the results, it is important to note that the generalized
Kelly portfolio of agent i in R1 coincides with the portfolio used on an equilibrium
path by a representative agent that maximizes a geometrically discounted log-
utility with discount factor δi and beliefs πi. As a result the generalized Kelly rule
of each agent is also optimal in an heterogeneous agent economy in the limit of
that agent holding all the aggregate endowment.

3 Market Dynamics

In this section, we show that when agents use fixed-mix rules, inter-temporal
budget constraints (5) and market clearing conditions (6) can be solved to give
positive and unique market clearing prices Pt and, as a result, a well defined
dynamics for agents wealth Wt and prices Pt. While working toward the solution
of (5-6) we shall derive an explicit formulation for the payoff matrix, the sum of
dividends and next period prices. We shall use the formula to show that in our
framework equilibrium prices and payoffs exclude arbitrage.

Without loss of generality, we assume that each agent i ∈ I starts with some

22Our analysis is also informative of the long-run behavior of a market where beliefs are not
i.i.d. but are adapted to the information filtration of dividends and prices, provided that beliefs
converge to some constant level as more and more information is gathered.
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given positive wealth W i
0.

23

3.1 Representative agent

We start with the case where agent i posses all the aggregate endowment in t = 0,
so that W j

0 = 0 for all j 6= i. Straightforward computations lead to

W i
t =

Et
1− δi

, W j
t = 0 , j 6= i ∀ t ∈ N0 , (7)

Pk,t =
δi

1− δi
E πi

[dk]Et . (8)

Asset k is priced as in a log-economy where the representative agent has beliefs
πi and discount factor δi. If the dividend matrix is non-singular the market is
complete and risk neutral probabilities coincides with agent i beliefs. The Lucas’
model is recovered.

3.2 Heterogeneous agents

Pricing is more interesting when agents have heterogeneous beliefs. Assume that
there exist at least two agents i and j with W i

0 > 0 and W j
0 > 0 and αi 6= αj. By

substituting (5) in (6) we get

K∑
h=1

(
δk,h −

I∑
i=1

αikα
i
hW

i
t−1

Ph,t−1

)
Ph,t =

K∑
h=1

dh,stEt

I∑
i=1

αikα
i
hW

i
t−1

Ph,t−1
. (9)

The above expression can be conveniently written in matrix form. Consider the
vector of price-rescaled investment fractions

βi(W ;α) =

(
αi1/

I∑
j=1

W jαj1, . . . , α
i
K/

I∑
i=j

W jαjK

)
and define the positive matrix

A(W ;α) =
I∑
i=1

W i αi ⊗ βi(W,α) .

Then (9) becomes

(IK − A(Wt−1;α))Pt = A(Wt−1;α) dstEt (10)

and one has
23 This is equivalent to assume that agents start with an initial allocation of assets and con-

sumption goods.
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Lemma 3.1. Under the assumption that rules satisfy R1−R3, the matrix IK −
A(W,α) is invertible for all W ∈ RI

+.

From the previous Lemma and from (10) it follows that market clearing prices
are uniquely defined for every t ∈ N0:

Pt(σt−1, st) = (IK − A(Wt−1;α))−1A(Wt−1;α) dstEt(σt−1, st) =
∞∑
n=1

An(Wt−1(σt−1);α)dstEt(σt−1, st) . (11)

Given Wt−1(σt−1) and investment rules α for all agents i, there is a period t price
vector Pt for every realization of the dividend process st. All assets with positive
dividend in st contribute to the next period wealth distribution, which in turns
determines prices. As a result, given a dividend matrix D and rules α, for every
w there exists a matrix P (W ;α,D), with the same dimension of D, such that
Pk,t(σt−1, st) = Pk,st(Wt−1;α,DEt) . Since, by D3 and R2−R3, A(W ;α) is
strictly positive and D is positive, the equation above shows that P (W ;α,D) is
strictly positive.24 When the wealth distribution is degenerate, in that only agent
j has positive wealth, it is A = δjxj ⊗ 1 and (8) is recovered.

Long-lived assets prices and dividends D determine the payoff matrix

R(W ;α,D) = P (W ;α,D) +D = (IK − A(W ;α))−1D . (12)

Since the payoff matrix depends, through prices, also on the wealth distribution
W , it keeps changing as the wealth distribution evolves. Its rows Rk(W ;α,D),
with k ∈ K, are strictly positive random variables on S given by the sum of the
two random variables Pk(W ;α,D) and dk. By substituting (12) in (5) one obtains
the explicit evolution of the wealth distribution. By construction it is adapted
to the information filtration. We can summarize the result of this section in the
following proposition.25

Proposition 3.1. Consider an exchange economy where I agents using rules obey-
ing R1−R2 are trading K assets satisfying D1−D3. If W0 ∈ RI

++ then for all
t ≥ 1 the process {Wt} is RI

++, it is adapted to {=t}, and evolves according to

W i
t (σt−1, st) = W i

t−1(σt−1)
K∑
k=1

βik(Wt−1(σt−1);α)Rk,st(Wt−1(σt−1);α,DEt) , ∀ i ∈ I .

24However, it could still be the case that asset prices admits arbitrage. We rule out that
arbitrage exists in equilibrium in Proposition 3.1.

25It is straightforward to see that the same proposition holds even when beliefs πit are adapted
to the information filtration generated by sτ and Pτ−1 for all τ ≤ t. Evstigneev et al. (2006)
provides a different proof of the same result. In particular they do not explicitly characterize the
payoff matrix R.
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Moreover the sequence of wealth distributions {Wt} is such that for all t ≥ 1 market
equilibrium prices Pt = Pst(Wt−1;α,DEt) and payoffs Rt+1 = R(Wt;α,DEt+1) do
not admit arbitrage.

The coupled price-wealth dynamics is not only well defined but also prevents
arbitrage opportunities to arise in equilibrium, so that state prices are always pos-
itive. The absence of arbitrage is non-trivial because, with long-lived assets, the
dynamics of the wealth distribution determines both assets purchasing price and
their payoffs. Under the standard utility maximization with unconstrained portfo-
lios, arbitrage never occurs in equilibrium. In our model, however, assets’ holdings
are constrained and arbitrage might in principle occur. A sufficient condition to
avoid arbitrages turns out to be that the vector of portfolio rules is in the interior
of the cone generated by the S column of the matrix D (see the proof of Prop. 3.1
for more details). A condition that, given R1, is naturally satisfied by generalized
Kelly rules.26

3.3 Relative wealth dynamics

If agents have a different saving rate, the agent who saves more is advantaged
in terms of long-run wealth. If, for example, there are only two agents and they
use the same portfolio rule but δ1 > δ2, then agent 1 wealth grows geometrically
faster at the rate δ1/δ2 than the wealth of agent 2. When agents have different
portfolios there is a trade-off between having a higher saving rate and a “better”
portfolio. Although the trade-off is certainly interesting, here we concentrate on
the heterogeneity of portfolio rules and assume homogeneous saving rates:

R3 δi = δ , ∀ i ∈ I .

Under this assumption the relative wealth dynamics does not depend on the ag-
gregate endowment process. Introducing normalized wealth and price

wit =
1− δ
Et

W i
t and pk,t =

1− δ
δ Et

Pk,t , (13)

such that at any t its is
∑I

i=1w
i
t = 1 and

∑K
k=1 pk,t = 1, one can still apply

Lemma 3.1 and Proposition 3.1 to normalized variables, provided w0 ∈ ∆I
+. For

this purpose the payoff matrix R defined in (12) should be replaced with

r(w;x, δ,D) = [rk,s] = (1− δ)(IK − δA(w;x))−1D

26The condition is instead not satisfied by those fixed-mix rules that cannot be derived as a
generalized Kelly rule given some beliefs.
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where, in the definition of matrix A the normalized wealth replaces the original
wealth, and portfolio shares xi replaces investment shares αi. When δ is close to
zero normalized prices get very small and the (normalized) payoff matrix r is close
to the dividend matrix d. Conversely when δ is close to one, normalized prices are
much larger than dividends. When δ → 1, the payoff matrix becomes singular.
An advantage of working with the normalized variables is that, since both states
of the world and agents’ beliefs are i.i.d., the relative wealth dynamics is a Markov
process.

Corollary 3.1. Under the assumptions of Proposition 3.1, the normalized wealth
wt follows a Markov Process on ∆I

+ such that for every t ≥ 1 with probability πs
the relative wealth vector wt−1 evolves into

wit = wit−1

K∑
k=1

βik(wt−1;x) rk,s(wt−1;x, δ,D) ∀ i ∈ I . (14)

4 Market Selection and Long-run Heterogeneity

In the rest of the paper, we characterize the long-run behavior of the relative wealth
dynamics (14). In particular, we focus our attention on the long-run performance
of groups of agents. For any proper subset J ⊂ I, we denote the sum of period t
wealth of agents in J as wJt , so that 1 − wJt is the sum period t wealth of agents
in I \ J . The aggregate portfolio rule of the two groups of agents at time t are,
respectively,

xJk (wt;x) =
∑
j∈J

xjk
wjt
wJt

and x−Jk (wt;x) =
∑
j∈I\J

xjk
wjt

1− wJt
. (15)

With usual notation we set βJ = xJ/p = (xJ1/p1, . . . , x
J
K/pK) and β−J = x−J/p =

(x−J1 /p1, . . . , x
−J
K /pK). In this section, we provide sufficient conditions for the

survival or dominance of a generic group J of agents. The next definition makes
precise what we mean by dominance, survival, and vanishing.

Definition 4.1. We say that group J dominates on a realization σ if

lim
t→∞

wJt (σ) = 1 . (16)

Group J survives on a realization σ if

lim sup
t→∞

wJt (σ) > 0 . (17)

If a group does not survive on σ, we say that it vanishes on that realization. We say
that group J dominates or survives if (16) or (17) hold P-a.s.. Group J vanishes
if it survives on a set of realizations with P-measure zero.
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If a group composed by only one agent dominates, heterogeneity is only a tran-
sient property and the economy converges with probability one to a representative
agent limit. If instead more than one agent survives, then the economy exhibits
long-run heterogeneity.

Definition 4.2. An I-agent asset market economy exhibits long-run heterogeneity
if there exists a proper subset of traders J ⊂ I such that both the group J and
the group I \ J survive.

Dominance of a single agent is the unique possible long-run outcome when
markets are complete and all agents maximize an expected log-utility given their
beliefs and discount factors, see e.g. Sandroni (2000); Yan (2008).27 Conversely,
long-run survival of more than one agent is a generic outcome of our model with
’quasi-optimal’ log-rules.

In order to characterize the relative performance of group J , we use the dif-
ference between the conditional expected log-growth rate of agents in J and the
conditional expected log-growth rate of the other agents. Corollary 3.1 implies
that this quantity depends on the history of states prior to period t only through
the wealth distribution w at period t. Formally

µJt (w) = E P

[
log

wJt+1

wJt
− log

1− wJt+1

1− wJt

∣∣∣∣=t s.t. wt = w

]
(18)

= E π

[
log

∑K
k=1 β

J
k (wt;x)rk(wt, ;x, δ,D)∑K

k=1 β
−J
k (wt;x)rk(wt;x, δ,D)

]
.

The sign of µJt (w) reveals if the expected aggregate wealth of the agents in J
grows or shrinks. It turns out that sufficient conditions for survival or dominance
of group J can be derived studying the sign of µJt (w) when the relative wealth wJ

is very large or very small.
For a proper subset J and for all v ∈ [0, 1] consider the quantity

µJ(v) = max
{
µJ(w) | w ∈ ∆K , wJ = v

}
,

and
µJ(v) = min

{
µJ(w) | w ∈ ∆K , wJ = v

}
.

The definition is meaningful because the function µJ is continuous in w and the
extrema are computed on compact sets. Since these sets are continuous in v (both

27Long-run heterogeneity is possible in log economies but, first, it is non-generic in that it
occurs when agents’ beliefs have the same relative entropy with respect to the truth, and, second,
it is not robust to a perturbation of beliefs, see Blume and Easley (2009).
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upper and lower hemicontinuous) the quantities µJ and µJ are continuous function
of their argument.

The next Proposition exploits the Martingale Converge Theorem (see the propo-
sition’s proof for details) to characterize long-run survival.

Proposition 4.1. Consider an exchange economy with I agents using rules obey-
ing R1−R3 and trading K assets satisfying D1−D4:

i) If µJ(0) > 0, then group J survives.

ii) If µJ(1) < 0 , then group I \ J survives.

Under i) and ii), both group J and I \ J survive and the market exhibits
log-run heterogeneity. Propositions 4.1 provides only sufficient conditions because
by considering all possible wealth distributions w we are taking into consideration
wealth distributions that cannot be realized with positive probability. It is however
clear that if the conditions on the conditional drift in Proposition 4.1 are realized,
they are a forziori true for (almost) all possible trajectories of the system.

Long-run heterogeneity is not the only possible market outcome. In order
derive other results, such as dominance of a group, we shall need to assume that
agents J aggregate rule xJ cannot be replicated by a combination of other agents
rules. We assume the following.

R4 There exists a hyper-plane in RK which separates the rules of agents in J
from the rules of agents in I \ J .

Since the aggregate rules xJ and x−J belong to the convex cone generated by
the strategies of agents in J and I \ J respectively, condition R4 is sufficient to
guarantee that they can never be equal, irrespective of the wealth distribution.
Notice that, as long as individual rules are all different and there are no less assets
than agent, K ≥ I, condition R4 is satisfied for any group J .

Assumption R4, combined with the absence of redundant assets, is sufficient
to prove that, for all t, there is a positive probability that wealth distribution
between group J and group I \ J changes.

Lemma 4.1. If the set of rules are not overlapping, R4, and if there are no
redundant assets, D4, then there exists a γ > 0 such that

Prob

{∣∣∣∣log
wJt+1

w−Jt+1

− log
wJt
w−Jt

∣∣∣∣ > γ

∣∣∣∣∣=t
}
> γ . (19)

The Lemma implies that, as long as two groups aggregate rules are separated,
there never exists a stable wealth distribution between the two groups. However,
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it does not exclude the possibility that one group grows more than the other with
probability one. As we shall prove, such occurrence is excluded by the absence of
arbitrage. As a result, all t, σt, the ratio wJt /w

−J
t both increases and decreases

with positive probability.

Lemma 4.2. Under R4, if market equilibrium prices pt and assets payoffs rt+1

do not admit arbitrages, then for all groups J and all t ∈ N0 there exist ε > 0 such
that

Prob

{
wJt+1

wJt
>
w−Jt+1

w−Jt

∣∣∣=t} > ε and Prob

{
wJt+1

wJt
<
w−Jt+1

w−Jt

∣∣∣=t} > ε . (20)

Both Lemma allow us to prove the following.

Proposition 4.2. Consider an exchange economy with I agents using rules obey-
ing R1−R4 and trading K assets satisfying D1−D4:

i) If µJ(0) > 0 and µJ(1) > 0, then group J dominates;

ii) If µJ(0) < 0 and µJ(1) < 0, then group J vanishes.

iii) If µJ(0) > 0 and µJ(1) < 0, then both groups survive and for both groups
G = J, I \ J

Prob{lim inf
t→∞

wGt = 0 and lim sup
t→∞

wGt = 1} = 1

Proposition 4.2 provides sufficient conditions for a group to dominate or van-
ish and complements Proposition 4.1: if the rules used by each group are always
different, R4, then, due to Lemma 4.2, point iii) of Proposition 4.2 holds. The
relative wealth shares keep fluctuating in the interval (0, 1) and assets’ prices keep
fluctuating in between the two groups evaluations. In general terms, lack of arbi-
trage ensures that Lemma 4.2 holds and each group’s relative wealth increases and
decreases with positive probability. In cases i) and ii), this is important because
even if the asymptotic drift conditions point to dominance of a trader, a limited
arbitrage in favor of the trader with asymptotically “worst” portfolio rule could
occur when w ∈ (0, 1), thus preventing the trader with asymptotically “better”
rules to dominate. In case iii), knowing that the relative wealth keeps fluctuating
implies that its effective domain is the interval (0, 1) and that asset prices are in
between the two groups evaluations (which by assumptions are separated).
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4.1 2-agent economy

In a two-agent economy we can limit the study to the relative wealth dynamics of
one agent, say agent 1. Given the wealth normalization, the conditional drift (18)
can be written as function of w1

t = w only, giving for w = (w, 1− w)

µ1
t (w) = µ(w) = E π

[
log

∑K
k=1 β

1
k(w;x)rk,s(w;x, δ,D)∑K

k=1 β
2
k(w;x)rk,s(w;x, δ,D)

]
.

As a result, µ(w) = µ1(w) = µ1(w) for all w ∈ [0, 1].
In what follows it is convenient to define the Kullback Leibler divergence, or

relative entropy, of rules xi with respect to the reference rule x∗ with x∗k = Eπ[dk]
as

D(x∗||xi) = Ex∗
[
log

(
x∗

xi

)]
.

and the difference of relative entropies as

∆x∗(x
2||x1) = D(x∗||x2)−D(x∗||x1) .

The following lemma provides an ordering of asymptotic drifts with respect to
difference of rules relative entropies.

Lemma 4.3. Consider an exchange economy with I = 2 agents using rules obeying
R1−R4 and trading K assets satisfying D1−D4, then

µ(0) > (1− δ)∆x∗(x
2||x1) > µ(1) .

Lemma 4.3 excludes the case in which both agents are better off, in expecta-
tions, when they have most of the wealth.28 Coupling this result with a straight-
forward application of Proposition 4.2 leads to the following set of sufficient and,
apart from hairline cases, necessary conditions for the long-run outcomes of a
two-agent economy.

Proposition 4.3. Consider an exchange economy with I = 2 agents using rules
obeying R1 −R4 and trading K assets satisfying D1 −D4. Provided both µ(0)
and µ(1) have a definite sign, one of the following occurs

i) If µ(1) > 0, then agent 1 dominates and 2 vanishes;

ii) If µ(0) < 0, then agent 2 dominates and 1 vanishes;

28This is in contrast with what has been shown in Bottazzi and Dindo (2014) for a market of
short-lived assets. The key difference is that Bottazzi and Dindo allow portfolio rules to depend
also on prices.

20



iii) If µ(0) > 0 and µ(1) < 0, then both agents survive and for all assets k ∈ K

Prob

{
lim inf
t→∞

pk,t = min
i=1,2
{Eπi

[dk]} and lim sup
t→∞

pk,t = max
i=1,2
{Eπi

[dk]}
}

= 1 .

Long-run heterogeneity occurs when both agents have a higher wealth growth
rates at the returns determined by the other agent29.

As in Proposition 4.2, long-run heterogeneity amounts to a relative wealth that
keeps fluctuating when agents portfolio rules can be separated (otherwise, if R4
does not hold agents have the same demand for assets and their relative wealth is
constant). With only two agents the result has direct implications for asset prices
dynamics: prices keep fluctuating between the two agents evaluations. Moreover,
contrary to Propositions 4.1 and 4.2, µ(0) and µ(1) can be computed easily, making
the 2-agent economy particularly tractable and amenable to applications.

Another advantage of a two-agent market is that no other cases than those
of Proposition 4.3 can occur. Indeed, leaving out the non generic cases when
asymptotic drifts are zero, only three cases are possible. This is due to the result
provided by Lemma 4.3: if an agent has a favorable drift when she has most of the
wealth, then she has a favorable drift also when she has little wealth. Conversely,
if she faces an unfavorable drift when she has little wealth, the drift would be
against her also if she possessed almost all the wealth. As a result µ(1) > 0
(µ(0) < 0) is sufficient to prove that agent 1 (2) dominates. The third possibility
is that µ(0) > 0 and µ(1) < 0, in this case both agent 1 and 2 survive, and none
dominates. We concentrate on proving that such cases do always exist and are
robust to perturbations of the beliefs in the next section.

Together with Lemma 4.3, Proposition 4.3 implies the survival of the agent
whose beliefs are such that the portfolio rule she uses is the ’closest’, in terms
of relative entropy, to the Generalized Kelly rules derived under correct beliefs.
This extends the result of Bektur (2013) who shows that if a rule is the closest to
x∗ coordinate-wise then it survives. Whether the agent also dominates, or both
agents survive, it depends on his performance when he has most of the aggragte
endowment. As shown by Evstigneev et al. (2008), the generalized Kelly trader
who uses correct beliefs dominates against any other generalized Kelly trader.
Summarizing, we have the following.

Corollary 4.1. Consider an exchange economy with I = 2 agents using rules
obeying R1 −R4 and trading K assets satisfying D1 −D4. If agents beliefs are
such that

D(x∗||x2) > D(x∗||x1) ,
29As we shall discuss in Section 5 the result can be given in term of “effective” beliefs and

log-optimal rules.
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then agent 1 survives. If, moreover, agent 1 beliefs are correct so that x1 = x∗,
then agent 1 dominates.

In particular, when D = IS, the above inequality can be written in terms of
beliefs and becomes

D(π||π2) > D(π||π1) ,

In this case agent 1 survives when she has more accurate beliefs. With more general
dividend matrices D and, possibly, incomplete markets it is the relative entropy of
rules, rather than of beliefs that guarantees survival to the most “accurate” trader.
Having correct beliefs is instead always sufficient for dominance.30

4.2 Long-run Heterogeneity

Having defined sufficient conditions for long-run heterogeneity we turn to gener-
ality and existence. First, we show that when long-run heterogeneity occurs it is
also generic, in that perturbations of beliefs do not lead to dominance of any of
the surviving agent. Second, we show that for any asset structure D there exist
beliefs for which heterogeneity is indeed the long-run outcome. In both cases, we
restrict our analysis to an economy with 2 agents and assume that both agents do
not know the truth, πi 6= π.

The next proposition states that if the conditions for persistent heterogeneity
of Proposition 4.3 apply, then there exist perturbations of agents’ beliefs such that
heterogeneity is still the long-run outcome.

Proposition 4.4. If an economy with 2 agents having beliefs π̄1, π̄2 and rules
satisfying R1−R4 exhibits long-run heterogeneity, then there exist vectors ε1, ε2 ∈
RS with components εis ∈ [−ε, ε], ε > 0, and

∑S
s=1 ε

i
s = 0 for i = 1, 2, such that

under beliefs π̄1 + ε1 and π̄2 + ε2 the economy still exhibits long-run heterogeneity.

To prove the above not that sufficient conditions for long-run heterogeneity
involve strict inequalities. Since conditional drift are continuous functions of be-
liefs (via the portfolio rules), then there exists perturbation of beliefs such that
conditional drift satisfy the same inquality.

Having shown that heterogeneity, when it occurs, is generic we address a dif-
ferent issue. Given Generalized Kelly traders and a market for long-lived assets
satisfying D1−D4, is it always possible to find some beliefs such that heterogene-
ity occurs?

The result of Lemma 4.3 together with condition iii) of Proposition 4.3 imply
that if two agents have beliefs such that the corresponding rules have the same

30The dominance of the agent with correct beliefs holds also for I-agents economies, as shown
by Evstigneev et al. (2008).
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relative entropy with respect to x∗, then they both survive. Thus, in order to
prove the existence of long-run heterogeneity for every admissible choice of the
matrix D, we have to find beliefs for agents 1 and 2 such that the corresponding
Generalized Kelly rules have the same relative entropy. At this purpose, define ∆̄
as the open set {x′ ∈ ∆K : x′ = Eπ′ [D], π′ ∈ ∆S

+} and call ∂(∆̄) its frontier.

Proposition 4.5. Given a dividend matrix D and beliefs π1 6= π such that
D(x∗||x1) < K with K = minπ′{D(x∗||x′)} s.t. x′ ∈ ∂(∆̄)}, there exists a non-
empty set of beliefs Π ⊂ ∆S

+ with π1 ∈ Π such that for all π2 ∈ Π the asset market
economy with generalized Kelly traders having beliefs π1 and π2 exhibits long-run
heterogeneity.

The fundamental ingredients for proving Proposition 4.5 are the properties of
the relative entropy. Its continuity, strict convexity and the fact that it has a
minimum equal to zero in x∗ are sufficient to show the existence of Π. Indeed, to
build Π it is enough to fix π1 and take the set of beliefs such that the Generalized
Kelly rules they generate have all the same relative entropy with respect to x∗.31

Note that, thanks to Proposition 4.4, one can also expand such set including the
neighborhood of all these beliefs.

Finally note that equality of beliefs relative entropy implies long-run hetero-
geneity also in market economies where agents are expected utility maximizers
and assets markets are (dynamically) complete, see e.g. Blume and Easley (2009)
and Jouini and Napp (2010). There is however an important difference with the
model presented here. Whereas heterogeneity is generic in our market, see Propo-
sition 4.4, it is non-generic in the latter cases. Any small perturbation of an agent
beliefs or bias will break the tie of relative entropies and thus lead to dominance
of the agent whose beliefs turn out to be “closest” to the truth.

5 Discussion and Examples

We begin this section by providing an intuition on the source of long-run hetero-
geneity based on the comparison between Generalized Kelly rules and log-optimal
rules. Then, we explore market selection outcomes in I-agent economies for specific
choices of the dividend matrix D.

31The fact that Π ⊂ ∆̄ depends on the technical condition D(x∗||x1) < K. Otherwise the set
Π could encompass rules that are not generated by any belief.
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5.1 Effective Beliefs

What is the intuition behind the occurrence of long-run heterogeneity? In a similar
asset market economy, if portfolios are log-optimal and the asset market is com-
plete, then the agent with the most accurate beliefs dominates, see e.g. Sandroni
(2000) and Yan (2008). However, we find that when agents use generalized Kelly
rules the accuracy of beliefs is not directly related to dominance. Provided D is
diagonal, Corollary 4.1 proves only a weaker result, that is, accuracy of beliefs
is sufficient for survival. Since a generalized Kelly rule is log-optimal in the limit
when the agent using it has most of the wealth, failure to dominate must be caused
by the portfolio of the agent with less accurate beliefs being particularly “good”
in this limit. Non accuracy of beliefs and non log-optimality of the portfolio must
compensate each other.

In order to establish how, and when, the compensation occurs, we use the
concept of “effective beliefs”. Given asset prices in t and payoffs in t + 1, we
define an agent i effective beliefs in t, π̄it, as the beliefs such that the generalized
Kelly rule xi derived from πi is log-optimal in t. More specifically, to compute
“effective beliefs” we proceed as follows. Given agents beliefs, discount factors,
and a dividend matrix D, for every value of the relative wealth distribution wt
there correspond both a vector of prices pt and a payoff matrix rt+1 (see Section 3.3
for details). Thus for every wt one can find the “effective beliefs” of agent i as
those beliefs π̄it such that the portfolio rule xi is log-optimal given prices pt and
payoffs rt+1.

32 As a result, for each agent i, we derive a function π̄i : ∆I → ∆S
+

such that π̄it = π̄i(wt; π, δ,D). Note that the function depends on all agents rules
(and thus beliefs), on the discount factor δ, and on the dividend matrix D. Given
the log-optimality of the generalized Kelly rule when it has all wealth, we have
π̄i((0, . . . , wi = 1, . . . , 0);π, δ,D) = πi for all i ∈ I independently from δ, D, and
other agents beliefs.

Effective beliefs enable us to view the economy with generalized Kelly traders
as an economy with log-optimal traders using effective beliefs. The general equi-
librium literature tells us that, provided the asset market is complete, an agent
survives only when her beliefs are, on average, as accurate as prices (see Massari,
2014). As a result whenever we find that long-run heterogeneity is the long-run
outcome, agents effective beliefs must be, on average, equally accurate. Moreover,
along the lines of Propositions 4.2 and 4.3, one can prove that the sufficient con-
ditions that characterize long-run outcomes can be given in terms of ’asymptotic’

32Prices in t and payoffs in t+ 1 rely on agents using fixed-mix rules x both in t and in t+ 1.
As a result, the equivalence between the market dynamics under generalized Kelly traders with
fixed beliefs and the one under log-optimal traders with effective beliefs can only be established
for every t (and thus in an infinite horizon economy). Equilibrium prices and returns are the
same in this second model since the actual portfolio rule used by agents is still x by construction.
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effective beliefs accuracy instead that in terms of ’asymptotic’ growth rates µ. In
fact, the following proposition shows that the relative accuracy of effective beliefs
can be used to characterize the value of asymptotic drifts µ(0) and µ(1).33

Proposition 5.1. Consider an exchange economy with I = 2 agents using rules
obeying R1−R4 and trading a (dynamically) complete set of assets with dividend
matrix D satisfying D1−D4, then

µ(0) = ∆π(π2||π̄1((0, 1); δ,D)) and µ(1) = ∆π(π̄2((1, 0); δ,D))||π1) .

In a two-agent economy, long-run heterogeneity occurs when, for both i = 1, 2,
agent i effective believes are more accurate than agent j 6= i (effective) believes
when agent j sets prices and payoffs.

Fig. 1 shows effective beliefs in a two-agent economy with complete markets,
two states, and diagonal dividend matrix D. Effective beliefs depend on the value
of w1. By construction, effective beliefs and beliefs coincide when an agent has
most of the wealth. However, beliefs and effective beliefs differ when both agents
have positive wealth, in that assets’ payoffs are determined by both agents. In
particular, given two agents, the effective beliefs of each agent are a combination
of his beliefs with the beliefs of the other agent. The larger the wealth share of
one agent, the larger her impact on equilibrium returns, the larger the weight of
her beliefs in determining both agents effective beliefs. Discount rates are also
important because, by setting the interest rate and thus the level of asset prices,
they determine the relative importance of dividends and prices in the total payoff
matrix.

33The proposition generalizes to I-agent economies by taking all the possible combinations of
the two groups effective beliefs.
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Figure 1: Effective beliefs of two agents with different values of discount rate δ in
a complete markets of two assets with D = I2. Since the truth is π = (1/2, 1/2),
the relative entropy is a symmetric function so that the euclidean vertical distance
between a belief π̄i and π = (1/2, 1/2) can be used directly to appraise D(π||π̄i).

In the example of Fig. 1, agents beliefs are at the opposite side of the truth
and agent 2 has more accurate beliefs than agent 1. Since D is diagonal, by Corol-
lary 4.1 agent 2 never vanishes. Whether she dominates or also agent 1 survives
it depends on the discount rate, that is on how much non-accuracy of beliefs and
non-optimality of the generalized Kelly rule influence each others. Simple calcula-
tions (and our numerical exploration of Section 5.2) show that agent 2 dominates
when δ = 0.4 whereas both agents survive when δ = 0.9. Effective beliefs confirm
this outcome. When δ = 0.4 agent 2 has better effective beliefs both when she has
most of the wealth and when she has none, and thus dominates. In fact, she has
most accurate effective beliefs for all possible wealth distributions. When δ = 0.9,
however, each agent has most accurate effective beliefs when the other agent sets
assets returns, so that both agents survive.

The graphical representation clarifies also why, for all δ ∈ (0, 1), long-run
heterogeneity is the long run outcome when rules have the same relative entropy,
see Proposition 4.4. Assume that the beliefs of agent 1 are π2 = 0.6 instead of
π2 = 0.75, so that ∆π(π2||π1) = 0. Effective beliefs, by laying between the two
agents beliefs, are such that the condition for long-run heterogeneity is satisfied
for all δ > 0.
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5.2 2-Generalized Kelly agents economies

In what follows we numerically explore the occurrence of long-run heterogeneity.
We start with 2-agent economies.

Diagonal assets Consider an economy with two states of the world where two
Generalized Kelly agents trade two assets. Assume D = I2 and fix π = (0.5, 0.5).
We use the conditions of Proposition 4.3 to characterize long-run outcomes for
different values of the economy parameters.

In the left plot of Figure 2, δ = 0.8 and all possible combinations of agents’
beliefs are considered. In the right plot we instead set π2 = (0.6, 0.4), and vary
the beliefs of agent 1 and the value of δ.

Figure 2: Areas of dominance and survival. Red: agent 1 dominates, blue: agent
2 dominates, green: long-run heterogeneity.

Consistently with the derivation of effective beliefs, long-run heterogeneity oc-
curs only for beliefs that are anti-correlated, that is, when one agent believes that
asset 1 pays with probability greater than 1/2 while the other believes the oppo-
site. The figure also confirms the result of Corollary 4.1 for diagonal dividends
matrices: the agent with beliefs farthest from the truth never dominates.

In the plot on the right one can notice how the area of long-run heterogeneity
shrinks for low values of δ until it disappears when δ = 0. In that limit effective
beliefs coincide with beliefs for all values of the wealth distribution so that log-
run heterogeneity is only a non-generic phenomenon that takes place when beliefs
have the same relative entropy with respect to the truth. The discount factor, by
determining the relative size of dividends and prices, also determines the relative
importance of other agent beliefs in determining effective beliefs.
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To give an idea of how a particular trajectory of the stochastic system looks like,
we keep δ = 0.8 and π = (0.5, 0.5) while we set π1 = (0.45, 0.55) and π2 = (0.6, 0.4).
In Figure 3 we plot the evolution of wealth shares for T = 1000 periods when
w0 = 0.5. When the wealth share of an agent approaches low values then it is
bounced back and, eventually, wealth shares are re-balanced.

Figure 3: Dynamics of agents’ relative wealth shares for T = 1000 and a given σ
and w0 = 0, 5.

Asset prices (and thus state prices) follow a similar pattern where the bounds
are not zero and one but each agent evaluation of the asset stream of dividends
given by (8). Figure 4 illustrates, for the same sequence σ, the evolution of risk
neutral probabilities.
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Figure 4: Dynamics of risk neutral probabilities for T = 1000 and the same σ and
initial condition of Fig. 3.

Averaging over T = 100000 iterations, Figure 5 shows the frequency of obser-
vation of risk neutral probabilities in the interval of agents’ beliefs.34

Figure 5: Frequency of risk neutral probabilities for T = 1000 and the same σ and
initial condition of Fig. 3.

Binomial Tree Consider now the case of the binomial tree economy of Sec-
tion 2.1 with r = gd/gu = 0.2, π = (0.5, 0.5). As before we can use our condi-
tions to establish what happens for all the possible combinations of beliefs when

34Given that there is not aggregate risk in this example, risk neutral probabilities coincides
with the belief of the representative agent.
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δ = 0.8, left panel of Figure 6, and for all possible combinations of δ and π1 when
π2 = (0.6, 0.4), right panel of Figure 6.

As one can notice from the comparison between Figure 2 and Figure 6, the plots
are quite similar, the only difference is that the areas of long-run heterogeneity
slightly increase. Moreover, with non-diagonal assets there exist cases of long-run
heterogeneity even in the limit of δ = 0.

Figure 6: Areas of dominance and survival. Red: agent 1 dominates, blue: agent
2 dominates, green: long-run heterogeneity. r = 0.2

In this example, the selection process is less sharp since investing in the second
asset is a quite safe way to survive. To shed light, we investigate what happens
when we change the value of r. In Figure 7 we plot the areas of dominance and
survival for all the possible combinations of beliefs of agent 1 and the parameter
r when δ = 0.5 and π2 = (0.6, 0.4).
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Figure 7: Areas of dominance and survival. Red: agent 1 dominates, blue: agent
2 dominates, green: long-run heterogeneity. δ = 0.5

We continue by exploring the outcomes of market selection under complete
and incomplete markets. For this purpose, we take the market structure with two
assets and three states of the world shown in Section 2.1 with ru = rm = 0.2.
We also choose π = (1/3, 1/3, 1/3), δ = 0.5, π1 = (3π1

1,2/4, π
1
1,2/4, 1 − π1

1,2) and
π2 = (π2

1,2/4, 3π
2
1,2/4, 1− π2

1,2).

Figure 8: Areas of dominance and survival. Red: agent 1 dominates, blue: agent
2 dominates, green: long-run heterogeneity. Left plot: incomplete markets. Right
plot: complete markets.

In the left plot one can observe how the shape of the areas of dominance
and survival is similar to those in the first plot of Figure 6, the only difference
is that now the truth corresponds to the sum of probabilities π1 and π2, hence
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2/3. Instead in the second plot (complete markets) the situation is dramatically
different: the area of long-run heterogeneity occupies a large portion of the space.
That is, completing the market offers a way for agents with anti-correlated beliefs
for states 1 and 2 to speculate against each-others. This ends up in increasing the
combinations of beliefs that produce long-run heterogeneity.

Obviously the role played by the choice of the belief structure is fundamen-
tal. To this regard consider a slightly different belief structure only for agent 1:
π1 = (π1

1,2/2, π
1
1,2/2, 1− π1

1,2). In this situation agent 1 should be favored since she
can distribute more evenly (hence in accordance with the underlying stochastic
process) his wealth among assets. Indeed when π1

1,2 = 2/3, she plays the general-
ized Kelly rule with correct beliefs, hence she dominates in the market no matter
what is the value of π2

1,2. Figure 9 confirms the intuition, the area where agent 1
dominates increases and occupies a large portion of the plot.

Figure 9: Areas of dominance and survival. Red: agent 1 dominates, blue: agent
2 dominates, green: long-run heterogeneity. Complete markets.

This exercise provides a link with the work of Fedyk et al. (2013) about the
welfare effect of enlarging the asset span. Considering a general equilibrium model
where one agent has correct beliefs and one has incorrect beliefs, the authors show
that the possibility of trading several risky assets does not increase welfare in
general while, in most of the cases, it causes a severe welfare loss. A basic feature
of their model is that the agent with correct beliefs dominates no matter how many
assets are traded, thus the divergence in terms of welfare is triggered by the speed
at which the inaccurate agent loses everything. Figures 8 and 9 show, instead, how
in our model there exists combinations of beliefs such that, when the asset span
increases, the dominant agent changes from agent 2 to agent 1 or we pass from
the dominance of one of the two agents to the survival of both. Hence establishing
whether a larger asset span can cause a welfare loss becomes much more complex.
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Indeed it could be the case that enlarging the asset span increases total welfare.35

5.3 3-Generalized Kelly agents economy

In this section, we use our criteria to investigate the market selection outcomes
in an economy with three states of the world, complete markets, and three Gen-
eralized Kelly agents . Assume D = I3 and π = (1/3, 1/3, 1/3). We fix π1 =
(π1

1, (1− π1
1)/2, (1− π1

1)/2), π2 = (1/4, 1/2, 1/4) and π3 = (1/4, 1/4, 1/2). We plot
the outcome of our criteria for all possible combinations of δ and π1

1.

Figure 10: Areas of dominance and survival. Red: agent 1 survives; Dark Red:
agent 1 dominates; Blue: agent 1 vanishes; Dark Blue: only agent 2 and agent
3 survive; Green: at least two agents survive; Yellow: all three agents survive;
Orange: unknown.

Compared with two-agent economies, in a three-agent economy our sufficient
conditions are not tight. Thus, there exists combinations of π1

1 and δ for which we
cannot characterize market selection long-run outcomes. Consider the red regions,
for these combinations of π1

1 and δ agent 1 survives, indeed choosing the group
J = {1} we have µJ(0) > 0 . In the dark red region around the truth, we also have

µJ(1) > 0 so that agent 1 dominates. In the blue areas, µJ(0) < 0 and µJ(1) < 0:
agent 1 vanishes and group I \J = {2, 3} dominates. Regrading the fate of agents
2 and 3, both 2 and 3 can survive or one of the two dominates. Define J ′ = {2}
and J ′′ = {3}, in the dark blue regions µJ

′
(0) > 0 and µJ

′′
(0) > 0, thus both agent

2 and agent 3 survive. In the light blue regions nothing more can be said.
Continuing the analysis, in the yellow region µJ(0) > 0, µJ

′
(0) > 0, and

µJ
′′
(0) > 0, hence all agents survive. In the green areas µJ(1) < 0, µJ

′
(1) < 0

35It remains the difficulty to measure welfare in a framework such ours where rules are not
explicitly derived from an utility maximization.
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and µJ
′′
(1) < 0, so that no one dominates. This is equivalent to say that at least

two agents survive. Finally, there also exists a region, the orange one, where our
sufficient conditions are too weak to characterize the market selection outcome.

From the previous figure, if we set π1 = (0.6, 0.2, 0.2), δ = 0.8 and w1
0 = w2

0 =
w3

0 = 1/3 then all agents survive. Simulating the model for a particular realization
of the underlying stochastic process we have an example of the dynamics of agents’
relative wealth, see Figure 11. Around the period t = 150, and again at t ≈ 550,
agent 1 has lost almost all his wealth. However, in later periods, she has still a
substantial share of the aggregate output. Notice also that agents relative wealth
has not a stable ordering.

Figure 11: Simulation of the evolution of wealth shares for 1000 periods.

6 Conclusion

In this paper we investigate the MSH in an exchange economy with long-lived
assets where agents have homogeneous discount factors, heterogeneous beliefs, and
employ generalized Kelly rules, a particular type of fixed-mix portfolios. In this
framework Evstigneev et al. (2008) proves that if there exists an agent with correct
beliefs, then she gains all the wealth in the long-run. Asset prices converge to those
of a Lucas’ model where the representative agent has logarithmic preferences. We
instead focus on an economy where agents have heterogeneous, and not correct,
beliefs, and provide sufficient conditions for an agent to have a positive, null, or
unitary fraction of wealth in the long-run.

Our main finding is that there exist initial distributions of beliefs such that
beliefs heterogeneity, rather then convergence to the most accurate beliefs, is the
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long-run outcome. Moreover this result is generic and robust to local perturbation
of beliefs. We show that our results are due to the non-optimality of fixed-mix
rules in the limit of an agent having a negligible share of the total wealth. Non-
optimality of beliefs and non-optimality of the rules balance each other and lead
to survival instead than to vanishing.
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A Proofs of Theorems and Lemmas

A.1 Proof of Lemma 3.1

Proof. Let ᾱ = maxi∈I{αih} and δ̄ = maxi∈I{
∑K

k=1 α
i
k}. From R1 and R2 it is

immediate to see that 0 < Ah,h < ᾱ < 1 and 0 <
∑K

k=1 Ak,h < δ̄ < 1. Then

K∑
k=1

(IK − A)k,h = |IK − A|h,h −
K∑

k=1,k 6=h

|IK − A|k,h

but at the same time
∑K

k=1 (IK − A)k,h = 1−
∑K

k=1 Ak,h > 1− δ̄ > 0 so that the
matrix Ik−A is column strictly diagonally dominant and, by the Levy-Desplanques
theorem (Taussky, 1949), it is invertible.

A.2 Proof of Proposition 3.1

Proof. The first part of the statement follows from Lemma 3.1 and from the deriva-
tion in the text before the proposition.

Regarding the absence of arbitrages consider the following. According to
Stiemke’s Lemma, the absence of arbitrage is equivalent to the existence of a
vector q ∈ RS

++ such that R(w;α,D)q = P or, with (12), Dq = (IK − A(w;α))P .

The kth component of (IK − A(w;α))P reads
∑I

i=1[(1 − δi)δiW i]xik. It follows
that if for all i ∈ I xi belongs to the interior of the convex cone generated by
the columns of D, also the vector (IK −A(α,w))Pt belongs to it and there are no
arbitrage. Provided agents beliefs satisfy R2 generalized Kelly rules belong to the
interior of the convex cone generated by the columns of D.

A.3 Proof of Propositions 4.1

As we shall show, the stochastic process that corresponds to the two groups’ rel-
ative wealth dynamics has bounded increments. As a result we can prove the
proposition by applying Theorem 2.1 in Bottazzi and Dindo (2015).

Consider the variable

zJt = log
wJt

1− wJt
(21)

such that zJt = zJt−1 + gJ(σt), with gJ(σt) = logGJ(σt) and

GJ(σt) =

∑K
k=1 rk,st(wt−1;x, δ,D)xJk (wt−1;x)/pk(wt−1;x)∑K
k=1 rk,st(wt−1;x, δ,D)x−Jk (wt−1;x)/pk(wt−1;x)

. (22)

One has the following
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Lemma A.1. The process zJt has bounded increments, that is, there exists an
B ∈ R such that |zJt − zJt−1| < B P-a.s..

Proof. By R3 there exists a small enough ε > 0 such that ε ≤ xJk ≤ 1 − ε ∀ i, k.
Then for any asset k and any time t

ε ≤ pk(wt;x) ≤ 1− ε

and for any agent i and state s

ε

1− ε
≤

K∑
k=1

rk,s(wt−1;x, δ,D)
xJk

pk(wt−1;x)
≤ 1− ε

ε
.

By direct algebraic substitution it is straightforward to verify that

2 log
ε

1− ε
≤ zJt − zJt−1 ≤ 2 log

1− ε
ε

and the statement is proven.

In order to prove Proposition 4.1, note that E[g(σt)] = µJ(wt). We shall start
from the first statement. If µJ(0) > 0, then, given the continuity of the function,

there is a neighborhood of −∞ in which, almost surely, µJ(wt) > µJ(0) > 0. Since

zJt has bounded increments the Theorem 2.1 in Bottazzi and Dindo (2015) applies
and Prob {lim supt→∞ z

J
t > −∞} = 1. The same reasoning applies to the second

statement, see also the Corollary 2.1 of Bottazzi and Dindo (2015).

A.4 Proof of Lemma 4.1

Let us consider the process zJt in (21) and all the other quantities defined at the
beginning of appendix A.3. We begin with the following Lemma.

Lemma A.2. If the set of rules are not overlapping, R4, and if there are no
redundant assets, D4, then zJt does not possess any deterministic fixed point, that
is @ z s.t. P(zJt = z|zJt′ = z) = 1 ∀t > t′.

Proof. Suppose such z exists and at a certain time t − 1 it is zJt−1 = z. Then,
by definition, it holds that zJt − zJt−1 = 0 for all the possible states of the world
s = 1, 2, ..., S, so that

K∑
k=1

rk,s(wt−1;x, δ,D)
(
βJk (wt−1;x)− β−Jk (wt−1;x)

)
= 0 ∀s = 1, 2, ..., S .
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That is (
βJ(wt−1;x)− β−J(wt−1;x)

) (
(I − δA(wt−1;x))−1D

)
= 0 .

The trivial solution βJ = β−J is excluded by R4 and according to Proposition 3.1
the kernel of (I − δA(wt−1, x))−1D is zero, implying that the system of equations
has no solution and the statement is proven.

The proof proceeds by noticing that GJ in (22) depends on history σt thorough
the wealth distribution wt and the last realizes state st. Given the distribution
w ∈ ∆I define

ḠJ(σt) = max
s=1,...,S

{|GJ(w, st)|} ,

which, being the upper envelope of continuous functions, is a continuous function
on the compact set ∆I . Then, by the Weierstrass theorem, it has a minimum G.
Moreover it is G > 0 because, otherwise, zJt would have a deterministic fixed point,
which is not possible by Lemma A.2. Then

Prob
{
|zit − zit−1| ≥ g | =t−1

}
≥ ρ = min{π1, . . . , πS} .

and by taking γ = min{g, ρ}/2 the assertion is proved.

A.5 Proof of Lemma 4.2

Let us consider the first statement. If it is wrong then

w−Jt+1

w−Jt
−
wJt+1

wJt
=

K∑
k=1

(β−Jk − β
J
k ) rk,s(wt−1;x, δ,D) ≥ 0 ∀s

and since the process does not admit any deterministic fixed point (c.f. Lemma A.2),
the inequality is strict for some s′. For construction it is

K∑
k=1

(β−Jk − β
J
k )pk(wt−1;x) = 0 ,

so that β−J(wt−1;x) − βJ(wt−1;x) would be a weak arbitrage, which contradicts
the hypotheses. For the second statement one can reason following the same lines
and, in order to complete the proof, it is enough to choose ε = mins{πs}/2.
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A.6 Proof of Proposition 4.2

Consider the process zJt in (21) and all the other quantities defined at the beginning
of appendix A.3. If the set of rules used by the agents belonging to group J and
those used by the agents in I \ J are separated, R4, then it follows from Lemma
4.1 that zJt has always a finite probability to have a finite jump.

By Lemma 4.2, the lack of weak arbitrage implies, in turn, that the process
cannot have a deterministic drift. Thus, Lemmas 4.1 and 4.2 together imply that
the process zJt jumps to the left and to the right of finite amount with a finite
probability.

As show in Lemma A.1, zJt has finite increments (in both directions). The
condition µJ(0) > 0 and µJ(1) > 0 implies that µJ(w) > 0 for sufficiently small and
sufficiently large values of w. Using Theorem 3.1 from Bottazzi and Dindo (2015)
it follows that Prob {limt→∞ z

J
t = +∞} = 1, group J dominates. Conversely, from

the condition µJ(0) < 0 and µJ(1) < 0 we have that µJ(w) < 0 for sufficiently
small and large values of w. Using Corollary 3.1 of Bottazzi and Dindo (2015), it
follows that Prob {limt→∞ z

J
t = −∞} = 1 and the group J vanishes.

A.7 Proof of Lemma 4.3

From the definition of conditional drift

µ(0) =
S∑
s=1

πs log

(
δ + (1− δ)

K∑
k=1

dk,s
x1k
x2k

)
,

µ(1) = −
S∑
s=1

πs log

(
δ + (1− δ)

K∑
k=1

dk,s
x2k
x1k

)
.

Exploiting the concavity of the logarithmic function and considering that 0 ≤
dk,s ≤ 1 for all s, k and that

∑K
k=1 dk,s = 1 for all s, we can see that

µ(0) > (1− δ)
S∑
s=1

πs log

(
K∑
k=1

dk,s
x1k
x2k

)
≥ (1− δ)

K∑
k=1

x∗k log

(
x1k
x2k

)
.

At the same time

µ(1) < −(1− δ)
S∑
s=1

πs log

(
K∑
k=1

dk,s
x2k
x1k

)
≤ (1− δ)

K∑
k=1

x∗k log

(
x1k
x2k

)
.

Putting together the two inequalities proves that µ(0) > (1−δ)∆x∗(x
2||x1) > µ(1).
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A.8 Proof of Proposition 4.3

The statement follows from the particular case of Proposition 4.2 when I = 2
together with Lemma 4.3 and the definition of normalized prices.

A.9 Proof of Corollary 4.1

The proof of the survival of agent 1 follows from Lemma 4.3 and Proposition 4.3.
When agent 1 beliefs are correct, so that x1 = x∗, she also dominates since,
exploiting the strict convexity of − log(·),

µ(1) =
∑
s

πs

(
− log

(
δ + (1− δ)

K∑
k=1

dk,s
x2k
x∗k

))
>

− log

(
δ + (1− δ)

K∑
k=1

x2k
x∗k

∑
s

πsdk,s

)
= − log

(
δ + (1− δ)

K∑
k=1

x2k
x∗k
x∗k

)
= 0 .

A.10 Proof of Proposition 4.4

Notice that the conditional drift in the case of Generalized Kelly agents is a con-
tinuous function of agents’ belief, that is

µ(w1) = µ(w1; π1, π2) .

Thus the result simply follows applying the standard definition of continuity.

A.11 Proof of Proposition 4.5

The statement follows from the properties of the function D(x∗||x) : ∆K →
R+, x 7→ D(x∗||x). In particular it is a continuous strictly convex function with a
minimum equal to zero in x = x∗. Thus it is defined over the compact set ∂(∆̄) and
there exists a minimum over this set because of the Weirstrass theorem. The strict
convexity of D(x∗||x) implies that it is also strictly quasi convex. This property
together with the fact that x∗ ∈ ∆̄ implies {x : D(x∗||x) < K} ⊆ ∆̄. Hence, it is
possible to choose a π1 6= π such that D(x∗||x1) = m < K− ε with ε > 0 and small
enough. Then, one can easily define the set Π = {π′ : π′ ∈ ∆S

+, D(x∗||x′) = m}
which has always at least two elements36. Choosing x1 and x2 such that π1, π2 ∈ Π
it is ∆x∗(x

2||x1) = 0.

36The worst case scenario is S = 2 and in this case the cardinality of Π′ is two.

43



A.12 Proof of Proposition 5.1

An asset market economy with agents trading according to generalized Kelly rules
and an asset market economy with agents maximizing expected log-utilities under
effective beliefs have, by construction, the same relative wealth dynamics. When
markets are dynamically complete and agents maximize an expected log-utility,
there is no loss of generality, in assuming that they are trading all possible con-
tingent commodities in date zero. In fact, all assets structure, as long as they are
complete, allow agents to achieve the same consumption allocation, so that the
relative wealth dynamics does not on the asset structure. Under time-zero trading
it is well known that agents allocate in each state contingent good a fraction of
wealth proportional to the state likelihood. In a two-agent economy, the relative
wealth dynamics can thus be re-written as

w1
t+1(σt, st+1)

w2
t+1(σt, st+1)

=
π̄1
st+1

(wt; δ,D)

π̄2
st+1

(wt; δ,D)

w1
t (σt)

w2
t (σt)

∀σt, st+1, t .

Applying the definition of µ(·) and remembering that the relative wealth dynamics
just found is the same as the original one with long-lived assets and generalized
Kelly traders, leads to the result.
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