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Abstract

The approximate agents’ wealth and price invariant densities of a re-
peated prediction market model is derived using the Fokker-Planck equation
of the associated continuous-time jump process. We show that the approxi-
mation obtained from the evolution of log-wealth difference can be reliably
exploited to compute all the quantities of interest in all the acceptable pa-
rameter space. When the risk aversion of the trader is high enough, we
are able to derive an explicit closed-form solution for the price distribution
which is asymptotically correct.

Keywords : Prediction market; Repeated betting; Diffusive approximation; Fokker-
Planck equation

1 Introduction

Prediction Markets, like the Iowa Electronic Market (IEM) in which people can
bet on events like Presidential Elections or Congressional Control, epitomize the
role of economic interaction to aggregate distributed information. Several famous
economists (Arrow et al., 2008) supported the development of prediction markets
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based on their supposed ability to provide accurate evaluations of the likelihood of
uncertain events. Recently, the attention has shifted to the case of repeated pre-
diction markets, which share more similarities with other financial market models.
Beygelzimer et al. (2012) and Kets et al. (2014) study a simple repeated prediction
market in which bets on binary outcomes are traded in discrete time. In partic-
ular, they analyze the case in which two agents with different beliefs about the
probability of the outcomes, split their investment between the risky bet and a
risk free security, according to the fractional Kelly rule.

The authors derive their most relevant conclusions about agents’ wealth and
bet price performing extensive simulations. Here we propose a different approach:
instead of computing the quantities of interests averaging over long enough ar-
tificial time series, we suggest to compute them from the invariant distribution
derived from the continuous time diffusive approximation of the discrete process.

The diffusive approximation is obtained postulating that a Poisson arrival
drives the successive steps of the discrete time process, hence deriving the master
equation in continuous time and finally truncating the associated Kramers-Moyal
expansion at the second order.

The advantages of this procedure are many. First, the invariant distribution can
be used to analyze the qualitative properties of the model, in particular whether,
conditional on their beliefs and risk aversion, the two agents both stay in the
market indefinitely or, conversely, if one of them will end up having all the wealth.
Second, the obtained approximation fits very well the invariant distribution of
the true discrete process, and can be used to compute with high precision all the
statistics of interest. In addition, when the risk aversion of agents is sufficiently
high, one is also able to derive the analytic expression for the approximate invariant
price distribution. Third, in the limit in which the risk aversion of agents goes to
infinity, the diffusive approximation becomes asymptotically correct and one can
easily prove the conjecture, advanced by Kets et al. (2014), that the price converge
in distribution to the true probability of the process.

Beyond this simple application, we believe that the procedure proposed in the
present paper can be effectively applied to the qualitative and quantitative analysis
of similar heterogeneous agents models.

2 The model

Time is discrete and at each time step t a certain event can occur with probability
π∗. We set st = 1 if at time t the event occurs and st = 0 if it does not.1 Consider
two agents who repeatedly exchanges bets on this binary event. They can choose

1This simple stochastic process is usually named “Bernoulli trials”.
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to gamble on the occurrence of the event or against it. The amount of wealth which
is not wagered is considered invested in a riskless security, on which, without loss
of generality, we assume no interest is payed. The total amount bet is redistributed
among the agents proportionally to how much they have wagered, that is according
to the procedure commonly know as parimutuel. At each time step, the agents bet
on the outcome of the process by exchanging two short-lived assets in unit supply:
asset 1 pays 1 only when st = 1 and asset 2 pays 1 only when st = 0. This means
that if agent i invest a fraction αi

t of her wealth on the first asset and a fraction
1 − αi

t on the second, she is actually investing a fraction 1 − αi
t on the riskless

security and, at the same time, she is taking a position 2αi
t − 1 on the occurrence

of the event: if αi
t > 1/2 she is betting on its realization, while if αi

t < 1/2 she is
betting against it.2

We further assume that the two agents do not know the true value π∗ but
rather possess different individual opinions about the probability of the event, πi,
with i ∈ {1, 2}. Moreover, they behave according to a so-called fractionally Kelly
rule (MacLean et al., 1992, 2005), investing a fraction of wealth

αi
t = αi(pt) = c πi + (1− c) pt , (1)

on the first asset and what remains, 1 − αi(pt), on the second. The rule (1)
correspond to a linear combination of the Kelly rule, shortly described by the pre-
scription “bet your believes”, and the risk-less strategy of investing proportionally
to the prevailing market price. The mixing coefficient c is assumed equal among
the two bettors, and without loss of generality we pose π2 > π1. Since the lower
the value of c, the higher the proportion of wealth invested in the riskless security,
this parameter can be considered a measure of agents’ risk aversion. The system
is closed since no wealth is consumed and all the wealth wagered is redistributed.
Normalizing the total wealth to 1, denoting with wt the wealth of the first agent
and calling pt the price of asset 1, the amount of asset 1 purchased by agent 1 can
be written α1(pt)wt/pt while the amount purchased by agent 2 is α2(pt)(1−wt)/pt.
Setting the asset’s supply equal to its demand one has

pt = π1wt−1 + π2(1− wt−1) . (2)

An analogous argument and a simple computation show that the price of asset 2
is 1−pt. At the end of each period the outcome of the event is revealed and assets
pay out: an agent gets a fraction of the unitary payoff equal to the quantity of the

2Bottazzi and Giachini (2016) show that the model discussed here is equivalent, through a
simple change of variables, to the repeated prediction market model discussed in Kets et al.
(2014).
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asset purchased. Thus the wealth of agent 1 evolves according to

wt =



















α1
t wt−1

pt
if st = 1 ,

(1− α1
t )wt−1

1− pt
if st = 0 .

(3)

3 Poisson arrival and relative wealth distribu-

tion

Dealing with discrete time and continuous-state space Markov chain is generally
difficult. The reason is that the chain only explores a countable subset of states
and the concepts of irreducible sets and ergodic measure have to be generalized
(Tweedie and Meyn, 2009). For this reason, the identification of a continuous time
process that approximates the discrete one can hugely simplify the analysis. We
perform this identification by introducing a simple continuous-time random walk
(Scalas, 2006) version of the discrete process and then considering its diffusive limit.
For this purpose, it is convenient to rewrite the evolution of the model in terms
of the relative log wealth zt = logwt − log(1 − wt) so as to obtain an unbounded
process on the real line. This model is discrete in time and we proceed to obtain
a continuous time version using a homogeneous Poisson process.3 Assume that in
a short period of time δt there is a probability λδt that a new trading round takes
place, a new state of the world is realized and the system is updated according to
zt+δt = g(zt, st) with

g(z, s) = z + log
α1(p)(2s− 1) + 1− s

α2(p)(2s− 1) + 1− s
, and p =

π1ez + π2

1 + ez
.

At the same time, there is a probability 1−λδt that nothing happens and zt+δt = zt.
In terms of the probability density of the process fz(x, t) = dProb {zt ≤ x} /dx,
the infinitesimal Chapman-Kolmogorov equation reads

fz(x, t+ δt) = (1− λδt)fz(x, t) + λδt

∫

dy

∫

dπ(s) fz(y, t)δ(x− g(y, s)) ,

where δ(·) is the Dirac delta function and π(s) the probability measure of the
underlying state process. Re-arranging terms and taking the limit for δt → 0 one
obtains the master equation

∂

∂t
fz(x, t) = λ

∫

dyfz(y, t)K(x, y) , K(x, y) =

∫

dπ(s) δ(x− g(y, s)) − δ(x− y) .

3This “Poissonization” trick has been used in the early analysis of the asymptotic behavior
of goodness of fit statistics, see Kolmogorov (1933) and Kac (1949)
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By truncating its Kramers-Moyal expansion

∂

∂t
fz(x, t) = λ

∞
∑

n=1

(

−
∂

∂x

)n

Dn(x)fz(x, t) , Dn(x) =
1

n!

∫

dy (y − x)n K(y, x)

at the second term, the Fokker-Planck equation is derived,

∂

∂t
fz(x, t) = −

∂

∂x

(

λD1(x)f(x, t)−
∂

∂x
(λD2(x)f(x, t))

)

, (4)

with

D1 =

[

π∗ log
cπ1 + (1− c)p(x)

cπ2 + (1− c)p(x)
+ (1− π∗) log

1− cπ1 − (1− c)p(x)

1− cπ2 − (1− c)p(x)

]

and

D2 =
1

2

[

π∗

(

log
cπ1 + (1− c)p(x)

cπ2 + (1− c)p(x)

)2

+ (1− π∗)

(

log
1− cπ1 − (1− c)p(x)

1− cπ2 − (1− c)p(x)

)2
]

.

4 Persistent heterogeneity

Since the process is unbounded, we can assume the natural boundary conditions4

so that if the process in (4) admits an invariant distribution, the related density
should read

fz(x) =
f0

D2(x)
exp

(
∫ x

x0

dy
D1(y)

D2(y)

)

, (5)

where f0 is a normalization constant. The existence of an invariant distribution
implies the possibility to attain a statistical equilibrium condition in which the
unconditional expectation of the net flow of wealth between the two agents is
zero (Garibaldi and Scalas, 2010). The expression in (5) constitutes an acceptable
probability density if and only if

lim
x→±∞

D1(x) = lim
x→±∞

E [zt+1 − zt|zt] ≶ 0 . (6)

In fact, as discussed in Bottazzi and Giachini (2016), the system has two pos-
sible long-run outcomes: or one agent ends up owning the entire wealth, that
is limt→∞ wt = 0, 1, and in this case the market price converges to the belief of
that agent, limt→∞ pt = π2, π1, or, alternatively, both agents stay in the market
in the long run, their wealth shares persistently fluctuate and pt keeps moving

4The probability current is asymptotically vanishing in all cases in which the conditions in
(7) are satisfied.
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in the interval (π1, π2). The second outcome constitutes a situation of persistent
heterogeneity, in which agents with different beliefs can indefinitely coexist in the
market, and (6) is a sufficient and necessary condition for its occurrence. If in-
stead limx→±∞ D1(x) > 0, then the first agent asymptotically acquires all wealth,
limt→∞ wt = 1, while if limx→−∞ D1(x) < 0 is the second agent to do it and
limt→∞ wt = 0. These two cases are associated to degenerate densities with mass
in +∞ or −∞ respectively. In terms of the parameters of the model, (6) read

π∗ log(cπj + (1− c)πi)+(1− π∗) log(1− cπj − (1− c)πi) ≥

π∗ log(πi) + (1− π∗) log(1− πi) ,
(7)

for i, j = 1, 2 and i 6= j. Notice that (7) is always satisfied for c sufficiently
small, as long as π1 and π2 are one larger and one smaller than π∗. Remarkably,
the condition for the persistent heterogeneity derived by imposing the existence
of the invariant distribution of the diffusive approximation are identical to those
derived for the original process by Bottazzi and Giachini (2016) applying the results
based on martingale convergence theorem in Bottazzi and Dindo (2015). In this
respect (4) perfectly replicates the qualitative behavior of the original, discrete
time, model.

5 Approximate invariant density and price dis-

tribution

The integral in (5) can be easily performed numerically for any acceptable parametriza-
tion. This is much faster than performing Monte Carlo simulations5 and has the
advantage of directly providing an approximation of the long-run invariant dis-
tribution. As can be seen in Fig. 1, the agreement of (5) with the invariant
distribution of wealth is very good, for any set of parameter values considered.
This agreement can be quantified using the Kolmogorov-Smirnov statistics. The
analysis for π1 = 0.3 and π2 = 0.8 is reported in Fig. 2. The difference between (5)
and the distribution obtained with extensive simulations is basically never rejected
at a confidence level of 5%. This is a generic result and it applies robustly for all
couples of values for π1 and π2 as long as (6) is satisfied.

The dynamics of the system can also be studied in terms of price. From (1),
(2) and (3) it is

pt+1 = pt +
c(π2 − pt)(pt − π1)

pt + st − 1
. (8)

5Due to the strong autocorrelation of the process, especially when c is small, one has to
generate very long series before obtaining reliable Monte Carlo estimates.
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Figure 1: Approximated (FP) and simulated (MC) invariant density for π1 = 0.3,
π2 = 0.8 and different values of c and π∗ in semi-log scale. In these plots, the
difference between the approximated and the simulated distributions is on average
0.0059 and never larger than 0.0561.
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Figure 2: Kolmogorov-Smirnov D statistics between the theoretical approximation
(5) and the empirical distribution obtained via extensive Monte Carlo simulations,
for different values of c and π∗ with π1 = 0.3 and π2 = 0.8. For each combination
of c and π∗ we considered 100 independent realizations for 10000 steps using π∗

as initial condition. The maximum of the colorbar has been set to 0.1358, the
Kolmogorov-Smirnov critical value for a 95% confidence level (adjusted for the
sample size) for a sample of size 100. Thus, black areas can be interpreted as the
cases in which the hypothesis of equality between the approximated expression
and the true distribution is rejected with a confidence level of 95%. Their casual
pattern suggests a very good agreement. Indeed, if the distributions were the
same, we should expect a 95% confidence rejection in the 5% of cases. White
areas represent set of points for which (6) is not satisfied.
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Again, postulating a Poisson arrival of trading rounds we can obtain a continu-
ous time master equation for fp(x, t) = dProb {pt ≤ x} /dx. The Kramers-Moyal
expansion becomes now a power expansion in c

Dp
n(x) = cn

∫

dπ(s)

(

(π2 − x)(x− π1)

x+ s− 1

)n

= cnMn(x) . (9)

So we expect the diffusive approximation to improve the lower the value of c. At the
same time, however, the diffusive approximation based on price dynamics breaks
down for higher value of c. To see it, let us first formally derive the stationary
solution of the Fokker-Planck equation (4) for fp with the coefficients as in (9). It
turns out that in this case the integral in the exponent of (5) can be computed
explicitly to give

fp(x) =
2 f0
c2

(x− π1)2
A1
c
−2

(π2 − x)2
A2
c
+2

(π∗(1− π∗) + (π∗ − x)2)−
1+A1−A2

c
−1x2(1− x)2

exp

{

2

(

A2

π2 − π∗
+

A1

π∗ − π1

)

√

π∗(1− π∗)

c
arctan

(

π∗ − x
√

π∗(1− π∗)

)}

,

(10)
where f0 is a normalization constant and with

Ai =
(π∗ − πi)(1− πi)πi

(π2 − π1)(π∗(1− π∗) + (π∗ − πi)2)
, i = 1, 2 .

The formal solution (10) represents a good approximation of the invariant dis-
tribution of the bounded price process only if the associated potential Φp(x) =
− log fp(x) diverges to +∞ at the boundaries of the interval (π1, π2), that is when
the reflecting barrier hypothesis is satisfied (Risken, 1984). From (10) it is imme-
diate to see that

lim
x→π1+

Φp(x) ∼ lim
x→π1+

(

1−
A1

c

)

log(x− π1) ,

lim
x→π2−

Φp(x) ∼ lim
x→π2−

(

1 +
A2

c

)

log(π2 − x) .

Notice that A1 is by definition positive and A2 negative. Thus, we can conclude
that (10) represents a good approximation only when c < A1,−A2. It is important
to remark that the absorbing barrier condition, that is a potential diverging to mi-
nus infinity, which characterizes (10) for larger values of c, is a mere artifact of the
diffusive approximation. In fact, as long as (7) are satisfied, we know that the pro-
cess is stationary and both barriers are reflecting. This suggests that the diffusive
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approximation of the price dynamics is less reliable than the diffusive approxima-
tion of the wealth ratio: when c is large, the truncation of the Kramers-Moyal
expansion at the second term discards relevant information about the behavior of
the price process and misinterprets the nature of the boundaries.

We conclude the paper addressing the hypothesis, advanced in Kets et al.
(2014), that when the mixing parameter becomes asymptotically small, that is
c → 0, then the prevailing market price converges to the true value, p → π∗.
Formally, the invariant price density, with reference to (4) and (9), can be written
as

fp(x) =
f0

c2M2(x)
exp

(

1

c

∫ x

π∗

dy
M1(y)

M2(y)

)

.

Notice that M1(x) > 0 when x < π∗ and M1(x) < 0 when x > π∗, hence the
expression in the exponent is never positive and has its maximum for x = π∗. We
can thus apply the asymptotic expansion of the Laplace-type integral to obtain

lim
c→0

∫

dxfp(x) x
n ∼ (π∗)nf0

√

2π

c3M2(π∗)|M ′
1(π

∗)|

which, by the normalization condition of the probability density, reduces to

lim
c→0

∫

dxfp(x) x
n ∼ (π∗)n

implying that limc→0 fp(x) = δ(x − π∗), confirming the hypothesis by Kets et al.
(2014).

6 Conclusion

The diffusive approximation of both the wealth and the price invariant distribution
for the repeated prediction market model of Kets et al. (2014) were derived. Our
method relies on embedding the discrete time model in continuous time via a
Poisson process and computing the diffusive approximation of the state variable
of interest via the Fokker-Planck equation. The derived approximation allows
for a simple discussion of the asymptotic behavior of the model. Moreover, we
show that the diffusive invariant distribution of the log wealth ratio approximates
very well the real one on the relevant region of the parameter space where (7)
are satisfied, so that the asymptotic distribution of all other quantities can be
reliably derived via a density function transformation. We also obtained a closed
form expression for the diffusive approximation of the price invariant density when
the mixing parameter c is sufficiently small, that is agents’ risk aversion is high.
This expression confirms the hypothesis, advanced in Kets et al. (2014), that the

10



prevailing market price converges to the true probability value when the value of
c goes to zero.

References

Arrow, K. J., Forsythe, R., Gorham, M., Hahn, R., Hanson, R., Ledyard,
J. O., Levmore, S., Litan, R., Milgrom, P., Nelson, F. D., et al., 2008. The
promise of prediction markets. SCIENCE-NEWYORK THENWASHINGTON-
320 (5878), 877.

Beygelzimer, A., Langford, J., Pennock, D. M., 2012. Learning performance of
prediction markets with kelly bettors. In: Proceedings of the 11th Interna-
tional Conference on Autonomous Agents and Multiagent Systems-Volume 3.
International Foundation for Autonomous Agents and Multiagent Systems, pp.
1317–1318.

Bottazzi, G., Dindo, P., 2015. Drift criteria for persistence of discrete stochastic
processes on the line. Tech. rep., Institute of Economics, Sant’Anna School of
Advanced Studies, Pisa, Italy.

Bottazzi, G., Giachini, D., 2016. Far from the madding crowd: Collective wis-
dom in prediction markets. LEM Papers Series 2016/14, Institute of Economics,
Sant’Anna School of Advanced Studies, Pisa, Italy.

Garibaldi, U., Scalas, E., 2010. Finitary Probabilistic Methods in Econophysics.
Cambridge University Press, Cambridge UK.

Kac, M., 1949. On deviations between theoretical and empirical distributions.
Proceedings of the National Academy of Sciences of the United States of America
33 (5), 252–257.

Kets, W., Pennock, D. M., Sethi, R., Shah, N., 2014. Betting strategies, market
selection, and the wisdom of crowds. In: Twenty-Eighth AAAI Conference on
Artificial Intelligence.

Kolmogorov, A. N., 1933. Sulla determinazione empirica di una legge di dis-
tribuzione. Giornale dell’Istituto Italiano degli Attuari 4, 83–91.

MacLean, L., Ziemba, W. T., Blazenko, G., 1992. Growth versus security in dy-
namic investment analysis. Management Science 38 (11), 1562–1585.

MacLean, L. C., Ziemba, W. T., Li, Y., 2005. Time to wealth goals in capital
accumulation. Quantitative Finance 5 (4), 343–355.

11



Risken, H., 1984. Fokker-planck equation. Springer.

Scalas, E., 2006. The application of continuous-time random walks in finance and
economics. Physica A 362, 225–239.

Tweedie, R. L., Meyn, S., 2009. Markov Chains and Stochastic Stability. Cam-
bridge University Press, Cambridge UK.

12


