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Abstract

“Learning-by-doing” is usually identified as a process whereby performance

increases with experience in production. Of course such form of learning is

complementary to other patterns of capability accumulation. Still, it is fun-

damental to assess its importance in the process of development. The paper

investigates different patterns of “learning by doing”, studying learning curves

at product level in a catching-up country, India. Cost-quantity relationships

differ a lot across products belonging to sectors with different “technological

intensities”. We find also, puzzlingly, in quite a few cases, that the relation

price/cumulative quantities is increasing. We conjecture that this is in fact

due to quality improvement and ‘vertical’ product differentiation. Circum-

stantial evidence rests on the ways differential learning patterns are affected
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by firm spending on research and capital investments. Finally, our evidence

suggests that “learning”, or performance improvement over time is not just

a by-product of the mere repetition of the same production activities, as

sometimes reported in previous studies, but rather it seems to be shaped by

deliberate firm learning efforts.

Keywords: Learning-by-doing, learning curves, product innovation, process

innovation

JEL codes: D22, D24, L6, O3
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1 Introduction

Theoretical and empirical studies in economics consider “learning-by-doing” as a process

in which an increase in experience in a particular type of production (‘doing’) yields an

improvement in efficiency (‘learning’). Typically the postulated relation is a power law,

linking some performance indicator (eg. unit costs, unit prices, productivity) with an

experience indicator (eg. cumulated production). The evidence, which we shall review

below is quite robust. However the simplified version of “learning by doing”, henceforth

LBD, presents significant drawbacks. First, LBD, as shown in the innovation literature

is only one of several, often complementary forms of knowledge accumulation. Second,

even when strictly applies, as discussed by, for example, Scott-Kemmis and Bell (2010),

it is often considered that learning is a costless activity and an automatic by-product

of continued production activities. Third, it is generally assumed that all organizations

have the same capacity to learn and there are no differences in absorptive capacities that

might lead to differences in the intensity of learning across different organizations. Fourth,

only rarely the product characteristics remain in actual fact invariant. Rather, often, the

object of ‘learning’ improves its performance but at the same time, its production costs.

In this work we investigate the existence, shape and slope of learning curves in a

developing country, namely India, at the product-level, conditioning on firms’ and sectoral

characteristics. In particular, we shall analyze, first, how the slope of the learning curves

are affected by R&D and fixed investment activities, and second, by the timing of entry

of the firm in any one production activity, and hence, indirectly by the positioning of

the firm along the life cycle of a product (and thus, the possible knowledge spillovers it

gains from older incumbents). Needless to say, the understanding of the determinants

of the very existence and slope of learning curves is not only important in its own right

as a part of the microeconomics of innovation, but bear far reaching implications for

the very analysis of the determinants of growth - in general and especially with respect

to emerging economies. For example, would one find widespread and relatively uniform

learning curves, that would give support to the view whereby knowledge is simply the

“unintentional side effect of the production of a conventional good” (Romer, 1990) and,

dynamically, the notion that the “the larger the rate of production, the greater the learning

experience” (Rosen, 1972). Indeed a wide ensemble of growth models are built in such

notion: among others, Rosen (1972); Romer (1986); Lucas (1988); Stokey (1988); Young

(1993) and De Liso et al. (2001).

Conversely, were one to find a great inter-product/inter-technological/inter-firm di-

versity in learning rates one would be forced to bring more “Schumpeterian” and “evolu-

tionary” elements into the explanation, related to both the specificities of the different

3



technologies and the characteristics and strategies of different firms and it would also

carry different policy implications. More generally, such evidence should urge to finer

accounts of the complementarity between production-related learning on the one hand,

along with other drivers of knowledge accumulation, on the other. So, as Romer (1990)

in a self-critical mood puts it, considering the importance of determinants of knowledge

accumulation other than sheer learning-by-producing, “if the fundamental policy problem

is that we have too many lawyers and MBAs and not enough engineers, a subsidy to

fixed capital accumulation is a weak, and possibly counterproductive, policy response”

(p.S94).

A normative implication, much relevant for the case of India, is related to industrial

policies in developing countries that aim at nurturing an environment that might encour-

age the creation and growth of new firms, the so called infant industry argument. In this

respect, all the evidence on LBD militates in favour of institutional set-ups supporting

infant industries based on the idea that production, even if not profitable at present,

could greatly improve over time (see within an enormous literature, e.g. Bardhan, 1971;

Succar, 1987; Bairoch, 1995; Rodrik and Yoon, 1995; Pack and Saggi, 2006; all the way

to Cimoli et al., 2009). Basically, LBD implies one of the forms of dynamic increasing

returns. The argument is even stronger in the case of developing economies with larger

markets, as India, for instance, where firms in their early phase can take advantage of a

large domestic market to increase their scale of operations and exploit internal increasing

returns. Note, however, that in a good deal of the policy debate much of the attention

was placed in the mere “automatic” experience in production, with much less attention

on the firm-level learning strategies or inter-sectoral differences in learning modes. Not

enough attention has been generally devoted to the so-called “non-doing”1 mechanisms of

learning and hence also policy interventions were not much focused on the more deliber-

ate efforts undergone by firms to improve their efficiencies, which might take the forms

of investment in tangible assets embedding more recent technologies or R&D spending.

More generally, learning is likely to be shaped and modulated by the different modes by

which firms learn, imitate and innovate in different technologies and sectors. An initial

but insightful taxonomization of such modes is in Pavitt (1984). And we shall make use

of it in order to begin to taxonomize learning patterns.

The paper proceeds as follows. In the next section, we provide a critical review of

previous studies on LBD. Section 3 describes the data and variables used in the paper.

In section 4, we look at the cost-quantity relationships across products as revealed by

learning curves and learning coefficients. Section 5 presents the observed heterogeneity

1The term “non-doing” was used by previous studies, for instance, Bell (1984). More generally, the
evidence on ‘on-line’ vs. ‘off-line’ learning is discussed in Dosi and Nelson (2010).
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in the cost-quantity relationships among different products and different sectors, while

Section 6 attempts to relate it to different firm-specific characteristics. Section 7 deals

with the effect of market experience in mode of entry of firms. Section 8 concludes.

2 Studies on LBD and its applications

The notion of “learning-by-doing” was first put forward in the 1930s and 1940s, thanks

to studies of aircraft and ship production. The learning curve, originally born in the

engineering discipline when T. P. Wright, the director of engineering of the Curtiss-

Wright Corporation, began to plot out “the effect of quantity production on cost” (Wright,

1936). The resulting graphs reported a log-log relation between labour required per unit

of output and the cumulative volume of production, suggesting a reduction of unit costs

by 20% with each doubling of output volume. In most other studies that followed, the

basic power law relation between costs and quantity appeared to fit the data quite well

in a wide range of industries including, but not limited to, shipbuilding, machine tools,

specialty chemicals, and semiconductors (Arrow and Arrow, 1950; Arrow et al., 1951;

Alchian, 1963; Dutton and Thomas, 1984; McDonald and Schrattenholzer, 2001; Argote

and Epple, 1990). Table 1 provides a summary of few of the works on LBD. However, most

of these studies provide limited information about the causes of improved performance.

One interpretation focuses upon some form of collective improvements in production

activities, even holding the capital equipment unchanged. Lundberg (1961) called the

“Horndal effect” the observation that at the Horndal steel works plant in Sweden with

no new investment for a period of 15 years, still productivity (output per man hour)

rose on the average close to 2 percent per annum. Therefore, he suggests, the increasing

performance should be imputed to learning from experience. As known, that cumulative

production-productivity relation has been a source of inspiration also for the seminal

theoretical contribution on learning-by-doing by Arrow (1962).

Following works also emphasized the importance of factors beyond mere physical

production, like spending on R&D and capital investments as drivers of improved per-

formance. For instance, concerning R&D, a recent study by Farmer and Lafond (2016)

conjectures that, when estimating the improvement rates in technology over time, adding

variables like R&D and innovation proxies like patents helps in enhancing the explica-

tory power of the estimates. Concerning capital investments, productivity improvements

appear to be faster when also the capital stock is renewed (Thompson, 2001), although

the evidence is sometimes more mixed (Power, 1998; Grazzi et al., 2016).

More generally, it is well established in the economics of innovation literature that

“on-line” improvements in dexterity in production activities are just one out of a few

5



modes of learning. Other modes include “off-line” search activities (including of course

formal R&D) primarily directed at product innovation, and at the opposite extreme, the

acquisition of capital-embodied advancement in production technologies (see Dosi, 1988;

Klevorick et al., 1995; Dosi and Nelson, 2010; Malerba, 1992, among the many others).

Technologies and sectors differ in the balance among different learning modes: in this

respect, Pavitt taxonomy represents a pioneering attempt to map learning modes into

groups of sectors.

In fact, a first major issue still far from settled in the literature is the interaction

between improvements in the production methods directly associated with production

activities, on the one hand and other forms of “learning”. As we shall see in the following,

the latter might even imply apparent ‘de-learning’ in production efficiency, where in

fact they yield products characterized by higher quality and performances. Second, but

relatedly, crucial issues concerns the robustness of the linearity of the log-log curve itself

(as pointed out long ago by Carr, 1946) and the inter-product differences in the slope of

such curves (Middleton, 1945). Third, when the fine characteristics of a product change,

a subtle issue concerns the measurement of price changes and the degrees to which they

capture underlying ‘hedonic’ variations. Below we shall address all these issues.

3 Data and Variables

The paper employs firm-level data from the Prowess database, provided by the CMIE

(Centre For Monitoring Indian Economy Pvt. Ltd.). Annual reports of companies rep-

resent the most relevant source of the database which contains information from the

financial accounts of Indian companies. The data span from 1988 to 2012 and cover both

publicly and non-publicly traded firms2 from manufacturing, services, utilities, and finan-

cial industries. As the object of our investigation is the learning process in production,

we restrict our attention to manufacturing firms only.

A distinctive feature of Prowess data is that firm’s total sales are broken down into

the revenues generated by each of the products sold.3 The product classification structure

is detailed in Appendix A.1. The product-level information is available for 90 percent of

the manufacturing firms, that collectively account for more than 90 percent of Prowess ’

manufacturing output and exports. Firms are required to report not just the names

of the products, but also product-level details about production, sales quantity, sales

revenues and unit prices. The coverage of product-level information - especially for sales

2Around one-third of the firms in Prowess are publicly listed firms. Appendix A provides additional
information on the database.

3According to the 1956 Companies Act, firms are required to disclose product-level information on
production and sales.
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Table 1: Major reviews, empirical and theoretical studies on learning curves

Wright (1936) Put together earlier USAF and supplier company improvement curve studies.
Rigdon (1944) Labour productivity trends in the WW II US airframe industry.
Searle (1945) Labour and time trends in WW II US shipbuilding industry.
Middleton (1945) Reports productivity performance in WW II airframe manufacturing.
Carr (1946) Critical review applications of learning curve models.
Mensforth (1947) Comparison of cost-quantity trends of aircraft production in UK and USA.
Stanley (1949) Empirical study of time to achieve peak rate of production in WW II airframe

industries.
Arrow and Arrow (1950) Productivity trends in WW II US airframe industry.
Arrow et al. (1951) Labour productivity trends in WW II US airframe industry.
Asher (1956) Improvement trends in the WW II and post-war US airframe industry.
Alchian (1963) Labour productivity trends in WW II US airframe industry.
Rapping (1965) Improvement in man-hour productivity in WW II US shipbuilding industry.
Young (1966) Critical review of applications of the learning curve concept.
Colasuonno (1967) Review of progress curves through review and evaluation of articles and re-

ports.
Brockman and Dickens
(1967)

Labour productivity trends for nine cargo aircrafts in the US aircraft indus-
try.

Hartley (1969) Discusses the application of learning curves in UK aircraft production out-
lays.

Orsini (1970) Review of progress curves & develops a three-dimensional learning curve
model by including the production rate as a second explanatory variable.

Dosi (1984) Models cost and pricing procedures under conditions of technical change.
Lieberman (1984) Documents variations in the slope of learning curve linked to differences in

R&D & capital intensity.
Gruber (1992) Learning curve in semiconductor chips; heterogeneity of learning across prod-

ucts (chip types).
Irwin and Klenow (1994) Learning-by-doing spillovers within the semiconductor industry.
Jovanovic and Nyarko
(1996)

Develops one-agent Bayesian model of LBD and technology choice.

Argote (1996) Reviews organizational learning & forgetting and evidence about whether
learning transfers across organizations.

Hatch and Mowery (1998) Analyses the relationship between process innovation and learning-by-doing
in the semiconductor industry.

McDonald and Schratten-
holzer (2001)

Estimates learning rates for energy conversion technologies.

Jovanovic and Rousseau
(2002)

Empirical learning curves for three general-purpose technologies: Computers,
electricity, and the internal combustion engines.

Lapré and Tsikriktsis
(2006)

Explore whether customer dissatisfaction follows a learning-curve pattern
looking at trends in customer complaints against 10 largest airlines.

Schoots et al. (2008) Learning curves using cost data for hydrogen production process; No cost
reduction is found.

Grubler (2010) Cost trends in specific reactors in time; finds that reactor construction costs
increase in time.

Funk and Magee (2015) Empirical evidence on cost and performance improvements even with no
commercial production; but with deliberate R&D efforts.

- is extremely good: summing up sales at the product-level yield more than 90 percent

of total sales reported through firm balance sheets and similarly for export, see the last

two rows of Table 2. Prowess is therefore particularly well suited to investigate how firms

adjust their product lines over time. Table 2 reports some summary statistics covering
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Table 2: Summary statistics for product-reporting firms.

1991 1996 2001 2006 2011

Firms 1875 3712 5281 6264 3492

Number of Products 1268 1758 1952 2114 1841

Product-Reporting Firms 1769 3560 4983 5640 3289

Share of single product firms 0.48 0.55 0.57 0.52 0.43

Share of sales of product reporting firms 0.89 0.91 0.90 0.92 0.93

Share of exports of product reporting firms 0.86 0.88 0.90 0.90 0.92

different years to provide evidence of the representativeness of Prowess over time.

3.1 Variables

In the literature on learning curves, three variables are typically employed to measure

experience: 1) cumulative volume 2) time and 3) maximum volume. However, the most

used is cumulative production volume (Yelle, 1979; Argote et al., 2000). Alternatively,

Moore (1965) suggests that the cost of a given technology decreases in time, the so-

called “Moore’s law”, which portrays the relation between an efficiency variable and time.4

Mishina (1999) proposed a third “experience” variable, i.e, the maximum output produced

to date or maximum proven capacity to date. When a plant is scaling up production, the

production system faces unprecedented challenges: hence such a measure captures the

notion of “learning by new experiences” or “learning by stretching” (Mishina, 1999; Lapré

and Van Wassenhove, 2001).

In the present study, we measure experience as the cumulated (physical) quantity of a

given product manufactured by a firm. Table 4 and Figure 1, below, present the statistics

on such relation, respectively, for a selection and for all products in our sample. However,

in order to compute a proxy for experience in production that can be comparable across

firms, we ought to exclude those products that were present in the first year of our

sample, since for these products we cannot know either the cumulated production before

the beginning of the sample period or the product tenure.5

The performance variable that we will be mostly employing is the unit price of the

4Of course if sales grow exponentially over time, the two measures are equivalent. Empirically we
compare the two measures in appendix C.

5Note that, due to the increasing number of observations over time, the first year of the dataset is the
one with the smallest number of observations. Hence the exclusion of products that were present in the
first year comes at a relatively low cost: out of 2281 products that appear over the whole sample period,
we only have to drop 343 of these. However, also note that we perform a robustness check in which we
include all available products and results are not significantly affected.
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product. Notice that production costs per product for multi-product firms are not avail-

able and probably unknown with precision to the firms themselves. In fact, several

previous empirical studies have used price data to construct experience curves (Boston

Consulting Group, 1970; Abell and Hammond, 1979; Ayres and Martinas, 1992; Neij,

1997; Gruber, 1992, 1998; Irwin and Klenow, 1994; Chung, 2001).6 And, indeed, there

is a good matching between unit cost dynamics and unit prices whenever the latter are

fixed according to some mark-up pricing procedure (Dosi, 1984), whereby price is a mul-

tiplicative markup over average cost (for a similar pricing structure, see, among others,

Amiti et al. 2014):

Pijt = Cijt(1 +MUijt), (1)

where the three terms are, respectively, the unit price (Pijt), the unit production cost

(Cijt) and the markup (MUijt) of firm i, for product j at time t. In this work we are not

interested in the estimation of the markup per se, however, to the extent that equation

(1) offers an accurate approximation of the pricing behavior of firms, that would provide

support to our choice of price as a performance measure even when, as for the case of

multi-product firms, information on costs is not available. We can test the validity of our

conjecture for the case of single product firms.7

We estimate, using firm-fixed effects, a log transformed version of equation 1 in which,

short of a precise and direct proxy for MU, R2 of the regression captures the share of

variance of the change in unit price explained by changes in unitary cost. A high R2 is

plausibly informative also about the quality of the price-based measure that we employ

in the case of multi-product firms, when per-product production costs are not available.

Regression results are reported in Table 3 where we also provide some robustness

checks by including time dummies and size, as proxied by (log) sales of the firm. The

correlation is extremely high,8 and regression coefficients are very close to one in all the

specifications. Even though we observe that the difference of beta from one is statistically

significant (as we observe from last row of table 3), the significance of the test is basically

due to large number of observations (which is also revealed by the low standard errors)

and hence, basically the economic importance is nil, as social science professionals are

6There are many other related fields, such as energy economics, where it is common to use price as a
proxy for cost in the learning-by-doing literature: see for example, Berry (2009); Coulomb and Neuhoff
(2006); Junginger et al. (2005); Kobos et al. (2006).

7For multi-products firms, it is possible to know the sale price for each product sold, but it is not
possible to allocate the share of purchased inputs to each product. It is only for single product firms
that it is possible to directly relate the cost of production to the price of the output sold. Here “single
product” firms are those that have been producing only one product throughout the whole sample period.

8Also note that here, as throughout the paper, monetary variables are deflated with 3-digit industry
output deflators.
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Table 3: Relation between cost of production and price of product

(1) (2) (3)
Unit cost 0.9497*** 0.9942*** 0.9938***

(0.0023) (0.0012) (0.0012)

Size No No Yes

Time Dummies No Yes Yes

Sector Dummies No Yes Yes
Observations 15625 15625 15625
R2 within 0.922 0.981 0.981
R2 between 0.992 0.994 0.994
R2 overall 0.986 0.993 0.993
Number of firms 1620 1620 1620
β = 1 (21.8695) (4.8333) (5.3793)

* p < 0.10, ** p < 0.05, *** p < 0.01

Last row reports the results of a t-test where the null is β = 1.

also coming to realize.

In the rest of the paper we will be using data from all firms, including multi-product

ones, with prices as a proxy for costs of production.

4 Learning curves and learning coefficients: Product-

level analysis

Let us start by investigating the cost-quantity9 relationships at the product-level by

plotting “learning curves”, i.e. the relation between cumulative quantities and prices (or

cost) of products. Usually, the learning curve is expressed in the form of a power law10:

p = a ∗ qβ (2)

where p is the price of the product, a the constant (which can be interpreted as the

initial costs), β is the scaling factor and q the cumulated quantity produced. Here we

focus on estimation of the learning parameters using power and also other three functional

forms, generally suggested by previous studies, which include, linear, exponential and

9Throughout the paper we use the expression cost-quantity instead of price-quantity, since we use
price as a proxy to measure cost. Comments and interpretations in the paper rest on the assumption that
cost-price margins of products remain roughly constant over time. The hypothesis is tested in Section 3.

10Among others, Dutton and Thomas (1984); McDonald and Schrattenholzer (2001) and Argote and
Epple (1990) use this formulation. Also note that, as standard in the literature (see for instance Nagy
et al., 2013) we consider a positive sign in front of the β at the exponent.
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logarithmic functions.11

We start by investigating the “aggregate” cost-quantity relationship, that is, we pool

together observations from all firms producing a given product. We exploit the panel

structure of the data, and we look at the price of a given product and its cumulative

output. We proceed to perform a firm-level fixed effects regression with the four different

functional forms and we check which functional form provides the best representation of

the cost-quantity relationship. The estimated equations are the following:

Linear Form:

pijt = aij + βj qijt + ǫijt (3)

Logarithmic form:

pijt = aij + βj log(qijt) + ǫijt (4)

Exponential Form:

log(pijt) = log(aij) + βj qijt + ǫijt (5)

Power Form:

log(pijt) = log(aij) + βj log(qijt) + ǫijt (6)

where pijt is the price of product j produced by firm i at time t, qijt is the cumulated

quantity of product j produced by firm i at time t, aij the intercept and ǫijt is the error

term.

To investigate which of the functional forms fit best the learning patterns, we compare

the goodness-of-fit using Rsquared as a fit criterion. In line with previous literature, we

find that the goodness-of-fit of the power and exponential functions is higher than the

linear functions. Similar findings have been reported by Anderson and Schooler (1991)

and Wixted and Ebbesen (1997). The average value of Rsquared is around 0.5 for power

and exponential functions, while for linear and log functions, it is around 0.2.12 In what

follows, we will be using the parameters of the power law estimation (however using the

exponential parameter our general results do not change).

Table 4 reports the learning coefficients estimated using the power law function (equa-

tion 6) for a selection of products. First, note that the learning coefficient varies a lot

among products. Second, we observe that for quite a few products, the learning coefficient

11Koh and Magee (2006, 2008) claim that an exponential function of time predicts the performance
of several different technologies. According to Goddard (1982) costs follow a power law in production
rates rather than cumulative production. Multivariate forms involving combinations of production rate,
cumulative production, or time have been examined by Sinclair et al. (2000) and Nordhaus (2014).

12Since we are comparing log vis-à-vis non-log models, we also perform the following additional check.
We take the exponential of the predicted values for the exponential and power model, then we compute the
R2 as the difference between (exponential of) the observed and predicted values. The average R2 hence
obtained is 0.4, which is comparable to values from OLS estimation of the linear models. Nevertheless,
the R2 of the non-linear models are still higher than the linear models.
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Table 4: Learning coefficients (β̂ from equation 6) using Power function

Product name Coeff. (β̂) Std error Obs.

Pollution Control Equipment -0.5023*** (0.0695) 106

Wiring Accessories -0.4553*** (0.0646) 89

Washing Machines -0.3852*** (0.0252) 106

Mineral Water -0.3687*** (0.0255) 127

Hand Brakes -0.3332*** (0.0241) 137

Road Construction & Maintenance Machines -0.3069*** (0.0607) 70

Room Air Conditioners -0.2618*** (0.0208) 191

Refrigerators -0.2178*** (0.0256) 70

Condoms -0.2174*** (0.0641) 102

Passenger Cars -0.1678*** (0.0217) 136

Writing & Printing Paper -0.1329*** (0.0087) 241

Aluminium foil -0.0879*** (0.0106) 114

Detergents -0.0857*** (0.0080) 224

Stainless Steel Forging, Flanges & Allied Pipe 0.0627*** (0.0074) 528

Helmets 0.1120** (0.0445) 220

Automobile transmission gear 0.1130*** (0.0355) 108

Synthetic Filament Yarn 0.1388*** (0.0379) 563

Hand watches& watch components 0.1676** (0.0698) 165

Oil Cooler 0.4116*** (0.0888) 159

Electrical Porcelains And Insulators 0.4152*** (0.0712) 53

Generators 0.4348*** (0.0714) 288

Can Making Machinery/Industrial machinery 0.4656*** (0.0551) 102

LPG Regulators/Valves 0.5642*** (0.1103) 120

Perfumery Compounds, Aromatic Spices, Etc. 0.5908*** (0.0723) 156

Material Handling Equipment 0.6018*** (0.0592) 169

is positive, and thus, hints at an upward sloping cost-quantity curve. This is confirmed

when looking at the distribution of coefficients for all products, as reported in Figure 1.13

Figure 2 illustrates the canonical cost-quantity curves for some selected products

obtained by pooling together the firms producing the same product, for some goods

displaying a downward sloping cost-quantity curve. Dots with different symbols represent

different products. Each dot with the same symbol represents a pair of (log) cumulated

quantity and (log of) price for a given firm in a given year. This evidence is well in line with

several other studies that detect a cost-quantity relationship that is accounted for by a

power-law and that applies to a wide variety of technologies (Dutton and Thomas, 1984;

McDonald and Schrattenholzer, 2001; Argote and Epple, 1990). Conversely, Figure 3

offers a graphical account of some of the “positive” learning curves, that is, a positive

13The mean, standard deviation, skewness and kurtosis of the distribution are -1.60, 1.35, -0.23 and
2.84 respectively.
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Figure 1: Distribution of learning coefficients of all products. Note: a negative sign stands
for revealed fall in costs/prices.

relationship between unit price (or cost) and experience.

The evidence so far shows that, in most of the cases, the cost-quantity relationship

displays a non-linear nature and that such relationship differs across products, even in

terms of sign. In the following section we look at the heterogeneity in learning patterns

across products and firms, classifying them on the basis of the different technological

intensities, as captured by the Pavitt taxonomy (Pavitt, 1984).

5 Heterogeneity in cost-quantity relationships

Let us try to investigate the differences in cost-quantity relationships, conditional on the

sectors the products belong to.

There could be various product-specific characteristics which might lead to the ob-

served differences in learning patterns. Here, we are interested to investigate the techno-

logical characteristics of the product. Our hypothesis is that the products which show a

positive relationship between cost and experience undergo systematic quality upgrading

over time, hence the observed positive cost-quantity relationship.

The general idea is that there are two types of learning, namely one associated with

an increased efficiency in the production of a given product and another one linked to

the ability of producing new/improved products. The case is illustrated in Figure 4 with

unit costs/prices on the y-axis and, for convenience, time on the x-axis (recalling that
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Figure 2: The relation between cost and quantity (log scale) together with power law fit
for selected products; the ‘canonical’ downward sloping learning curves.
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Figure 3: The relation between cost and quantity (log scale) together with power law fit
for selected products; the upward sloping learning curves.

time and cumulated production are equivalent if production grows exponentially).

In a world of pure “process” learning firms would simply go down the Product 1 curve

starting from C1(t1) and following a canonical learning curve. Suppose however that at

14
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Figure 4: Learning along the cost curve of one product vs learning to produce new
products.

some point in time the firms introduces “better” product with initial cost C2(t2) and begins

to improve its production capabilities on it, until it introduces yet another improved

product with initial cost C3(t3), etc. Any observer unable to distinguish “learning” along

the curve vs. product innovation - as we are not - would actually observe an upward

sloping (or for that matter flat) long-term relation between costs/prices on the one hand,

and time/cumulated production on the other.14 Further, the problem is compounded by

the inability to calculate some quality-weighted prices (i.e. proxies for “hedonic prices”).

These are all problems which we faced in Dosi (1984) when studying the semiconductor

industry. In that case, the pace of both product and process innovation has been (and

is) so fast that Moore’s law applies (see above).15

For most products and most technologies, however, this is not the case and the slopes

and signs of the price/quantity relation is going to be shaped by the relative balance

between product-innovation and process-related learning. In turn such a balance is going

to depend also by the type of sector the products belong to. And here is where Pavitt

Taxonomy comes in.

14In Appendix B, we attempt to show graphically the price trends of few products where the change(s)
in product design (product innovation) can be visually detected.

15A deeper challenge, as pointed out by a referee, concerns the ‘elementary objects’, if any, to which
learning applies. So for example, in the paradigmatic example of microprocessors, it is not that the cost
of each ‘unitary transistor’ on an Intergrated Circuit or a microprocessor goes down. On the contrary,
it is the overall cost of a multiplicative number of transistors on a single chip.
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5.1 Sectoral Characteristic and learning modes

Pavitt (1984) distinguishes between sectors and technologies according to sources of

technological knowledge, requirements of the users, and appropriability regimes (Pavitt,

1984). He identifies four categories:

(1) Supplier-Dominated sectors which include most traditional activities such as tex-

tiles, clothing and agriculture and mainly rely on sources of innovation external to the

firm, often equipment-embodied.

(2) Scale-Intensive sectors, characterized by scale-biased technical advances and cover-

ing both basic materials and consumer durables, e.g. automobiles. Sources of innovation

are both internal and external to the firm and innovation, especially in complex product

such as automobiles and consumer durables is related to both product and process.

(3) Specialized Suppliers design and produce industrial machinery and instruments

used in most other industrial sectors. Innovation is mostly product-innovation.

(4) Science-based sectors, rely on both in-house R&D and on university research;

they include industries such as pharmaceuticals and electronics. The rates of product

innovation are generally quite high while improvement in production efficiency vary a

lot across sectors (e.g. very high in the mentioned case of semiconductors; of lesser

importance for pharmaceuticals).

In terms of Pavitt’s taxonomy one would expect, other things being equal, a domi-

nance of standard downward sloping learning curves in technologies/sectors where process

learning prevails and a more blurred pictures in the other ones.

Figure 5 shows the “violin plots” of the distributions of learning coefficients across

different Pavitt categories. The plot is a combination of box plot and kernel density

distributions. The median of the product-level learning coefficient for each sector is

marked by the central bar and the box indicates the interquartile range as in standard

box plots. Indeed the distribution of learning coefficients in the Science-Based and Spe-

cialized Suppliers category (S-B and S-S in the figure) is shifted upwards, implying that

there are more cases of positively shaped cost-quantity curves, while most of the ob-

served patterns among Supplier Dominated and Scale Intensive sectors presents negative

coefficients (price/costs fall with cumulated quantities).

The difference between the learning parameters across Pavitt sectors is further tested

using Fligner-Policello location test (Fligner and Policello, 1981). The null hypothesis for

the test is H0 : θX = θY , where θX and θY are the population medians of two Pavitt sectors

in each pair.16 The test assumes that the distribution in each class is symmetric around

the class median, but it does not require that the two class distributions have the same

16The first column of Table 5 gives different pairs of Pavitt sectors.
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Figure 5: Distribution of learning coefficients across different Pavitt categories at firm-
level. S-D - Supplier Dominated; S-I - Scale Intensive; S-S - Specialized Suppliers; S-B -
Science-based.

form or that the class variances be equal.17 Table 5 reports the pairwise Fligner-Policello

statistics of the distributions of learning coefficients across different Pavitt categories. A

positive and significant F-P statistics suggests that the distribution of learning coeffi-

cients of the second sector in each pair (for instance, scale intensive sector in the first

row) statistically dominates the other. In all the cases we observe that the “learning”

coefficients in specialized suppliers and science-based sectors statistically dominate the

supplier dominated and scale intensive sectors: that is, there is a higher probability to

observe a positively shaped learning curve, i.e. an apparent “anti-learning”.

Interestingly, we also find that for multi-product firms, in 90 percent of the cases, all

products produced by the firm display similar cost-quantity trend. It is further circum-

stantial evidence of the influence of the nature of underlying technologies which the firms

masters on the sign of its ‘learning’ coefficient. Given the existence of such inter-sectoral

differences, we next investigate the presence of firm-specific characteristics associated

with such learning patterns.

17See Hollander et al. (2014) and Juneau (2007) for details.
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Table 5: Heterogeneity of learning coefficients across different Pavitt sectors: Two Sample
Fligner-Policello Robust Rank Order Test

Sector Obs. Average Index of F-P statistic Two-tailed

placement variability p-value
Supplier-dominated 24156 2.4e+04 4.5e+12 5.654 0.000

Scale-Intensive 47207 1.2e+04 2.3e+12

Supplier-dominated 24156 6.7e+03 1.8e+11 17.648 0.000

Specialized suppliers 11870 1.1e+04 8.3e+11

Supplier-dominated 24156 4.9e+03 1.1e+11 33.693 0.000

Science-based 7858 9.0e+03 4.2e+11

Scale Intensive 47207 6.6e+03 3.4e+11 15.964 0.000

Specialized Suppliers 11870 2.1e+04 3.2e+12

Scale Intensive 47207 4.8e+03 2.1e+11 31.946 0.000

Science-based 7858 1.8e+04 1.6e+12

Specialized suppliers 11870 4.2e+03 7.5e+10 9.236 0.000

Science-based 7858 5.5e+03 7.5e+10

6 Cost-quantity relationships and firm characteristics:

Product vs Process innovation

The main sector of activity of the firms deeply influence the propensity to undertake

R&D and thus the balance between product and process innovation as R&D is to a large

extent addressing product innovation/imitation. Still inter-firm variability remains high.

Thus, here we investigate the relation between firms’ R&D and investment spending to

the observed learning patterns at the firm-product-level.

We perform OLS regressions to investigate the relationship between the observed

learning parameters and innovative activities, separately for each Pavitt group of sectors.

The proxies we consider for innovative activities are log of cumulated R&D for product

innovation and log of cumulated investment, possibly capturing capital-embodied, for

process innovation.18

The estimated model is the following cross-sectional regression:

18See Bogliacino et al. (2012) for a detailed review of innovation, and in particular innovation surveys,
in developing countries.
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LPij = α + β1 R&Di + β2 Invi + controlsi (7)

where LPij is the estimated learning parameter for product j produced by firm i, Invi

is log of cumulated investment of firm i and R&Di is the log of cumulated R&D of firm i.

The controls include firm size, measured as log of sales, year and 2-digit sector dummies.

In equation 7, RHS variables are at firm-level, since we observe the R&D and investment

spending at firm-level, not disaggregated by single products. The LHS variable, i.e. the

learning parameter, is computed at the firm-product-level, as in equation 6.

Table 6: Learning coefficients of products and innovative characteristics of firms in dif-
ferent Pavitt sectors

Supplier Scale

dominated intensive

I II III I II III

R&D 0.0204*** 0.0193*** 0.0190*** R&D 0.0083*** 0.0077** 0.0074**

(0.0038) (0.0042) (0.0042) (0.0027) (0.0030) (0.0031)

Investment -0.0147*** -0.0181*** -0.0172*** Investment -0.0319*** -0.0326*** -0.0336***

(0.0023) (0.0036) (0.0038) (0.0030) (0.0034) (0.0034)

Size No 0.0011 -0.0024 Size No 0.0017 0.0054

(0.0036) (0.0044) (0.0040) (0.0044)

Year Dummies No No Yes Year Dummies No No Yes

Sector Dummies Yes Yes Yes Sector Dummies Yes Yes Yes

Observations 6235 5260 5260 Observations 11659 11659 11659

R2 0.155 0.181 0.184 R2 0.060 0.060 0.062

Specialized Science

suppliers based

I II III I II III

R&D 0.0347*** 0.0397*** 0.0395*** R&D 0.0159** 0.0314*** 0.0322***

(0.0063) (0.0075) (0.0076) (0.0080) (0.0083) (0.0082)

Investment -0.0062** -0.0216*** -0.0221*** Investment 0.0230*** 0.1144*** 0.1140***

(0.0028) (0.0051) (0.0051) (0.0057) (0.0073) (0.0072)

Size No 0.0216*** 0.0209*** Size No -0.1384*** -0.1577***

(0.0060) (0.0061) (0.0078) (0.0080)

Year Dummies No No Yes Year Dummies No No Yes

Sector Dummies Yes Yes Yes Sector Dummies Yes Yes Yes

Observations 6441 5166 5166 Observations 4814 3670 3670

R2 0.036 0.043 0.047 R2 0.020 0.114 0.142

Standard errors in parentheses
*p < 0.10, **p < 0.05, ***p < 0.01

Table 6 shows the regression results for all four Pavitt sectors.19 The first row shows

the coefficient values for R&D. In all the sectors, the coefficients are positive and sig-

nificant suggesting that, even within the same Pavitt sector, higher spending on R&D

is associated with higher values of the learning parameter, that is, higher probabilities

19We calculate clustered standard error in order to permit general heteroskedasticity and within-cluster
error correlation.
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to observe a positively shaped “learning curve”.20 The higher spending on R&D in turn

suggests an underlying quality upgrade of the product over time, i.e. various forms of

product improvement/ innovation.

Concerning investment intensity, in three out of four Pavitt sectors, the coefficient is

significant and negative, as one would expect on the grounds of capital embodied process

innovation. This suggests that higher spending on investment is associated with faster

improvements in production efficiency. Interestingly, this does not seem to apply to the

Science-Based cluster, hinting at the possibility that here new investments are primarily

associated with the manufacturing of new products.21

The foregoing evidence adds against the notion that the only driver of technological

learning is by ‘collective experience’. As important as we deem it is (see, among the many

others, Dosi et al., 2000), many other modes are there. Some are apparently orthogonal

to experience: see Sinclair et al. (2000) and Funk and Magee (2015).22 Our findings here

suggest an apparent, most likely spurious anti-correlation which appears in a catching-

up country. As such it is a puzzle, but also it hints, at normative level, at the possible

usefulness of ‘infant industry’ measure when firms walk up the ladder of product qualities.

7 Firm entry and learning in the market

Recall that the foregoing analysis regard product-level learning curves, generally involving

unbalanced panels of diverse firms. The results therefore summarize also information

about entry, the initial prices at which firms enter in any one product category - possibly

with distinct product qualities, and the learning process thereafter. In terms of industrial

dynamics, entry of course involves a challenge to the market position of the incumbents,

while thereafter learning as such represents a barrier to entry as it establishes a cost

differential between incumbents and would be entrants over the same product quality.

In Dosi (1984), one sketches out a model of industrial evolution inspired by semicon-

ductors, but as such might be applicable to a wide range of industries, both on the frontier

and in the catching up phase - characterized by the co-existence of product innovation

and product-specific learning-by-doing. The latter continuously induces advantages to

20Indeed, as one would expect, Pavitt classes do not entirely explain R&D behaviour (or other aspects)
of all firms within the sectors and hence, heterogeneity of firms (also with respect to product innovation),
within the Pavitt sectors is the norm.

21Note that such results do not change when the learning coefficients employed as dependent variable
in the regression are computed including a proxy for previous experience. Results are available upon
requests.

22Other studies, which look at the functional performance metrics of products, employing data on
physical attributes or technological characteristics of the product also report evidence on characteristics
improvement of products not necessarily related to production learning: see, among the others, Martino
(1971), Brock (2006), Koh and Magee (2006), Nordhaus (2007), Koh and Magee (2008).
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Table 7: Descriptive evidence of firm entry in a given product

Product Higher Price Lower Price Observations Log-difference
Tenure (%) (%) of price (Avg)

0-5 53.92 46.08 102 0.211
5-10 45.95 54.05 407 0.604
10-15 44.44 55.56 504 0.833
15-20 41.87 58.13 492 0.880

incumbents, but that can be always overcome by introduction of new/improved products

in the same family, but with improved functionalities. The prediction of the model is a

persistent process of entry, jointly with subsequent learning-by-doing, and possibly with

new/improved products.

Of course, on the grounds of our data we have no way of accessing the techno-economic

features of each product, but a story of persistent late entry cum higher entry prices is

consistent with such conjecture. This is what we find indeed in the Indian case. At a

finer level of resolution, one would expect, on the grounds of a capability-based theory of

the firm (Dosi, 1982; Dosi et al., 2000; Teece and Pisano, 1994) that late entrants which

however have learned in related products know also how to produce “better products” at

lower costs from the start.

Table 7 shows summary statistics on firm-product entry prices with respect to the

average price of the incumbents producing the same good, or in other words, the mar-

ket price. Market price is defined as the weighted average price of the product at the

market level (incumbents) where the weights are the physical quantities of sales of the

product.23 A firm-product entry might occur either when an existing firm adds a new

product to its portfolio or in presence of firm entry, that is when a new firm enters the

dataset. Of course, as we are interested in assessing the performance of new firm-product

combinations relative to firms that are incumbent in that product-market, we restrict

our attention to products for which there are at least 10 other competitors. Column 1 of

Table 7 shows the different product tenures, i.e., the number of years the incumbents are

producing one product.24 Column 2 shows the percentages of firm-product combinations

where the firm-product entry occurs at a higher price than the market average. Column

3 shows the number of firm-product combinations where the firm-product entry price is

lower than the market price. Column 4 shows the total observations in each product

23The average price is computed excluding the new entrant.
24In order to precisely measure the tenure of the product, we drop the products that were present in

the first year of our sample. For those products indeed, we have no information about the actual year
of introduction. Note however that in a robustness check in which we include all observations, results
remain the same.
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Table 8: Relation between “market experience” and firm entry pricing

I II III IV V

Tenure 0.0617** 0.1228** 0.0923* 0.1470*** 0.1111**
(0.0285) (0.0514) (0.0531) (0.0542) (0.0559)

Product Sales Share No No 0.0000 No 0.0000
(0.0004) (0.0004)

Firm Size No No -0.0026** -0.0027**
(0.0009) (0.0010)

Sector dummies No Yes Yes Yes Yes

Time dummies No Yes Yes Yes Yes

N 1867 1867 1561 1794 1501
R2 0.387 0.392 0.484 0.395 0.488
Adjusted R2 0.088 0.072 0.163 0.062 0.154

Standard errors in parentheses

*p < 0.10, **p < 0.05, ***p < 0.01

tenure class. Column 5 shows the average of the difference (in logs) between weighted

average market price and entrant price. We observe in Table 7 that with increasing prod-

uct tenure, i.e, the higher the number of years the incumbents are producing a product,

the higher the difference between entrant and market price.

In order to provide more detailed evidence, let us estimate the model:

(Pij/P̄j) = αj+β1 Tenurej+β2 Product sales shareij+β3 Firmsizei+yearij+sectori+eij

(8)

where Pij is price of product j of firm i, P̄j is the weighted average price of the product

at the market level as defined before, Tenurej is the number of years the product has

been produced by incumbent firms and is our proxy for market experience or knowledge

stock at the market level. We control for Product sales share, i.e, the share of sales of the

product in total sales of firm in the year of entry and Firmsize, measured as log of gross

fixed assets of the firm and we include year and sector25 effects. Since we are looking at

firm-product entry, a one-time event, we pool the entry events in different years together

and hence there is no time dimension in our analysis, in this respect the year dummies

allow to control for temporal effect. Therefore, we perform a cross sectional analysis

and employ an ordinary least squares regression with product fixed effects. We calculate

25Here, the sector is defined as the main sector of economic activity of the firm, at 2 digit National
Industry Classification.
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cluster-robust standard error that permit general heteroskedasticity and within-cluster

error correlation.

The results are reported in Table 8 and overall, they suggest that the higher the “age”

of the product family, the higher is the ratio of entrant to market price. Hence, the result

suggests that firms entering a new product market find more difficult to successfully

engage in price competition, the longer is the tenure of the product on the market.

Conversely, the size of the “product entrant” has a negative effect on the price-ratio.

8 Conclusions

Persistent technological and organizational learning is most likely the fundamental driver

of economic dynamics since the Industrial Revolution and underlines all episodes of

catching-up ever since (for pertinent discussions, see Freeman, 1987; Cimoli et al., 2009).

Learning takes various forms which the economics of innovation has investigated in detail

(a critical survey is in Dosi and Nelson 2010).

One of such ways, is learning-by-doing, that is some relation between experience by

making, usually proxied by cumulative production and increasing production efficien-

cies/falling cost and prices. It is important to notice however that such statistical ev-

idence does not capture only strict learning by experience. On the contrary, it partly

capture also those processes of capability accumulation, technological adoption, imita-

tion, and finally cumulative innovation, at the level of firms and sectors (more in Dosi

and Nelson, 2010 and in the case of Korean development, see Kim, 1999 and Lee, 2013).

The evidence is quite robust, mostly collected so far on industries in developed

economies. But does it properly apply also to developing ones? And what explains

the inter-sectoral/inter-product differences in the apparent learning patterns, if any?

In this work, on Indian manufacturing, we do corroborate in a good deal of cases the

power law relation of cost/prices vs cumulated produced quantities. At the same time,

we find, first, a wide variation in learning coefficients which still demands satisfactory ex-

planations. Second, relatedly, some relations appear to be positive, that is, an apparent

“anti-learning”. Such patterns, however are consistent with some circumstantial evidence

according to which learning tends to relate more to product than process innovation.

Third, product innovation also explains why late entry in the same product family oc-

curs notwithstanding learning curves, which as such represent entry barriers in favour of

incumbents.

Finally, note that our work, and more in general, the recent increasing availability of

product level data, discloses new research trajectories that one only started to investigate

here. For instance, in the development process, to what extent corporations are able to
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successfully transfer specific production knowledge accumulated over the years in a given

product to a different one? And, relatedly, within a firm, does one observe different

learning patterns for products that compete in foreign markets vis à vis products sold

only domestically? This is just part of the beginning of the opening-up of the black-box

of catching-up learning. In turn, these endeavors ought to be considered as an essential

part of the investigation of the microeconomics of capability accumulation, as such an

essential part of the dynamics of development.
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A Data Details

As mentioned in Section 3, the data are from Prowess database, provided by the CMIE

(Centre For Monitoring Indian Economy Pvt. Ltd.). Prowess is a database of active

business entities for which information related to their financial performance is available.

By “active” business entities, CMIE means those business entities that are not mere

registrations without any activity. By “business entities” CMIE implies that it is not

restricted to only registered companies. Prowess do not cover the universe of active

business entities, even though it is the largest and most comprehensive database on the

financial performance of Indian business entities. The companies covered account for

around 70 percent of industrial output, 75 percent of corporate taxes, and more than 95

percent of excise taxes collected by the Government of India. Earlier studies have used the

same database at the firm-level, such as Topalova and Khandelwal (2011); Balakrishnan

et al. (2000) and Krishna and Mitra (1998) to study the impact of reforms on productivity

growth of firms and Kumar and Aggarwal (2005) to study the the determinants of R&D

behaviour and the impact of reforms on R&D behaviour.

Few studies already used the same firm-product-level data. Among these Goldberg

et al. (2010a) study the relationship between declines in trade costs, the imports of inter-

mediate inputs and domestic firm product scope; whether Goldberg et al. (2010b) focus

on the characteristics of multi-product firms and the link between product rationalization

and trade reforms in India.

Below, we present some description on the product data used for the study. Table 2

in the text reports summary statistics of product-reporting firms.

A.1 Product-level classification

All companies in the Prowess database are mapped to a product or a service in CMIE’s

standardized products and services classification. This mapping reflects the company’s

main economic activity during a year.26

The product and services classification developed by CMIE is based on the Indian

Trade Classification (ITC) which, in turn is based on the Harmonized Commodity De-

scription and Coding System, commonly known as the HS.27 CMIE’s standardized prod-

ucts and services classification has a hierarchical or tree-like structure in which each

broad group, for instance, beverages or leather products is in turn split into narrower

26A company is classified under a particular industry if more than half of its sales originates from the
particular industry or industry group. The industry group could be any product or a product group in
the CMIE products and services classification structure.

27The ITC system would only cover commodities but not services and utilities. However, CMIE has
added them for its classification system.
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categories. At the end of this branching process one finds the singular products. Table 9

offers just an example of such hierarchical structure for the branches of beverages and

leather products, the full classification is available through the data provider. Notice

that, as it happens also with other comparable classifications of sectors and products, the

highest level of detail might vary across different branches. In this respect, in Goldberg

et al. (2010a) it is argued that the level of disaggregation provided in CMIE is just a

variation in the product detail, such variation being a fundamental feature of sectors

rather than emphasizing issues with the data. Finally, the Prowess database contains a

total of 2411 products linked to 293 five-digit NIC industries across the 22 manufacturing

sectors (two-digit NIC codes).

A.2 Matching from products to Pavitt sectors

The linking between the products and the NIC industries are provided by CMIE (the

data providing company). The NIC follows the United Nation’s International Standard

Industry Classifcation (ISIC). As such, NIC 2008 classification has a one-to-one corre-

spondence to ISIC Rev. 4 at 4-digit level. A detailed mapping of industrial activities

to Pavitt sector is provided in Dosi et al. (2008). The concordance from NAICS and

ISIC Rev. 4 is based on the United Nation’s concordance file (available at the UNSTATS

website).28

28The classification was lastly retrieved on March 2017 from:
http://unstats.un.org/unsd/cr/registry/regot.asp?Lg=1.
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Table 9: Example of the nested industry/product structure of Prowess

NIC Product Code Description

11 Manufacture of beverages

1103 Manufacture of malt liquors, beer and other alcohol

050703010000 Malt spirit distilled

051401040000 Soda/Carbonated water

051403000000 Beer

051404010000

P
ro

d
u
ct

s Sparkling wine

051406000000 Potable alcohol

051406010000 Indian made foreign liquor

051406010200 Heritage liquor

051406010300 Scotch & whiskey

15 Manufacture of leather and leather products

1512 Manufacture of consumer goods of leather and substitutes

070202040000 Shopping bags/ carry bags

070202060000 Leather hand bag

070202070000 Wallets and leather purses

070203000000

P
ro

d
u
ct

s Leather garments and accessories

070203010000 Leather jackets

070203020000 Leather gloves

070203040000 Leather belts

070203050000 Industrial leather hand gloves/apron

1520 Manufacture of leather footwear

070601000000 Full leather shoes

070602000000 Canvas shoes

070603000000 Full shoes or boots

070604000000

P
ro

d
u
ct

s Slippers

070605000000 Plastic footwear

070606000000 Footcare products

070607000000 Shoe uppers

070608000000 Shoe soles/heels

Source: Prowess database
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B Evidence of changes in product design

Here we attempt to show graphically the price trends of few products where the change(s)

in product design can be visually detected. Figure 6 shows learning curves for six prod-

ucts, where it is possible to detect a rather sharp trend in prices over a few years, which

might be attributable to changes in product design. For example, the first plot on top-left

of Figure 6 shows the price trend for the product CD/DVD, where we observe a sudden

increase in price in the year 2000, probably because the firm started producing DVDs

instead of CDs, hence a change in the product characteristics.
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Figure 6: Learning curves of selected products pointing to changes in product design
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C The proximate equivalence of Moore’s law and Wright’s

law

Straightforwardly, “Moore’s law” and “Wright’s law” are equivalent if cumulated produc-

tion grows exponentially over time: for some evidence, see Nagy et al. (2013). Moore’s

law can be formally expressed as

p = (a)e−βt (9)

where a is a constant (initial cost or price) and t is time. Moore’s law here refers to the

generalized statement that the cost or price of a given product decreases exponentially

with time compared to Wright’s law, which tests whether cost decreases at a rate that

depends on cumulative production. In fact, empirically, there is a broad equivalence of

Moore’s and Wright’s law. While comparing the Moore’s parameter m (β in equation 9)

with the Wright’s w (defined as -β from the equation 6 in the main text of the paper),

we observe a startling similarity between the two. The correlation between both the

parameters is around 0.9 and the correlation between the R-squared of the two models is

0.95.

A straightforward explanation for the similarity has been highlighted by Sahal (1979)

showing that if the cumulative production, q, follows an exponential relationship with

time, the Wright and Moore parameters are equivalent. Here, we check for the validity of

Sahal’s formulation and we start by verifying whether cumulative production, qt, follows

an exponential function with time:

qt = a ∗ exp(gt) (10)

We indeed find that for all the products in our data, the cumulative production grows

exponentially. The left column of Figure 7 shows three examples of products where

production and price are plotted as a function of time.
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Figure 7: Three examples showing (log of) price as a function of time (left column) and
the (log of) production as a function of time (right column)

The right column in figure 7 shows the trend of cumulative production in time. We

observe that for the products for which the Moore’s law is validated, also cumulative

production grows exponentially in time.29

Eliminating t in equation 9 (Moore’s) and equation 10, would result in Wright’s law,

29Notice that our findings should not be interpreted as a suggestion that cumulative production must
grow exponentially with time in order for Moore’s Law to hold. Till date the only work that could
decouple time and effort variable (i.e, which finds cases where output does not follow an exponential
increase with time) is Magee et al. (2016). Unfortunately, in this paper since for all the products we
observe an exponential growth of cumulative production in time, we cannot test the alternative case.
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with w = m/g, where w is the Wright’s parameter, m is the exponent of cost reduction

(Moore’s) and g is the exponent of the increase in cumulative production. We test this

equivalence of Wright’s and Moore’s parameter in figure 8 by plotting Wright’s parameter

against m/g. The values cluster tightly along the identity line. These results are in line

with the evidence in Nagy et al. (2013).

While the equivalence of Wright’s and Moore’s parameter under exponential growth

of output over time can be algebraically proven, the empirical question remains as to why

that happens. Nordhaus (2014) tries to rationalize why production follows an exponential

trend when cost decreases exponentially in time. He points out that when user-based

performance of a product increases, or cost decreases, demand elasticity would result in

an increase in demand (and thus production).
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Figure 8: An illustration that the combination of exponentially increasing production and
exponentially decreasing cost are equivalent to Wright’s law. The value of the Wright
parameter w is plotted against the prediction m/g based on Sahal (1979), where m is the
exponent of cost reduction (Moore’s law) and g the exponent of the increase in cumulative
production.
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