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Abstract

The patterns of innovation diffusion are well approximated by the logistic curves. This is the robust empirical

fact confirmed by many studies in innovations dynamics. Here we show that the logistic pattern of innovation

diffusion can be replicated by the time-dependent stochastic process with positive feedbacks along the diffusion

trajectory. The dynamic increasing returns process is modeled by generalized Polya urns. So far, urn models

have been mostly used to study the [path-dependent] limit properties. On the contrary, this work focuses on the

transient [finite time] properties studying the conditions under which urn models capture the logistic trajectories

which often track empirical diffusion process. As examples, we calibrate the process to match several cases of

diffusion of motor ships in European countries.
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1 Introduction

The logistic pattern of innovation diffusion is one of the most robust empirical regularities in the literature

on adoptions of new technologies. Usually firms or consumers adopt new product sequentially, and the

vast majority of eventual users adopt well after the early introduction of a new product. So the diffusion

process takes off rather slowly, then, after a while, it accelerates, and finally, it slows down until a proximate

saturation level is approached. Most empirical studies have shown that observed diffusion patterns are well

approximated by logistic curves. This empirical regularity holds for intra-firm, intra-industry, economy-

wide adoptions and both for production processes and new products: within a large literature see the early

examples from Griliches (1957) and Mansfield (1961), all the way to Comin et al. (2006) and Nuvolari

et al. (2011). However the precise form of logistic diffusion pattern varies considerably across technologies.

Moreover, some technologies do not take off at all.

The fundamental interpretative question concerns the determinants of particular diffusion paths. Not

surprisingly, the economic discipline has produced different and partly conflicting theoretical explanations

(for overviews see Davies, 1979; Dosi, 2000; Stoneman and Battisti, 2010). There are many divides in the

proposed interpretations of time-consuming diffusion processes which relate essentially to (i) the degrees

of heterogeneity of potential adopters, (ii) their ”rationality”, (iii) the nature of ”returns to adoption”,

(iv) the postulated collective equilibrium (or not) outcomes of adoption decisions.

A distinct family of models of diffusion, based on Polya urn process, first, build on the evidence that

agents are heterogeneous on whatever dimension one may choose, including their beliefs, expectations and

degree of ”rationality”, whatever that means in evolving worlds. Second, they assume dynamic increasing

returns of some kind, for example due to network externalities, learning curve interactions between demand

and supply, imitation effects, etc. Third, they dispose of any notion of ”equilibrium” diffusion processes,

at the same time so far they have been limiting themselves to the asymptotic properties of such processes.

However, by doing that, the major drawback has been the decoupling between the model conclusions and

empirical observations. The former are limit properties while the latter are inevitable transients in our

finite worlds. In many circumstances predictions on the limit are also good interpretation on what finally

happens on diffusion (does x or y diffuse at the end?). Nonetheless such models have been so far largely

silent on the patterns of the diffusion process itself. Here we try to bridge the gap.

Polya urns are formal instrument particularly suited for path-dependent stochastic process. They are

natural candidate to interpret processes of competition among alternative technologies, but also, more

metaphorically, competing ”visions of the world”, or competing ”organizational forms”. Needless to say,

they are in tune with evolutionary ideas in economics (e.g. Arthur et al., 1987; Bassanini and Dosi, 2006;

Bottazzi and Secchi, 2003; Dosi et al., 2015; Dosi and Kaniovski, 1994; Dosi et al., 1994; Windrum, 2004),

and also in other disciplines, such as sociology, biology and medicine (e.g. Donnelly, 1986; Mahoney, 2000;

Zhu and Hu, 2012).

Of course, diffusion dynamics with heterogeneous agents and dynamic increasing return imply that

history counts. Several outcomes are possible and the cumulation of micro decisions ”selects” one of the

possible long-term outcomes. In other words, the past shapes, in probability, the future, and this effect

self-reinforces along the time-path trajectory. The urn-process with positive feedback asymptotically

2



converges to one of the possible outcomes. This asymptotic property allows to explain the effect of ”lock-

in” into one of technologies [not necessarily a superior one] available on the market with increasing returns

to adoption. However, we all live in a finite time and we are also interested in understanding the finite

time behavior of the process. So far, one has studied at the most the determinants of different speeds

of convergence (Bassanini and Dosi, 2006). The present paper focuses indeed on the transient properties

of Polya Urn diffusion processes. Here we show that the trajectory leading to the ”lock-in” into one of

available technologies tends to display a logistic shape, thus reproducing empirically observed trajectories

of technology diffusion. We calibrate the model on some empirical examples of motor ships diffusion

in Europe. To our knowledge this is the first and quite promising attempt to qualitatively match an

evolutionary model based on Polya urn with empirical time-series.

In the next section we briefly present the Polya urn process. In section 3 we describe the empirical

data on the diffusion of motor ships. Section 4 calibrates the Polya urn process on the empirical data.

2 Polya Urn stochastic process

Generalized Urn Schemes formalize non-stationary Markov chains with a growing number of states. In the

context of technologies diffusion, the stochastic process concerns market share of a particular technology,

xt. It lives on a one-dimensional simplex (0,1), capturing the shares of, for simplicity, two technologies.

For our purposes here let us consider two types of urn schemes, namely, additions to the urn (Kaniovski

and Pflug, 1995; Hill et al., 1980; Arthur et al., 1986, 1987) and withdrawals from the urn (Panholzer and

Kuba, 2012; Kuba and Panholzer, 2012; Siegrist, 1987).

Additions to the urn

Consider an urn of infinite capacity with balls of two types, A and B. For us A and B will represent two

competing technologies. xk is the share of A-balls in the urn at the step k. Starting with nA ≥ 1 A-balls

and nB ≥ 1 B-balls in the urn, a ball is added at steps k = 1, 2, ..., i.e. a new adopter chooses one of

the two technologies. It will be A with the probability p(x) and B with the probability 1 − p(x). The

corresponding random variable is ξ(xk) has Bernoulli distribution:

ξ(xk) =







1 with probability p(xk)

0 with probability 1− p(xk)
(1)

The probability function p(x) maps the share of A-balls in the urn into the probability of its adoption,

i.e. R (0, 1) into R [0, 1] (for example, Figure 1). Depending on the form of the probability function p(x)

the urn-process will exhibit different dynamics over time, formally given by the relation:

xk+1 =

nA +
k
∑

i=1

ξ(xi)

nA + nB + k
, for k ≥ 1 and x1 =

nA

nA + nB

(2)

Denote ξ(xk) − E(ξ(xk)) = ξ(xk) − p(xk) by λ(xk), and note that E(λ(xk)) = 0. Then [2] can be

rewritten as
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xk+1 = xk +
p(xk)− xk

nA + nB + k
+ λ(xk), for k ≥ 1 and x1 =

nA

nA + nB

(3)

The system [3] shifts on average at each step k ≥ 1 on the value
p(xk)− xk

nA + nB + k
.

Consequently limit states of the sequences {xk} have to belong to the set of zeros of the function p(xk)−xk

(for xk ∈ [0, 1]). Limit state θ is called stable if for every small enough e1 > 0, e2 > 0

(p(x)− x)(x− θ) < δ(e1, e2) < 0,

given that e1 ≤ |x−θ| ≤ e2 for x ∈ [0, 1]. The set of stable limit states Θ of the urn process depends on the

form of the probability function p(x). And the convergence rate to θ ∈ Θ depends upon the smoothness

of p(x). Limit properties of the process have been extensively studied in Hill et al. (1980), Arthur et al.

(1986) Kaniovski and Pflug (1995) and Dosi and Kaniovski (1994).

Withdrawals from the urn

Consider the foregoing urn with balls of two types, A and B,nA ≥ 1 and nB ≥ 1, and with xk being the

share of A-balls in the urn at the step k. A ball is removed from the urn at steps k = 1, 2, .... For us it

will represent the scraping of old equipment by users. The instrument item embodying technology A will

be scrapped with probability 1− p(xk) and the item embodying technology B − with probability p(xk).

The corresponding random variable ε(xk) has Bernoulli distribution:

ε(xk) =







1 with probability 1− p(xk)

0 with probability p(xk)
(4)

Note the reciprocity of Bernoulli distributions for the case of adoption of the technology A, ξ(xk) [1]

and for the case of abolishment of the technology A, ε(xk) [4].

The dynamics in time is given by the same type of the relation as in [2] but with the opposite sign in

front of ε(xi) and k because balls are removed from the urn:

xk+1 =

nA −
k
∑

i=1

ε(xi)

nA + nB − k
. (5)

For simplicity, we assume that both processes, additions to the urn and withdrawals from the urn,

have the same probability function p(x). We choose such p(x) that exhibits the increasing returns to the

adoption of technology, that has the biggest market share at the time of the adoption, and symmetrically

to the scraping of technology that has the smaller market share.

In the following, we study the property of increasing return world. The urn process with the probability

function p(x) that embodies increasing returns1 has a ’lock-in’ into monopoly as the stable limit state.

1Urn processes with the probability function p(x) that embodies increasing returns are sometimes called time-dependent

stochastic processes with positive feedback.
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Stable limit states are only 1 and 0, which correspond to the monopoly of the technology A or the

technology B respectively.

As an illustration of a possible dynamic mechanism, suppose that potential adopters are only imper-

fectly informed about the utility of two technologies (A and B) available. So they make their choices

by asking an odd number s of adopters who have already adopted one of the two technologies and they

adopt the technology that the majority of their sample is using. An alternative hypothesis leading to the

same effect is that there are positive externalities in adoption which change the returns to the user along

the diffusion process, and adopters are influenced by different numbers of users. Hence, the probability

function p(x) has the form

p(s, xk) =
s
∑

i= s+1

2

C
i
sx

i
k(1− xk)

1−i, (6)

where C
i
s is the number of i−combinations from s.

For example, suppose s = 3. So one samples 3 balls from the urn. If 2 of the balls are A-balls, in the

process additions to the urn, one will add one moreA-ball to the urn; while in the process withdrawals from

the urn, one will remove one B-ball from the urn. Dosi and Kaniovski (1994) prove that the probability

function [6] exhibits increasing returns [the probability of adoption increases with the market share of the

technology, xt] and leads to the ’lock-in’ into monopoly. The probability function [6] is plotted on Figure

1.

Figure 2(a,b) presents 20 realizations of the process with initially equal market shares of both tech-

nologies (A and B) −

(a) 1 000 sequential additions to the urn,

(b) 1 000 sequential withdrawals from the urn.

As can be seen, technologies have equal chances to be selected as the winning technology by the time-

dependent process − an asymptotic property of such urn model setup that was widely exploited in evolu-

tionary economics.

Figure 1: Probability function p(x) of the Polya urn stochastic process
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The set of possible limit states of the process is the set p(x) = x, i.e. all points of the probability function that lay on the

45o-degree line, namely 0, 0.5 and 1. Stable limit states are only 0 and 1.
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Figure 2: Realizations of the Polya urn stochastic process
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(b) withdrawal from the urn
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To bring Polya Urn process to the empirical data we need to assume some form of the correspondence

between real time [measured in years t = 1, 2, ..] and steps with which the urn process evolves k = 1, 2, ....

Suppose nt additions to the urn and mt withdrawals from the urn happen in year t. Xt is the share of

A-balls in the urn in year t, and, analogously to [2] and [5], its dynamics can be formalized in the following

equation:

XT+1 =

nA +
T
∑

t=1

(

nt
∑

i=1

ξi(Xt)−
mt
∑

j=1

εj(Xt)

)

nA + nB +
T
∑

t=1

(nt −mt)

(7)

Figure 3 presents realizations of the process [7] with initially equal market shares of both technologies

(A and B). nt is modeled as an arithmetical progression with n1 = 10 and step 10, and mt − as an

arithmetical progression with m1 = 1 and step 1. We limit the real time to 40 years and display only

realizations that converged to one of the two possible stable limit states within the given time period.

Dotted lines are averages across realizations, and tend to display logistic shape.

In the next sections we describe empirical data on the technology diffusion that we have, and we

calibrate the urn-process [7] to fit our empirical data.

3 Increasing returns and the diffusion of motor ships

Historical examples of increasing returns and ”path dependence” basically driven by self-reinforcing pro-

cesses are growing in number, examples in which existing investments and infrastructure give an increasing

advantage to doing things in a certain way, even if the economy could do them differently and possibly

better if only one would start from scratch. David (1985) vividly illustrates the ascent to dominance of the
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Figure 3: Realizations of the process [7]
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Urn initial size is 40 balls. The number of balls to be added each year is an arithmetical progression with n1 = 10 and step

10. The number of balls to be withdrawn each year is an arithmetical progression with m1 = 1 and step 1. Only realizations

that converged to stable limit states in 40 years time period are plotted. Dotted lines are averages across realizations that

converged to one of the two possible stable limit states.

QWERTY keyboard well beyond the period of its purported efficiency. In a similar vein, Arthur (1989)

argues that as late as 1914 steam was at least as viable as crude oil for powering vehicles − but the growing

influence of the oil industry ensured that much more money went into improving the internal combustion

engine than the steam engine. That, plus ”small events” (the outbreak of hoof and mouth disease among

horses used to refill steam boilers (Cowan, 1990)) induced a snowball effect in favor of internal combustion

engines.

The example we consider here is somewhat similar. We have historical time series data on the adoption

of motor ships, i.e. ships propelled by an internal combustion engine, usually a diesel engine, in several

European countries. Two first diesel-powered ships were launched in 1903, both for river and canal

operations: ”La Petite-Pierre” in France, powered by Dyckhoff-built diesels, and ”Vandal” tanker in

Russia, powered by Swedish-built diesels with an electrical transmission. In 1910 the Norwegian built

”Fram” − the sailing ship fitted with an auxiliary diesel engine, the first ocean-going ship with a diesel

engine. And in 1912 the Danish built the first ocean-going ship exclusively powered by a diesel engine,

MS Se-landia (Stapersma, 1996).

In 1925, when steam was absolutely dominating the market of merchant ships, Popular Mechanics

Magazine writes: ”Commercially, the advantages of motor ship are very great. Boats driven by Diesel

motors save 75 % on space needed to carry fuel, this way more space is made available for cargo, with

appreciable effect on the earning power of the ship. The fuel bill of a motor ship is small compared with

that of a steamship: a motor ship of average size will consume 15 tons of fuel a day, where an oil-burning

steamer would need 30 tons. A motor ship can carry 20 % more cargo than a steamship of the same size,

because a vast amount of space in the engine room of a steamship is taken up by boilers, which are not

needed by the motor ship. Water-ballast tanks, holding a non-paying element on the steamship, are absent

from the motor ship” (Wilkins, 1925). It was only after World War One that Diesel’s invention began to
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slowly realize its commercial potential. And by 1939 only a quarter of global sea trade was fueled by diesel.

But it shouldn’t be surprising. As Edwin Mansfield correctly notes in his seminal contribution (Mansfield,

1961), when the innovation replaces equipment that is durable, adopters are reluctant to scrap equipment

embodying old technology. In such cases, there is a good chance that a firm’s old equipment still has a

relatively long useful life. Although rational economic calculation might indicate that replacement would

be profitable, firms may be reluctant to scrap equipment that is not fully written off and that will continue

to serve for many years.

Even if a motor-engine was improved enough to become a superior technology in comparison with a

steam-engine, the adoption of it didn’t happen immediately. Figure 4 shows the diffusion of motor ships

in five European countries. As can be seen from this Figure, it took from 18 (in Norway) to 8 (in Finland)

years for a motor technology to arrive from 25% of the market share to 50%. The purchase price advantage

and the existing experience of exploitation of the old technology [as well as developed market of the spare

parts and repair services] made users persistent in preferring it to the new technology. On the other

hand, the new technology represented attractive cost saving opportunity. So, when buying new ship, an

adopter had to make a choice between the old and the new technology balancing their preferences towards

advantages and disadvantages of the two, influenced also by its incumbent capabilities, the observation of

its competitors, the availability of supporting infrastructures, etc.

Figure 4: Percentage of motor ships in the merchant fleet of European countries
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4 Calibration of the stochastic process

Annual time series on the number of motor ships in the merchant fleet and the total size of the merchant

fleet is taken from Mitchell (1998). For the calibration of our model we will use the data of five countries:

Belgium, Finland, Spain, Norway and Denmark, for which the time series are most complete (Figure 4).

We suppose that initial chances of adoption of one of the technologies, motor or steam, were equal.2

This is quite plausible assumption to make. As we argued above, there are many reasons why firms were

reluctant to adopt the motor technology even if it represented a potential cost saving opportunity. In

terms of the Polya urn process, each simulation starts with the equal probability for each technology to

be adopted p(x0) = 50% [,i.e. the share of possible new adopters that have adopted a motor ship equals

to the share of new adopters that have adopted a steam ship]. Further the process develops according to

the probability function [6] entailing positive feedback to adoption.

Figure 5: Urn’s cumulative growth rate in year Ti as the percentage of the merchant fleet in the initial

year T0
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The number of balls in the urn corresponds to the size of the merchant fleet in a given year T . We

assume that a ship is scrapped after 30 years of its exploitation. So every year we scrap 1/30 ≈ 3%

of the initial fleet stock. In terms of the Polya urn process, every year we remove the number of balls

corresponding to the quantity of ships to be scrapped in the given year, we add the same number of new

balls and we additionally add(remove) the number of balls corresponding to the difference in fleet stock

between year T and T + 1. In this way the urn always matches the empirical data on the size of the

merchant fleet in a given year, and we don’t need to make additional assumptions to generate nt and mt

time-series for our model (see equation [7]). Figure 5 shows urns’ cumulative growth rates for the five

2This is a reasonable assumption to make in the absence of the micro-data on the preferences of initial adopters. However,

the model can easily be adapted for any other distribution of preferences.
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countries in our dataset. We see that in Belgium and Finland the size of the fleet, i.e. the urn, decreased

by 40% over the years in comparison with its initial size. In Spain, Norway and Denmark the fleet size

raised by 200%, 100% and 30%, respectively. The size of the fleet of a country and its dynamics affect

the speed of diffusion. For example, the fleet of Belgium is 22 times smaller than the one of Norway. This

contributes to explain why it took only 10 years to Belgium to arrive from 25% of the market share to

50%, and it took to Norway − 18 years to do the same.

We keep track on the proportion of motor ships adoptions among new adoptions. This is our urn

process described in the section 2 of the paper equation [7]. As one recalls, we start from the 50%50

proportion and every year this proportion path-dependently changes according to the realizations of the

process. At the same time we keep track on the proportion of motor ships in the fleet of a country which

changes every year lead by the decisions taken by new adopters in the given year. This process fully

depends on the underlining urn process, and it imitates historical time series that we have. Formally,

XT+1 =

nA +
T
∑

t=1

(

nt
∑

i=1

ξi(Xt)−
mt
∑

j=1

εj(Xt)

)

nA + nB +
T
∑

t=1

(nt −mt)

(8)

where Xt evolves according to the urn process for the new adopters specified in the equation [7], while

nA and nB are initial numbers of motor ships and steam ships in the fleet of a country, taken from the

empirical data. We show that XT+1 mimics empirical time series on the market share of motor ships

in a given country. We perform 80 simulations for each country. In half of the simulations the process

leads to the market superiority of motor ships. On the Figure 6 we plot the average value of the market

share in a given year across simulations3 and their dispersion together with historical times series. To

test whether the simulated pattern is statistically different from the historical diffusion path, we fitted

the logistic curve to the historical data and to the simulated data for each country and conducted z−test

of statistical significance of the difference between the values of the regression coefficients of two logistic

curves (Clogg et al., 1995; Paternoster et al., 1998). We did not find significant differences in all five

countries.

Conclusion

Evolutionary models of technical change and diffusion find a natural representation in Polya urn as it is

able to capture dynamic increasing returns and history dependence. However, so far the formulation has

been mostly used to study the asymptotic properties of the process. Here we demonstrated that Polya urn

can be fitted to the empirical data and that it may generate logistic curves of technology diffusion, thus

producing trajectories generally observed in the adoptions of new technologies. As logistic processes are

widespread in several domains of both social and natural sciences, this methodology will well find further

applications to all those processes which entail self-reinforcing mechanisms of some kind.

3We consider only simulations that led to the market superiority of motor ships.
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Figure 6: Replication of the diffusion process with the Polya urn model

Black curves are historical time series.

Gray points indicate the average value of the market share across simulations of the model.

Gray bars indicate the dispersion of the market share across simulations of the model
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