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Abstract

We present an analytical solution for the connectivity of a network model with a ”non-simultaneous” linking scheme.

Despite its simplicity, this model exhibits node-space correlations in the link distribution, and anomalous fluctuations

behavior of the time series of the connectivity variable, and a finite-size effect: the maximum number of links occurs

away from the critical value of the system parameter. We derive an exact Master Equation for this model using

a quantum algebra approach to stochastic processes. Fluctuations are much more important than the mean-field

approximation predicts, which we attribute to the heterogeneity in the model. The maximal heterogeneous population

corresponds to the critical value of the system. Finally as an explanatory case we evaluate the growth of the network

value in relation with the system interconnectedness.

Keywords: Complexity, heterogeneity, critical phenomena, network value, coordination costs, stochastic processes

JEL codes: D85, C02, C22, C62

1. Introduction

Complexity is a polymorphous concept, with definitions that vary from one discipline to another. Herein, we will

refer to a system as complex if it exhibits spontaneous emergent phenomena over a small range of values of the free

parameter(s) of the system. One of our working hypotheses is that complexity is closely tied to heterogeneity. The

results below indicate that node heterogeneity is instrumental in determining the degree of interconnectedness in a

model for network dynamics.

Since we work with a network with a dynamic topology, it is the fluctuations and heterogeneity of the network that

are most relevant to the behaviors observed. Indeed, at the parameter values at which the network is complex, these

fluctuations in the degree of interconnectedness become extraordinarily large, comparable in size with their allowed

range.

This emphasis on the dynamical aspects of network properties represents a departure from the standard approaches

to studying networks. Most social and financial networks have been studied with an emphasis on their characteristic

topological features, especially the patterns of connection (often referred to as complexity) between their elements

[1, 2]. For example, financial economists have largely discussed the benefits of interactions among financial inter-

mediaries. Some degree of interconnectedness is crucial to the proper functioning of financial systems, as no single

institution can access the full range of available capital and investment opportunities in the economy. Connections

among financial institutions are also assumed to facilitate risk sharing, decrease the uncertainty faced by individual

agents, and so allow agents to offer better services to the economy.
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Vanni)
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On the other hand, complexity is also regarded as a source of system breakdown [3]. In particular, increasing

interconnectedness in the market in terms of contracts among financial institutions comes at the price of increasing

inaccuracy in the estimation of systemic risk [4]. So in financial markets, the challenge for market participants,

policymakers, and regulators is to find a balance between the benefits of interconnectedness and its potentially harmful

destabilizing effects [5], [6].

In the present paper, we examine a model from a new network class based on agent preferences, namely preferred

degree networks [7], where the number of links continuously fluctuates and the system has a non-trivial steady state

distribution. In this class of networks, the system undergoes a phase transition from a sparsely connected network to

a densely connected one. The intermediate critical condition is the condition of maximal population heterogeneity

among the nodes and the system shows an abrupt onset of anomalously large fluctuations in the network connectivity,

which emphasizes the heterogeneity of the units’ preferences. Our analytical results reveal that these large fluctuations

are poorly accounted for by the mean-field approximation of the model.

This class of networks differs from the standard literature of pairwise network formation [8] in that a link is not a

bilateral compromise between pairs of nodes. An asymmmetry that is in contrast with the statistical symmetry present

in other common methods of generation of random graphs, such as via a linking probability matrix.

This class of models is based on the initiative of single units, which according to their preferences can propose

to generate or destroy a connection with another node (which can accept or reject the proposition). This change of

perspective introduces a dramatic difference in the dynamics of networks displaying the emergent phenomena typical

of complex systems.

The model which we analyse has two types of units [9]: generators and destroyers of links. We propose an

analytical solution for the equilibrium mean value of the connectivity, which exhibits a phase transition. We provide

a closed-form equation for the phase transition thereby characterizing the correspondent critical point.

These results are obtained using a relativity new approach to stochastic processes which makes use of math-

ematical notations reminiscent of the quantum mechanical formalism [10], and a mean-field approximation to the

Fokker-Planck equation for the probability density of links. This approach has been turned out to be crucial, since no

purely analytical prediction has been obtained so far for this model, see [11, 7, 9, 12, 8]), where authors have used

a more standard approach to stochastic processes. In order to provide a microscopic description of the network, we

write an approximated Langevin equation which allows one to characterize the network in terms of emergent proper-

ties at criticality through the study of spatial and temporal correlations. Additionally, we highlight some limitations of

the mean field approximation in capturing the heterogeneity of the nodes in their dynamics of creating and destroying

links. These corrections are non-negligible when the system is at its critical point.

As further hallmarks of complexity, we stress the importance of finite-size effects, observing how finite networks

produce more links away from the critical condition. Indeed, real-world systems’ statistical properties are affected

by finite-size and other truncation effects which can play an important role in defining the complexity of networks in

terms of the effects of systems in constrained situations such as a limited number of units in the system (i.e., small

groups), which is related to coordination issues [13]. This gives rise to a paradigm of emergent properties of groups

including the fact that larger team sizes lead to an increasing need for coordination that can limit the efficiency of group

members, pointing attention to the optimal connectivity condition as a function of the global size of the network.

The model we describe is an expository model, having the purpose of highlighting and explaining the most crucial

mechanisms underlying the phenomena of complex evolving systems as discussed in many disciplines, in particular

economics and finance [14, 15, 16, 17].

So, without any predictive intention, we set forth an abstract example of a system which gains value according to its

interconnectedness, and bears a cost depending on the number of active nodes (i.e., generators of links). The resulting

profitability shows a signature of complexity in terms of finite-size network effects: small groups reach a maximal

profitability far from the critical point of maximal heterogeneous population, but they tend to suffer less uncertainty

of the expected connectivity. As the size of the network increases, we imagine that the system tends to organize itself

near a critical point where the network has its maximal profitability; however, this point is also associated with a very

high uncertainty (connection volatility). In this state, the system can be more vulnerable to possible systemic failure

since it spends some part of its time in an unprofitable state. In terms of social and economic policy, minimizing

the importance of heterogeneity also in mathematical terms (by using the mean-field approximation) leads one to

drastically underestimate the size of fluctuations at the critical point, which could lead to an underestimation of the

instability of the system.
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2. The generators-destroyers model and its analytical description

Among the possible models in the class of unit-driven networks, we select the most simple heterogeneous case

where we have a bipartite graph in which two types of nodes exist: one group of nodes aims to create new links every

time they are selected, the other group aims to cut a link with previously connected partners.

The Generators-Destroyers model is a model for the intergroup link dynamics between a group of link generators

and a group of link destroyers directly derived from the introvert-extrovert model (XIE) as introduced and studied

in [7, 9]. In the following calculations, it is assumed that time is continuous (in the sense that there is no fixed

minimum time between changes in the number of links), one can think of this as an event-based approach. Links are

bi-directional, and there can be at most one link between any two units. Neither self-links nor intragroup links are

considered, as these subgraphs quickly go to a static equilibrium state, thus the graphs produced come from a subset

of the set of simple graphs. The generators create links as long as there is at least one destroyer available to which it

has no link. Destroyers destroy links until they are not linked to any generators.

It is convenient to represent a graph in terms of a matrix, called the adjacency matrix. This matrix is formed by

enumerating the vertices of the graph, the i, j-th entry of the matrix is the number of links from vertex i to vertex j. In

the model under consideration, the links are bi-directional, and there is at most one for every pair of vertices, so the

adjacency matrix is symmetric (a bi-directional link consists of one unidirectional link in each direction) and consists

of ones and zeros (either a link is occupied or it is not). Since the graph is dynamical in the generators-destroyers

model, so is its associated adjacency matrix.

As mentioned in the introduction, since the standard tools for studying stochastic processes have not sufficed

to find an analytical solution for the phase transition of the present system, as a possible path towards an analytical

solution to this model, the authors found useful to give to the dynamics of the system a physical interpretation in terms

of an operator formalism like that used for the harmonic oscillator in quantum mechanics. In the following theoretical

treatment, we model the dynamics as due to the action of an infinitesimal stochastic time-evolution operator H on

the adjacency matrix. One can imagine such an operator as a sum of simpler operators, one for each element of the

adjacency matrix.

In the present mathematical description we focus on an analytical treatment in terms of the average number of links

and link distribution, instead of the degree-distribution and average degree as in [8]. In order to derive an equation

of motion for the link distribution, we write a Fokker-Planck equation for this model starting from the formalism of

creation and annihilation operators whose basic notions are elucidated in Appendix A. The only free parameter in

this representation is the total rate of events, i.e., an overall constant in the following equation:

H =
1

N

N1
∑

i=1

N0
∑

j=1

(

L
†
i j
− S

†
i j

) 1

N0 −
∑N0

k=1
L
†
ik

Lik

S i j +
(

S
†
i j
− L

†
i j

) 1

N1 −
∑N1

ℓ=1
S
†
ℓ j

S ℓ j

Li j. (1)

In this equation, H is the infinitesimal time-evolution operator, which can be used to generate the master equation of

the associated non-homogeneous birth-death linking process (for more details on this formalism and its connection

with master equations see Appendix A). The symbols with daggers represent creation operators, those without denote

annihilation operators. N0 is the number of destroyers of links, while N1 is the number of generators of links, and

N = N1 + N0 is the total number of units. The L operators have to do with setting or erasure of ones in the element of

the adjacency matrix given by the positive integers i, j. Similarly, the S operators set or erase zeros in the element of

the adjacency matrix corresponding to their subscripts.

The first term in Eq.(1) corresponds to the conversion of zeros to ones, and is associated with the actions of the

i-th generator on the j-th destroyer. The second term corresponds to the conversion of ones to zeros, and is associated

with the action of the j-th destroyer on the i-th generator. It is necessary to include the A type of operator because

there is a conserved quantity in the system: the total number of ones and zeros in the relevant portion of the adjacency

matrix (this is equal to N0N1 and is also the maximum total number of links).

This conservation law makes it possible to view absent links as undergoing a process of creation and destruction

dual to that of ordinary links. The model has a symmetry between these shadow links (hence the S symbol in the

operators) and the ordinary links. If one exchanges ordinary links for shadow links and generators for destroyers, the

model is unchanged.
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In words, Eq.(1) represents the following process. A node is selected uniformly randomly from the set of N

nodes (thus the factor of 1
N

in front of the sum). If the node is a generator of links, then a destroyer is chosen

uniformly randomly from among the destroyers to which the generator is not already linked (this yields the factor

of 1
# of unlinked destroyers

). If there are no such destroyers, then nothing occurs. Otherwise a link is created between the

selected generator and destroyer (producing the terms (L
†
i j
− S

†
i j

)S i j). Since this is how the simulations run, Eq.(1)

contains the full microscopic discription of the dynamics of the model (up to possible differences in implementation,

such as discreteness versus continuity of time).

We are interested in the ratio of the difference between the number of ordinary links and the number of unoccupied

(shadow) links to the maximum total number of links, formally:

ℓ =
1

N1N0

N1
∑

i=1

N0
∑

j=1

(

L
†
i j

Li j − S
†
i j

S i j

)

. (2)

which is the (rescaled) connectance1 observable related to the raw total number of links L through:

ℓ =
2L

N1N0

− 1 , ℓ ∈ [−1, 1] (3)

in terms of the control parameter:

∆ =
N1 − N0

N
, ∆ ∈ [−1, 1] (4)

which is the scaled population difference between the two groups (note that if we exclude the degenerate cases N1 = 0

and N0 = 0, ∆ ∈ [−1 + 1
N
, 1 − 1

N
]).

The next step is to recover an analytic estimation of the average connectance ⟨ℓ⟩ for various values of the popula-

tion parameter ∆, thus finding a closed-form solution for the shape of the phase transition plot for this kind of network,

and explaining why ∆ is referred to as a control parameter.

3. Phase transition and time evolution of the average connectance

From the microscopic Master Equation associated with eq.(1) it is possible to provide the time evolution of the

probability density function of the connectance and find the stationary condition. We use a mean-field approximation

to obtain a Fokker-Planck equation and the associated drift-diffusion process, from which we recover an accurate pre-

diction of the equilibrium value of the connectance and the corresponding phase transition. This precise understanding

of the ”first-order” equilibrium variable is obtained at the cost of misjudging the intensity of fluctuations (variance) at

criticality where correlations among the units are not negligible.

The equation of motion of (the Fourier transform of) the probability density of the variable corresponding to the

connectance operator (see eq.(2)) is given by:

d
⟨

eiλℓ
⟩

dt
=

1

N

⟨ N1
∑

i=1

N0
∑

j=1

[

(

e
iλ

N0 N1 − 1

) 1 − ℓi j

N0 + 1 −∑

k, j ℓik

+

(

e
− iλ

N0 N1 − 1

) 1 + ℓi j

N1 + 1 −∑

m,i ℓm j

]

eiλℓ

⟩

(5)

and in the case of the mean-field approximation we assume ℓi, j = ℓ, since the ℓi j are all exchangable and have mean ℓ.

d
⟨

eiλℓ
⟩

dt
=

⟨

eiλℓN1N0

[

1

N

(

e
2iλ

N1 N0 − 1

)

1 − ℓ
N0 + 1 − (N0 − 1)ℓ

+
1

N

(

e
−2iλ

N1 N0 − 1

)

1 + ℓ

N1 + 1 + (N1 − 1)ℓ

]⟩

(6)

1The connectance is defined as the link density of the network, which is the fraction of the number of actual links over the number of potential

links between pairs of nodes. We use the term interconnectedness with the same meaning as we did in the introduction. In contrast, the term

connectivity indicates a generic property of the network which gives a measure of the link density in the network.
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Expanding in 1
N1N0

and replacing iλ by ∂
∂x

∂
⟨

eiλx
⟩

∂t
=

⟨

2

N

[

(N1 − N0)(1 − ℓ2) − 4ℓ

(N0 + 1 − (N0 − 1)ℓ)(N1 + 1 + (N1 − 1)ℓ)

∂

∂ℓ

+
2

N1N0

N + 2 − (N − 2)ℓ2

(N0 + 1 − (N0 − 1)ℓ)(N1 + 1 + (N1 − 1)ℓ)

∂2

∂ℓ2

]

eiλℓ

⟩

(7)

Via integration by parts and an inverse Fourier transform (see Appendix A),

∂P(ℓ, t)

∂t
=

2

N

∂

∂ℓ

{

A(ℓ) P(ℓ, t)
}

+
2

NN1N0

∂2

∂ℓ2

{

B(ℓ) P(ℓ, t)
}

(8)

which is the Fokker-Planck equation for the Generators-Destroyers model, where the drift and the diffusion non-

homogeneous coefficients are :

A(ℓ) =
(N1 − N0)(ℓ2 − 1) + 4ℓ

[N0 + 1 − (N0 − 1)ℓ][N1 + 1 + (N1 − 1)ℓ]
(9)

B(ℓ) =
N + 2 − (N − 2)ℓ2

[N0 + 1 − (N0 − 1)ℓ][N1 + 1 + (N1 − 1)ℓ]
. (10)

The fundamental result of our study of the Generators-Destroyers model (and thus XIE networks) is the closed-

form solution for the equilibrium mean connectance as function of the population parameter ∆ = N1−N0

N
. From

the stationary solution of the probability density in the Fokker-Plank equation eq.(8), the equilibrium value ⟨ℓ⟩eq is

the value for which the drift term in eq.(9) is equal to zero (in particular, its numerator, as it is not possible for its

denominator to vanish). From the correspondent quadratic equation, we have:

⟨ℓ⟩eq. =























√

∆2 + (2/N)2 − 2/N

∆
for ∆ , 0

0 for ∆ = 0,

(11)

Note that eq.(11) has a removable discontinuity at the critical value ∆ = 0, i.e., N0 = N1. This equation also makes

clear that the phase transition is discontinuous in the limit as N → ∞. We see in Fig.1 how it predicts the average

connectance of the model, where the bipartite network shows a transition , as a function of ∆, from a sparse condition

to a dense one passing through a critical point with an abrupt jump between the two conditions (this demonstrates

that ∆ is a control parameter). The transition becomes steeper and steeper as we increase the size of the network, i.e.,

as N → ∞, in fact in the thermodynamic limit we have only three equilibrium points given by ⟨ℓ⟩∞eq. = sign(∆).

At this point, it is possible to write an equation of motion for single trajectories as an Ito process driven by a

standard Wiener process Wt and described by the stochastic differential equation:

dℓ = − 2

N
A(ℓ) · dt +

√

2

NN1N0

B(ℓ) · dWt, (12)

which yields a mean-field approximation of the connectance time-series. Despite the fact that the equilibrium mean

values of the connectance are in agreement with the mean-field predicted values, the standard deviation at the critical

point is much larger than the mean-field prediction. Even though away from the critical point the fluctuations are

also in agreement with the theory, one expects higher-order corrections there as well. In summary, the Fokker-Planck

equation Eq.(8) accurately describes the real network for off-critical values of the population parameter and for large

networks (N → ∞).

4. The mean-field simplification and the heterogeneity issue close to criticality

The simulated network model shows an anomalous behavior not captured by our derivation. As already discussed

in [9] and measured in [8], the system shows persistent fluctuations even for very large networks, thus indicating the
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Figure 1: The average connectance as a function of the scaled population difference ∆. The solid gray line represents the prediction of eq.(11).

The points come from the results of monte carlo simulations, with error bars indicating the standard deviation. This figure was done with N = 100

nodes.

Figure 2: Three different trajectories of the connectance ℓ for three different values of the population parameter ∆. The top dark gray time series is

the case ∆ = 0.1, the central black time series is for the critical value of ∆ = 0, the bottom light gray series is for ∆ = −0.1.The dashed horizontal

line is the zero connectance, Above this line the system is in a dense network state below the line it is in a sparse network state.

presence of correlations among the units. Indeed, at criticality the connectance shows a variance of the fluctuations

of the order of one. This fact is not described by the Fokker-Planck equation eq.(8) nor the trajectory eq.(12), which

instead predict that the intensity of fluctuations will vanish as one increases the number of units. The principal suspect

of this mathematical shortcoming is the use of the mean-field approximation.

The main idea of the mean-field simplification is that for each unit we replace the state variable (the node’s degree)

with the average number of links per node across the system. In this approximation, each unit interacts with the

”average individual”. This implies that some local interactions are disregarded and the fluctuations among different

individuals are assumed to be uncorrelated. However, in this kind of network, especially close to criticality, the links

between pairs are correlated, since different nodes can have very different numbers of links.

In our case, the mean-field approximation is entirely encompassed in replacements of the form

1

1 − ∆ + 2ε − 2ε
∑

k, j ℓik

→ 1

1 − ∆ + 2ε − (1 − ∆ − 2ε)ℓ
where ε =

1

N
. (13)
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However, this replacement is not exact since the links among pairs of nodes can be very different from the average

value in the sense that ℓik = ℓ
⟨ℓiℓk⟩
⟨ℓi⟩⟨ℓk⟩ , and in general we have ⟨ℓiℓk⟩ , ⟨ℓi⟩⟨ℓk⟩, where ℓi indicates links leading to the

node i. In the mean field approximation we replace the state variable (connectance) of each individual link with the

average state variable, and, under this condition, some network aspects become unobservable across the system.

Nevertheless, the mean-field approximation is useful, since it allows for analytical results to be obtained in many

cases. It is also often a justifiable approximation, in the sense that for large system sizes the vast majority of the

probability mass is typically concentrated at a single value (or very small range of values) of the stochastic variable(s).

However, if the system size is small, or the central limit theorem does not apply (for example, due to long-range

correlations), then the mean-field approximation may fail. In our case, the mean-field approximation omits systematic

corrections due to the fact that the random variables are dichotomous, or perhaps more to the point, due to the fact

that the variance of the sums replaced is larger than that of the random variable by which they are replaced. Thus

we would need a way to avoid neglecting the correlation between links of different pairs and to take into account the

heterogeneity among nodes, which is especially prominant at criticality (when the variance is of order one and the

nodes’ correlations are very intense). This is the reason why at criticality the number of links explores a wide range

of values over time, passing from an almost empty network to an almost complete network during the evolution, as

shown in Fig.3.

Figure 3: Left: An example of a small network with N = 10 nodes at criticality (i.e., ∆ = 0). Right: Example states of the system with N1 = N0 = 3,

showing highly connected, intermediate, and sparsely connected states.

The failure of the mean-field approach is evident at the critical point, in fact, this inaccuracy is still present close to

criticality as shown in Fig.1, where we have small deviations of the analytical phase transition from the real transition.

The corrections affect both the drift term and the diffusion term, where higher-order approximations should take in

account the correlations. The corrections to the drift term should improve the equilibrium value of the connectance,

and the corrections to the diffusion term should recover the non-vanishing variance at criticality.

5. Finite-size and small group effects

A crucial aspect of unit-driven network models is that finite networks exhibit certain universal properties and

emphasize the presence of correlations in the system. An important aspect of the finite-size effect is related to the

existence of an extreme Thouless effect in this model, i.e., a mixed phase transition at which the connectance parameter

displays a discontinuous jump and there are large dynamical fluctuations. We have discussed the nature of persistent

fluctuations at criticality even for N → ∞ (also attested to by the steep jump in the analytical sigmoid function of

eq.(11)) in the thermodynamic limit as shown in Fig.4.

Another key effect of finite network size on these networks is that the maximum number of links is obtained

relatively far from the critical point, thus the critical condition is not the optimum case for the maximal number of

links in the network. In the limit of infinite networks we have that the critical point coincides with the point where the

maximum number of links are created in the network.
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Figure 4: Finite size effects on the equilibrium value of the connectance.

Let us write the equation for the average value of the total number of links in the network, using eq.(3) and eq.(11).

as:

⟨L⟩eq. =































N2

8

(

1 − ∆2
)















√

∆2 + (2/N)2 − 2/N

∆
+ 1















for ∆ , 0

N2

8
for ∆ = 0

(14)

where we have expressed the number of generators and destroyers respectively as N1 = (1 + ∆)N/2 and N0 = (1 −
∆)N/2. In the present model, a relevant finite-size effect consists of the fact that the critical point is not the point of

maximal connectivity. In other words, the maximum number of links, for finite networks, happens for ∆ > 0, i.e.,

when the number of generators is larger than the number of destroyers. This is an effect which is important for small

groups and becomes negligible for large groups, where the critical point becomes (in the limit) the point of maximal

connectivity.

Proposition 1. For a given size of the network N, let us define S (N) to be the set of population parameters ∆ for

which the average number of links ⟨L⟩eq is maximum. The maximum points S (N) are obtained always for ∆ > 0 in the

case of finite-size systems and tend asymptotically to ∆ = 0 when N → ∞.

Proof. Now, let us define a function of two variables f (∆,N) := ⟨L⟩eq., and study it as the objective function where

we want to maximize f with respect to ∆ treating N as given:

max
∆∈[−1,1]

f (∆,N), (15)

where clearly the solution will depend on N: let the maximal value be S (N) attained at ∆ = S (N). The value function

is defined by

V(N) = f (S (N),N) (16)

The Berge maximum theorem guarantees that S (N) = arg max∆ f (∆,N) is a continuous function since f is a

strictly quasi-concave function [18]. Then it follows from the equations:

N3S 4 − 4N3S 3V + 8NS 2V − 16S V2 − 2N3S 2 + 4N2S V − 8NV + N3 = 0 (17)

N3S 3 − 3N3S 2V + 4NS V − 4V2 − N3S + N2V = 0 (18)

that S (N) is positive for finite N and converges to 0 as N → ∞.
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Using the mean field approximation, one can write the, asymptotic expression of the maximum loci as well as its

maximum value as:

S (N) ∼
(

1

4N

)
1
3

V(N) ∼ N2

4
− 3

4

(

N

2

)

4
3

. (19)

The behavior of the expected number of links and the numerical results of the maximization problem are plotted

in Fig.5 and Fig.6.

Figure 5: Average number of actualized links in a network with N = 100 units, dotted dark gray points. We observe how the maximum number of

links is obtained for ∆ > 0 (located at the dashed line), so the maximum point is not the critical point as in the case of an infinite network (here 1

million nodes) represented by the light grey curve.

Figure 6: A three dimensional plot of the expected number of links as a function of the scaled population difference ∆ and the system size N. The

black curve in the horizontal plane represents the loci of maximum points, S (N), for which we have the highest number of links for each system

size. We see that for small networks the maximum point is in the super-critical regime (∆ > 0), as the network size increases the maximum points

tend asymptotically to the critical value of ∆ = 0.

Now let us discuss a plausible picture in which there is a purpose behind the construction of connections. In our

plausible world, we consider a trade-off between the effort needed (resources) to create connections and the possible
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revenue which can be derived from the available connections. We identify the value of the network with the total

number of occupied links. One can imagine this value as accounting for ways in which units receive benefits from

having links, for example a positive feedback due to exchanged information, knowledge diffusion or a profit deriving

from an external investment realized through a financial loan. So, the occupied connections represent an opportunity

to gain some form of payoff for the individuals2. We imagine that the cost of the network depends on the number of

generators that make the effort to create links, i.e., each individual has a certain cost to behave as a generator, which

are the units creating the connections3.

We define the profitability of the bipartite network to be the ratio of the total links L (sources of a possible gain)

to the cost of having N1 generators (source of a loss), the cost (in this simplified world) to create a link can be roughly

thought of as proportional to the number of generator units. So the profitability index of the bipartite network is

defined as:

P =
⟨L⟩eq.

αN1

(20)

which, in terms of benefit/cost analysis, is the index given by the ratio of the total cash inflows to the initial investment.

If the index is larger than 1 the system is profitable. Our choice of a linear cost function is an arbitrary choice just

for the purpose of discussing a simple situation. In fact, there is no universal law for cost curves but, in fact, they

depend on the specific case under study. A popular example of performance and costs is given by Metcalfe’s law

in information and communication networks [20, 21, 22], e.g., Ethernet nodes and WWW servers, There are also

many examples in economics [23, 24] where network performance can influence market structure, firm behavior and

economic outcomes.

At this point, taking the cost of links to be a linear function it is possible to find an analytical solution for the

minimal condition to have a certain population parameter ∆ for which the network is profitable.

Proposition 2. For a given network size N and a cost-per-unit α, it is possible to satisfy the profitability condition

P > 1 only if the following minimal requirement is fulfilled:

N −
√

N − 1
√

N(N − 1)
> α (21)

Proof. The profitability index, for a linear cost curve, is given by eq. (20). The maximum of the profitability can be

obtained with the first derivative test respect to ∆, it is

∆max =
N −
√

N − 1
√

N(N − 1)
. (22)

There exists a least value of N for which the network can be profitable when ∆m > α, i.e., when the population

heterogeneity has its maximum point at a value larger then the connection cost per generator node α. The minimal

requirement of the proposition follows.

In general, there could be an interval of values of ∆ for which the average network is profitable. In any case, if we

always have ∆ < α the network is never profitable, for that given system size N.

We defined the profitability as an expected value, but we know there are fluctuations that can make the system

more unstable in terms of network performance.

Let us focus our attention on the uncertainty of the profitability index, which comes from the anomalous behavior

of link fluctuations. We observe that as N → ∞ the maximum profit point is for ∆max → 0 which is the critical point,

where there are non-vanishing fluctuations. So, for very large networks the maximum profitability is the point of

2In other terms [19], the utility function representing the benefit that a node obtains if it is connected to another, is considered constant since the

neighbor selection is uniformly random.
3Let us note that the network cost is not the cost of creating a link which actually could be included in the neat utility discounted by a possible

linking cost. Here the cost is meant as the effort to become and maintain the condition of being a link generator. Similarly, we could also consider

the cost to cut a connection incurred by the nodes that destroy links, but since we consider linear-costs the net-value between cutting and creating

a link, we take only the cost for the creation.
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minimal effort (total cost), but also the point of largest risk, where risk is defined as the uncertainty of the profitability

index. In small networks, ∆max is far from criticality, though the effect of uncertainty on profitability is still present,

because fluctuations still exist with size ∼ O(1/N). In Fig.7 we summarize these results; here the system is profitable

inside an interval where the network has varying uncertainty.

Figure 7: Profitability of a network with N = 100 total nodes in a Monte Carlo simulation. The horizontal line represent the profitability threshold.

For the points which are below the line the system is in an unprofitable state. Above the line, the system can be profitable since P > 1. The

shaded-striped area represents the interval for which the network is profitable in this specific case of linear cost. The vertical line indicates the

point of maximal profitability ∆min. The error bars represent the uncertainty of the profitability since the system undergoes fluctuations due (in our

mode) to the linking variance and are of the order of σ(P) = σ(ℓ)N0/2α . So, at criticality P has the largest uncertainty and in our example this

means that the network goes through unprofitable periods during its temporal evolution. During those times the system can be more vulnerable to

losses, for example, by external shocks.

In fact, despite the fact that the critical point is a profitable point, the large fluctuations make the system unprof-

itable for certain portion of the time. This introduces a certain degree of risk that, if not considered, can lead to

negative effects on the stability of the network4.

In conclusion, the point of maximal profit does not necessarily coincide with the point of minimal risk. In the

time series perspective, the system can end up in long time periods during which it is exposed to losses, and the whole

network could become more susceptible to losses, triggering systemic crisis and possible collapses.

In terms of finite size effects as hallmarks of complexity, we showed that very large networks, while tending to

a maximal benefit that happens at criticality ∆max = 0, can precipitate more easily a network breakdown due to the

large uncertainty in the interconnectedness. Instead, for small groups, the network should make more effort to reach

the maximal performance since ∆max > 0 but with a lower risk.

In an equivalent way we can see the profitability condition in terms of the intersection between the benefit curve

(the number of links) and the cost curve (the number of generators) as in Fig.8, where we see again that the maximum

profit is obtained far from criticality but for very infinitely large network it tends towards the critical point. Whatever

is the function curve, the essential idea is that there is a trade-off between the value of the network related to the

4We are not considering the mechanism that makes ∆ change, we rest on some external dynamics which mimics a collective society that tends

to organize itself near the point of maximal profitability (highest wealth). Additionally, one can imagine that when the system is flourishing other

participants want to join the system and more nodes are added to the network thus increasing the system size N. At this point, the system again

moves towards the new point of maximal profitability. The result is that these mechanisms shift maximal point towards the critical point which is

the point of minimal cost for the society but it is also the point of maximal risk where the network is very sensitive to systemic crises or external

shocks. To make the mechanisms consistent, one should imagine a cost per unit α that changes when the system size increases; in fact, ”resources”

become less available and the cost becomes higher, since more effort is needed to generate connections. We arbitrarily choose α = N/4 to be able

to compare the profitability of different network sizes.
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number of actual links and the cost of the network as the number of generators which employ the energy to create

connections.

Clearly, if we select different shapes of the cost curve, the profitability conditions changes as shown in Fig.9.

However, whatever function one could choose, it is expected to get a similar existence condition for a network to be

profitable for some variable of heterogeneity population parameter ∆ as in Proposition 2. Finally, we see how if the

total value of a network grows with number of potential links instead of actual links, the maximum profitability would

have always been the criticality value regardless the system size N, not showing finite size effects on an optimum

connectivity condition.

Figure 8: We see how the maximum profit is obtained for value of ∆ that tend to the critical point as N → ∞. In this case we took α = N/4 to

compare the two graphs. The largest distance between the value curve and the cost curve is point of the maximum profitability. The value curve

has been plot using the analytical prediction as in eq.(14).

Figure 9: Example of non-linear cost functions. The profitable region changes and the ∆max shifts according to shape of the cost function which can

have any generic shape according to a specific context. In the figure, the gray curves represent various cost functions. To keep the curves consistent

we have arbitrarily chosen the linear cost function as N
5

N1, the quadratic cost function as N
25

N2
1
, and the square root cost function as 3N

2

√
N1. On

the other side, the black curves represent the values of the network. The bold one corresponds to the actual created links as by eq.(5), whereas the

dotted black line is the number of the potential links N0N1 = N2(1 − ∆2)/4 which has its maximum value at ∆ = 0 for any system size N.

As a route to possible future applications, we note that the performance and the profitability of a network can have

an important impact on the study of optimal system size. A better understanding of which would allow one to reach
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a given global wealth more efficiently, as well as shed light on the mechanism(s) by which large uncertainty arises as

the system grows and the total connections increase. Consequently, one could rigorously prove that interconnections

among network nodes are not an unalloyed good.

6. Conclusions

In this paper we presented an analytical solution of a minimal model belonging to a new class of agent-driven

networks[7]. We exhibited a complex evolving system which starts from the most basic notion of ”complexity”,

capturing at the very least that a system is made up of multiple interacting actors. The key feature in the network is

the heterogeneity of the population since there are two types of units which are characterized by conflicting behaviors.

The ones who create links and the ones who delete them as they act in the system. The control parameter ∆ is the level

of heterogeneity in the network, which indicates the difference between the number of units in each group. The most

heterogeneous case is also the critical point of the phase transition in the system. At this point, the connectivity time

series shows non-vanishingly large fluctuations and strong correlations. In our mean-field solution we demonstrate

that if we do not consider the interdependence among nodes, we decrease the importance of heterogeneity in complex

networks.

Further work should be done to go beyond the mean-field approximation and to generalize the model pushing

toward a new class of network formation methods which are agent-driven and not simultaneous pair connected. We

also showed that using new mathematical tools analgous the quantum mechanical formalism, it is possible to solve

stochastic dynamics in an alternative and sometimes more efficient way than using the standard mathematics for

stochastic processes [9, 8].

Finally, we depicted an abstract explanatory case in which the network shows a group effect in terms of profitability

analysis in systems where the network value is related to the connectivity and the cost to the active units which create

the connections. We show how small networks produce fewer connections but with lower uncertainty, while large

networks have maximum profitability near the critical case with a high degree of uncertainty in the average payoff.

Additional studies should focus attention on optimal system size in terms of reward in comparison to the available

resources.

Simply by considering a different approach to the way units in the network connect, in this simple model we

have found two fundamental ingredients of system complexity: interconnectedness and diversity. These are two

fundamental concepts deeply discussed by the scientific and economic communities since the 2008 financial crisis

[25, 26, 27]. These communities have been trying hard to find a relationship between systemic risk and network

effects. Further investigation is necessary to improve the realism of this class of network through prediction-centered

models calibrated to the details of the observed phenomena of interest. We expect that other characterizations of

complex networks emerge when we observe the response of the network to perturbations and the way networks adapt

and evolve during and after random disruptive events, which tend to change the network structure [28, 29]. In this

case, the dynamic nature of these agent-driven networks could give rise to interesting new anomalous behaviors in

terms of the adaptability of complex networks to exogenous or endogenous shocks.
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Appendix A. Infinitesimal Time-Evolution Operator and Master Equation

The operator of Eq.(1) acts on a state of the system and returns the rate of change of that state with time, thus it

deserves the name infinitesimal time-evolution operator. In the formalism described below, a state of the adjacency

matrix can be decomposed into a basis in which each element has a definite value (1 or 0), the operator of Eq.(1)

represented in this basis yields a master equation for the probability of a given set of values of elements in the
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adjacency matrix. What follows is an example of how to use this formalism in ways analogous to those used to derive

equations 5-8 in the main text.

First note that the creation A† and annihilation A operators satisfy the canonical commutation relations

[A, A†] = 1 [A,O] = 0 [A†,O] = 0, (A.1)

for all operators O that are not functions of A and A†. Where the brackets denote the lie algebraic commutator

([A, B] = AB − BA, for arbitrary operators A and B).

Example: Two independent states with unit growth rates.

Let the Hamiltonian analogue be

H = A† + B† − 2. (A.2)

This operator describes the probabilistic increase of the occupation number of two states, A and B, and corresponds

to Eq.(1). The time derivative of the expectation value of an operator O is given by:

d ⟨O⟩
dt
= ⟨[O,H]⟩ . (A.3)

A basis for this space is given by states with definite occupation numbers of the two states. Letting vnwm represent

the state with occupation numbers n for the state A, and m for the state B, a general state of the system can be

represented as:

ψ(t) =

∞
∑

m,n=0

P(n,m, t)vnwm

∞
∑

m,n=0

P(n,m, t) = 1, (A.4)

where P(n,m, t) is the (time-dependent) probability that the system is in the state with occupation numbers n for the

state A and m for the state B. This corresponds to the fact that the probabilistic state of the adjacency matrix can be

can be described as a (time-dependent) convex combination of basis states with a definite configuration of 1s and 0s.

In this basis, the operator H of Eq.(A.2) can be represented by

H = v + w − 2, (A.5)

where v and w are the operators of multiplication by v and w, respectively. This operator acts on an arbitrary basis

element by

Hvnwm = vn+1wm + vnwm+1 − 2vnwm. (A.6)

This leads to a master equation given by:

dP(n,m, t)

dt
= P(n − 1,m, t) + P(n,m − 1, t) − 2P(n,m, t) where P(−1, 0, t) = P(0,−1, t) = 0. (A.7)

This process yields what was referred to in the text as the master equation associated with an infinitesimal time-

evolution operator, and provides a connection with the standard approach to the study of stochastic processes.

Complete information on the probability distribution can be obtained via the expectation value of the characteristic

function, as this is equivalent to taking the Fourier transform of the probability distribution function.

d
⟨

ei(λAA†A+λBB†B)
⟩

dt
=

⟨[

ei(λAA†A+λBB†B), A† + B† − 2
]⟩

=
⟨

eiλBB†B
[

eiλAA†A, A†
]

+ eiλAA†A
[

eiλBB†B, B†
]⟩

=
(

eiλA + eiλB − 2
) ⟨

ei(λAA†A+λBB†B)
⟩

. (A.8)

The solution to this equation is

⟨

ei(λAA†A+λBB†B)
⟩

= et(eiλA+eiλB−2)P(λA, λB, t = 0). (A.9)
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Expanding the exponential on the RHS to second order in λA, λB yields

⟨

ei(λAA†A+λBB†B)
⟩

≈ et(i(λA+λB)− 1
2 (λ2

A
+λ2

B)), (A.10)

which can be inverted in the fundamental case P(λA, λB, t = 0) = 1.

P(A†A = j, B†B = k) ≈ 1

2t
e

( j−t)2+(k−t)2

2t (A.11)

Eq.(A.8-A.11) correspond to Eq.(5-8) in the main text, and are intended to explain the logic followed there.

In the main text we do not explicitly distinguish between the values of the operators, which are random variables,

and the operators themselves, using the same notation for both. This abuse of notation is benign, since in places where

the distinction matters it is possible to determine which notion is meant (and only one of the meanings is used in any

given equation).

It is noteworthy that the variable ξ =
j−k

2
undergoes free diffusion (Brownian motion) in this approximation (which

is accurate up to discretization in the true distribution).

These rules and approximations were used to determine the Fokker-Planck equation Eq.(8) for the Generators-

Destroyers model (an exact solution not being tractible in this case).
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