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Abstract

In this work, we employ an agent-based integrated assessment model to study the likelihood of

transition to green, sustainable growth in presence of climate damages. The model comprises het-

erogeneous fossil-fuel and renewable plants, capital- and consumption-good firms and a climate

box linking greenhouse gasses emission to temperature dynamics and microeconomic climate

shocks affecting labour productivity and energy demand of firms. Simulation results show that

the economy possesses two statistical equilibria: a carbon-intensive lock-in and a sustainable

growth path characterized by better macroeconomic performances. Once climate damages are

accounted for, the likelihood of a green transition depends on the damage function employed.

In particular, aggregate and quadratic damage functions overlook the impact of climate change

on the transition to sustainability; to the contrary, more realistic micro-level damages are found

to deeply influence the chances of a transition. Finally, we run a series of policy experiments on

carbon (fossil fuel) taxes and green subsidies. We find that the effectiveness of such market-based

instruments depends on the different channels climate change affects the economy through, and

complementary policies might be required to avoid carbon-intensive lock-ins.
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1 Introduction

How does climate change impact on the transition from fossil-fuel to low carbon technologies? Ac-

cording to our results, quite a lot. While the literature analysing transitions is large and variegate,

there is a gap on how climate change can affect the likelihood and speed of decoupling economic

growth from fossil fuels and the ensuing macroeconomics effects. In the present work, we fill this

gap relying on an agent-based integrated assessment model where energy transitions are endoge-

nous and co-evolve with climate change and can be possibly affected by policy interventions.

Economic growth must be sustained by energy production. Different portfolio of energy sources

can support the same rate of growth at different costs, which change over time according to the

technological evolution. However, once the possible impacts of climate change are taken into ac-

count, economic growth ought to be sustainable, i.e. it must be decoupled from greenhouse gas

(GHG) emissions. Indeed, as pointed out by the literature on high-end scenarios, the environmen-

tal, health, and physical damages triggered by climate change may outpace any adaptation effort,

hampering long-term growth prospects and ultimately treating the very existence of life as we know

it. Thus, long-term economic growth cannot be a credible objective without treating the green tran-

sition as an unavoidable goal of public policy-making. And as climate change, technical change and

economic growth co-evolve over time, increasing research efforts are required to understand if the

speed of transition implicitly defined by the international climate agreements is fast enough, and

whether policies are effective.

Against this background, traditional integrated assessment models (IAMs) are badly equipped

to study the role of firm and energy plant heterogeneity and the sources and direction of technical

change triggering successful energy transition towards sustainability. Further, climate damages are

often measured in percentages of GDP losses, under the implicit assumption that, due to linearity

in the economic system, the aggregate shock is plainly the sum of microeconomic shocks. While

being empirically questionable, such a perspective does not allow policy-makers to identify from

where in the economic system the risks and costs of climate change originate and propagate, thus

affecting the transition to sustainable growth. More generally, the microeconomic analysis of energy

transitions has little to say about the ensuing macroeconomic dynamics (Stirling, 2014; Mazzucato

and Semieniuk, 2017).

The Dystopian Schumpeter meeting Keynes (DSK; Lamperti et al., 2018b) agent-based model

constitutes a viable platform to analyze the energy transition while dealing with all the above men-

tioned issues.1 In particular, DSK accounts for endogenous technical change in the three sectors it

comprises, namely capital goods, consumption goods, and energy. Technical change is the outcome

of boundedly rational R&D decisions by heterogeneous agents, who finance R&D through retained

earnings and (rationed) credit, and whose effect is stochastic. Firms also engage in technological

diffusion as they adopt or imitate new vintages of machinery, characterized by heterogenous levels

of labor productivity, energy efficiency, and environmental friendliness.

In the energy sector, firms can choose between fossil-fuel and renewable plants. Brown energy

plants have higher production costs than green one, but have zero installation costs, while firms

has to pay a fixed cost to expand their renewable energy capacity. Energy firms invest in R&D

1Agent based models are flexible computational environments simulating the behaviour of complex systems, nowa-
days widespread in different areas of the social sciences (Bonabeau, 2002; Tesfatsion and Judd, 2006; Haldane and Turrell,
2018). The interested reader might want to look at Fagiolo and Roventini (2012) and Fagiolo and Roventini (2017) for two
surveys on macro agent based models and to Balint et al. (2017) and Lamperti et al. (2018a) for agent based applications
to the issue of climate and environmental change.
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a fraction of its past sales in order to develop the green and dirty technologies. Industrial and

energy productions generate GHG emissions, whose effect on climate is modelled in a climate box.

Once temperatures change, the economy is hit by microeconomic climate shocks affecting, labor

productivity or energy efficiency of machines, and in turn macroeconomic dynamics.

The DSK model is able to account for a wide range of micro and macro stylized facts concerning

economic dynamics and the evolution of climate change (e.g. self-sustained growth punctuated

by endogenous crises, co-integration of energy and output dynamics, increasing frequency of ex-

treme events). Simulation results show that, even without considering climate damages, the model

produces a non-ergodic behaviour characterized by two statistical equilibria: a carbon-intensive

lock-in, wherein the share of renewable energy plants approaches zero; and an equilibrium wherein

the transition to green energy technologies is successful. In the latter case, GDP growth is faster,and

unemployment lower than in the carbon-intensive lock-in, suggesting that sustainable growth can

improve macroeconomic dynamics.

Once climate damages are accounted for, the likelihood of green transition depends on the

damage function employed. When climate shocks are modelled as aggregate output losses, as com-

monly done in the majority of general-equilibrium IAMs (Nordhaus and Sztorc, 2013; Nordhaus,

2014), climate shocks do not affect the probability of carbon decoupling. However, when one focuses

on the different channels through which microeconomic climate damages hit firms, the results are

more complex. More specifically, negative shocks to energy efficiency are found to slow down the

transition, whereas shocks reducing labor productivity accelerate it. Both effects interact with the

dynamics of energy demand and prices, which affect the investment of energy firm in green and

dirty technologies. Finally, the success of policies supporting sustainable growth such as carbon

tax and green subsidies depends on the different channels through which climate damages affect

the economy, and complementary command-and-control interventions are often required to avoid

carbon-intensive lock-ins

The paper is structured as follows. After a brief review of the relevant literature in Section 2, we

describe the model in Section 3. The model is empirically validated in Section 4. Simulation results

focused on transition to sustainable growth are presented in Section 5. Finally, Section 6 concludes.

2 A critical review of the literature

The literature on transitions to sustainable production modes is large and variegate (Frantzeskaki

and Loorbach, 2010; Markard et al., 2012). From a theoretical perspective, four main frameworks

have been developed to analyse the issue. These include transition management (Rotmans et al.,

2001; Loorbach, 2010), strategic niche management (Kemp et al., 1998), the multi-level perspective

on socio-technical transitions (Geels, 2002), and technological innovation systems (Jacobsson and

Johnson, 2000; Jacobsson and Bergek, 2011). Embracing different perspectives they have been used to

analyse shifts in socio-technical systems. In this context, a socio-technical system consists of (networks

of) actors (individuals, firms, and other organizations, collective actors) and institutions (societal

and technical norms, regulations, standards of good practice), as well as material artifacts and

knowledge (Geels, 2004; Weber, 2003). A sustainable transition involves moving from a given socio-

technical system to a novel one characterized by production and consumption modes reducing

the adverse impact on the natural system. Socio-technical transitions differ from technological

transitions in that they include changes in user practices and institutional (e.g., regulatory and
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cultural) structures, in addition to the technological dimension. In this paper, we loosely focus

on the technological dimension but, contrary to the approaches introduced above, we look at the

aggregate (i.e. macroeconomic) effect of moving away from fossil-fuels technologies.

In that, we contribute to a recent stream of studies focusing on economies’ growth dynamics

and the composition of the energy mix. The mainstream economic literature has employed models

of directed technical change to explore how policy can move economic development and R&D

activities away from fossil fuels (Acemoglu et al., 2012, 2015). As a central result, they report that

both subsidies to “green” research and carbon taxes should be used to move the economy towards a

sustainable growth trajectory. Despite they call for a marginal and temporary intervention, Lamperti

et al. (2015) show that such market based policies might be ineffective as a result of path-dependence

and put forward regulation as a valid alternative policy to induce transitions.2 Moving the attention

from R&D to resource availability, other contributions have analysed the optimal trajectory from

non-renewable to renewable resources and highlighted the role of renewables’ production costs

in inducing the transition (Hoel and Kverndokk, 1996; Ploeg and Withagen, 2014; Van Der Ploeg

and Withagen, 2012).3 This feature will be crucial also in our model. Interestingly, while the

majority of studies underlines the importance of shifting to renewable energy sources, Smulders

and Zemel (2011) highlight possible drawback effects on economic growth linked to crowding-

out effects in capacity building. However, they do not account for climate change/environmental

damages. Another main shortcoming of such a research body is that it fails to account for the

complex relationships tying agents in an economic system, and too heavily relies on the capacity

of markets in efficiently allocating both resources and knowledge. In such a context, inducing a

transition loosely boils down at finding the correct set of incentives.

Starting from different theoretical constructs and a more realistic representation of the economy,

the literature on macro agent based and system dynamics modelling has recently moved towards

the analysis of energy transitions, macroeconomic dynamics and policy choices (Balint et al., 2017;

Lamperti et al., 2018a). Such a stream builds on the perception of the economy as a complex evolv-

ing system (Arthur et al., 1997; Tesfatsion, 2006; Dosi and Virgillito, 2017) and, departing from this

basis, looks at the evolutionary mechanisms behind technological development, technological diffu-

sion, and technological transitions with a particular emphasis on energy and environmental issues

(Van Den Bergh and Gowdy, 2000; Safarzyńska et al., 2012).4 This is particularly relevant as sus-

tainability challenges are robustly coupled with and aggravated by the strong path-dependencies,

and ensuing lock-ins, we observe in the existing sectors (Åhman and Nilsson, 2008; Unruh, 2000;

Safarzyńska and van den Bergh, 2010). Under such conditions, endogenous sustainable transitions

can be viewed as positive tipping points, whose determinants needs investigation (Tbara et al.,

2018). Both demand and supply sides matter in shaping the final technological landscape. Bleda

and Valente (2009) investigate the role of demand induced innovations and eco-labelling in foster-

ing the transition to greener production modes. Safarzynska and van den Bergh (2011) study the

role of boundedly-rational investors in driving technological development within the energy indus-

2See also Smulders et al. (2011) on the role of regulation in triggering transitions, and Eriksson (2018) for the social
desirability of a long run perpetual public support of green technologies.

3The interested reader might want to look at Gillingham et al. (2008) for a survey on technical change modelling in
mainstream environment-climate-economy models.

4We refer the interested reader to Nelson and Winter (1982) and Dosi (1988) for the evolutionary background on tech-
nological change, to Tesfatsion and Judd (2006), Farmer and Foley (2009) and Bonabeau (2002) for background material,
and to Fagiolo and Roventini (2012) and Fagiolo and Roventini (2017) for excellent surveys on recent developments in
macro agent based modelling.
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try, highlighting that the emergent energy mix might strongly depend on the investing heuristics.

Gualdi and Mandel (2016) and Ponta et al. (2018) focus instead on technological diffusion, and

study the effects of stylized feed-in tariffs. The first contribution finds that feed-in tariffs are rela-

tively more effective than preferential market access in supporting the diffusion of radical (green)

innovation, with positive consequences on the dynamics of growth. The second study, instead, re-

ports a trade-off: for moderate policy strength the economy benefits from the transition, while for

high policy intensity investments crowd-out consumption and increase interest rates. Our paper

contributes to the debate, as it study the effects of public subsidies to green energy technologies

and, symmetrically, taxes on fossil-fuel ones.

However, the key ingredient we add to the picture is the representation of climate damages.

Transitions involve a broad range of actors and typically unfold over considerable time-spans (e.g.,

50 years and more, Markard et al., 2012). This is further confirmed by the length of the simula-

tions conducted in the battery of studies reported above and, more specifically, by that the length

of the transition itself. Over such long horizons, it is crucial to consider how climate change could

affect the economic system and, therefore, the dynamics of the transition. Both in the mainstream

economic and complex system literatures, climate damages are either overlooked or vaguely rep-

resented as utility losses (Greiner et al., 2014), thereby failing to consider the wide array of impact

channels identified by the nascent literature on climate econometrics (Hsiang, 2016; Carleton and

Hsiang, 2016). In this respect, we take advantage of the DSK model (Lamperti et al., 2018b), where

different micro-level shocks can be modelled and, therefore, we also link to the Integrated Assess-

ment literature Weyant (2017) which, usually, takes into consideration endogenous technical change

but oversee the macroeconomic impacts of transitions.

3 The model

The DSK model (Lamperti et al., 2018b) represents a complex economy endowed with a climate

box. Economic and climatic variables co-evolve interacting non-linearly, with multiple feedbacks,

and emerging tipping points. A graphical representation of the model is provided in Figure 1.

The economic dynamics is grounded on Dosi et al. (2010, 2013) and is composed by two in-

dustrial sectors, whose firms are fueled by an energy industry. In the capital-good sector, firms

invest in R&D and innovate to improve the performances of the machines in terms of productivity,

energy-efficiency and environmental friendliness. In the manufacturing industry, firms invest in

machine-tools in order to produce an homogeneous product consumed by workers and they can

rely on credit to finance their production and investment plans.5

Energy and industrial production emit greenhouse gasses (e.g. CO2), which in turn affect the

evolution of the temperature. More precisely, we model a stylized global carbon cycle which drives

the projections of Earth’s radiative forcing and, finally, the global mean surface temperature. The

impact of an increase in the temperature of the Earth on economic dynamics is modeled through a

stochastic, time-evolving, disaster generating function (as in Lamperti et al., 2018b). In particular,

the probability of large climate shocks hitting firms raises in tandem with the mean size of damages.

In that, climate change does not automatically lead to higher aggregate damages as in most IAMs,

but rather it modifies the very structure of the economy and the ensuing economic growth (or lack

5See Dosi et al. (2016) for a survey of the K+S model family, to which DSK belongs, and Dosi et al. (2017c) for a recent
development.
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Figure 1: A graphical representation of the DSK model; source Lamperti et al. (2018b).

of). As a benchmark, we also use a standard damage function cutting aggregate output in a linear

way as in Nordhaus and Sztorc (2013). The details of the DSK model are spelled out in Appendix

A.

3.1 Industrial sectors

The economy features a capital-good industry and a consumption-good sectors. Firms in the capital-

good industry produce machines employing labour and energy. Different vintages of machines are

characterized by different productivity of labour, energy efficiency and environmental friendliness. The

unit cost of production of both capital- and consumption-good firms depends on labor productiv-

ity, workers’ wage (w), energy efficiency, as well as energy price (pe). Machines and production

technologies induce CO2 emissions via both their electricity consumption (indirect effect) and their

environmental friendliness, i.e. the amount of polluting substances they emit in each period for

each unit of energy employed throughout the production process.

Technical change and innovation occur in the capital-good sector. Firms invest in R&D a fraction

of their past sales in order to discover new machines or copy the ones of their competitors. New

machines can be more productive, cheaper, or “greener”. Innovation and imitation are modeled as

two step stochastic processes. In the first step, the amount invested in R&D affects the likelihood

of success. In the second one, technological opportunities determines the size of innovation. In the

case of imitation, firms are more likely to copy the competitions with the closest technologies.

The capital-good market is characterized by imperfect information and competition. Capital-

good firms strive to get new customers by sending brochures to a subset of consumption-good firms,

which in turn choose the machines with the lowest price and unit cost of production. Machine-

tool firms fix price a constant mark-up on the unit cost of production. Time-to-build constraints

characterized the production of machines: consumption-good firms receive their new capital-goods

at the end of the period.

Consumer good-firms produce a homogeneous good using their stock of machines, energy and

labour under constant returns to scale. Firms plan their production according to adaptive demand
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expectations. If the current capital is not sufficient to satisfy the desired level of production, they

buy new machines. As machine embed state-of-the-art technologies, innovations diffuse from the

capital- to the consumption good sector. Relatedly, technical change can also induce firms to replace

their current stock of machines with more productive (and environmental friendly) ones. Firms’

gross investment is simply the sum of expansion and replacement investments.

Consumption-good firms finance their investments as well as their production relying on imper-

fect capital markets (Stiglitz and Weiss, 1981; Greenwald and Stiglitz, 1993). Firms first rely on their

stock of liquid assets and then on bank credit. The borrowing capacity of firms is limited by their

ratio between debt and sales. The bank provides loans to consumption-good firms on a pecking

order basis, considering their net worth-to-sales ratio. If credit supply is lower then demand, some

firms end up being credit rationed.

Consumption-good firms first produce and they try to sell their product in the market. Hence,

production do not necessarily coincide. Consumption-good market is characterized by imperfect

competition: firms fix price according to a variable mark-up which evolve reflecting the dynamics of

market shares. In presence of imperfect information, demand is allocated through a quasi replicator

dynamics, wherein firms competitiveness depends on their price and they successfully satisfied

their past demand. Details and equations are collected in Appendix A.

3.2 The energy sector

3.2.1 Electricity production, costs and and revenues

Energy production is performed by a set of heterogeneous power plants featuring green (renewable)

or brown (carbon-intensive) technologies. The energy industry produces and sells electricity to

firms in the capital-good and consumption-good industries on demand. Demand for electricity,

De, is then matched by the aggregate energy production, Qe, obtained from the portfolio of plant.

Energy cannot be stored.

Plants are different in terms of their technical coefficients reflecting cost structures, thermal

efficiencies and environmental impacts. Brown plants burn fossil fuels (e.g. coal, oil) with heteroge-

neous, vintage-specific thermal efficiency Aτ
de, which expresses the amount of energy produced for

each unit of employed non-renewable resource (fossil-fuel).6 For simplicity, we assume that power

plants have a unitary capacity and, in the case of brown energy, they consume one unit of fuel.

Hence, the average production cost for a brown plant of vintage τ is:

cde(τ, t) =
p f

Aτ
de

, (1)

where p f is the price of fossil fuels, exogenously determined on a international market.7 Burning

fossil fuels yields emτ
de emissions per energy unit, thus increasing the carbon concentration in the

atmosphere.

To the contrary, the carbon footprint of green plants is zero. They transform freely available,

renewable sources of energy (such as wind and sunlight) into energy units at a null production

6The subscript de stands for ”dirty electricity”, while τ denotes the technology vintage.
7Notice that electricity production is a highly capital-intensive process, which mainly requires power generation assets

and resources (be them fossil fuels or renewable sources), while the labour input is minimal. We thus assume away labour
from electricity production.
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cost, i.e. cge(t) = 0 (ge, ”green energy”).8

The total production costs depends on the mix of green and dirty plants. We assume that

plants with the lowest unitary generation costs are the first to be activated, in line with the actual

functioning of the electricity industry (Sensfuß et al., 2008; Clò et al., 2015). Indeed, even before

liberalization, the traditional goal of energy systems management was the minimization of system-

wide electricity production, transmission, and distribution costs. In turn, this imply that green

plants are the first to be turned on. More precisely, if De(t) ≤ Kge(t), the set of infra-marginal

power plants IM includes only green plants and the total production cost is zero. If De(t) > Kge(t),

the total production cost corresponds to the cheapest dirty power plants. Assuming the absolute

frequency of vintage τ plants is gde(τ, t), if dirty plants are operative the total production cost is:

PCe(t) = ∑
τ∈IM

gde(τ, t)cde(τ, t)Aτ
de. (2)

The energy price is computed adding a fixed markup µe ≥ 0 to the average cost of the more

expensive infra-marginal plant:

pe(t) = µe, (3)

if De(t) ≤ Kge(t), and

pe(t) = cde(τ, t) + µe (4)

if De(t) > Kge(t), where cde(τ, t) = maxτ∈IM cde(τ, t). By setting a markup on this unit cost level,

there is a positive net revenue on all infra-marginal plants.9

3.2.2 Expansion and replacement investments

In order to fulfil energy demand, new power plants might be necessary. Moreover, old and obsolete

plants should be replaced as well. In particular, we assume that all (brown and green) plants have

a constant life-time corresponding to ηe periods. All new plants are built in house (i.e. within the

energy sector), but their production cost is technology specific. Specifically, the construction costs

for new dirty plants are normalized to zero, whereas in order to install a new green plant of vintage

τ, a fixed cost ICτ
ge needs to be sustained.

The capacity stock Ke(t) is obtained summing up the capacities of all power plants across tech-

nologies (green vs. dirty) and vintages. Recalling that the capacity of plants is normalized to one

and denoting with gde(τ, t) and gge(τ, t) the absolute frequency of dirty and green plant respectively,

one gets:

Ke(t) = ∑
τ

gde(τ, t) + ∑
τ

gge(τ, t). (5)

For a given capacity stock, the maximum production level that can be obtained depends on the

thermal efficiencies Aτ
de of dirty plants (green plants produce at full capacity):

Qe(t) = ∑
τ

gde(τ, t)Aτ
de + ∑

τ

gge(τ, t). (6)

8Some renewable sources, such as wind and photovoltaics, are intermittent and non-dispatchable: their output is
highly volatile at high temporal frequencies as it depends on weather conditions that cannot be controlled by the power
plant operator. However, our model runs on temporal frequencies that are relevant for macroeconomics, such as annual
or quarterly. Over those time horizons, the average output from intermittent renewable is fairly predictable.

9In the aggregate perspective of our model, market power exercise through markups can be seen as equivalent in its
effects to alternative strategies, such as capacity withholding.
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An expansion investment in the energy industry is undertaken whenever the maximum electric-

ity production level Qe(t) is lower than electricity demand De(t). The amount of new expansion

investments EId
e thus equals

EIe(t) = Kd
e (t)− Ke(t), (7)

if Qe(t) < De(t), whereas EIe(t) = 0 if Qe(t) ≥ De(t). A choice is available between green or brown

new plants. We assume that new green capacity is constructed if green plants are cheaper than

brown counterparts in terms of accounting lifetime costs. This means that green energy technologies

are chosen up whenever fixed cost of building the cheapest green vintage is below the discounted

(variable) production cost of the most efficient dirty plant. Hence, the following payback rule is

satisfied:

ICge ≤ b · cde, (8)

where b is a payback period parameter (e.g. Dosi et al., 2010, 2013), ICge = minτ ICτ
ge, and cde =

minτ cτ
de. Accordingly, in case of new green capacity, the expansion investment cost amounts to

ECe(t) = ICgeEIe(t); (9)

whereas it is zero if the payback rule is not met and the firm builds new dirty plants.

3.2.3 Technological innovation

The technology of green and dirty plants change over time as result of innovations. The energy firm

invests a fraction ve ∈ (0, 1) of total past sales in R&D. Total revenues Se(t) are generated from both

green and brown energy sales, i.e. Se(t) = Sge(t) + Sde(t). R&D investment in each technological

trajectory is proportional to the revenues obtained from the sale of energy generated therein:

RDge(t) = veSge(t − 1) (10)

and

RDde(t) = veSde(t − 1). (11)

Such an assumption is coherent with the evolutionary literature on selection processes and technical

change (Nelson and Winter, 1982; Dosi et al., 2010) and, further, reflects the idea that market size

plays a role in shaping the direction of technical change and that investments tend to cumulate on

the prevailing areas (Acemoglu, 2002; Acemoglu et al., 2012).

We model innovation as a two stage stochastic process as in the capital- and consumption good

sectors. More precisely, the innovative search in the two paths is successful with probabilities θge(t)

and θde(t), conditioned on the R&D investment:

θge(t) = 1 − e−ηge INge(t) (12)

θde(t) = 1 − e−ηde INde(t) (13)

with ηge ∈ (0, 1), ηde ∈ (0, 1). Successful innovators can then access to the second stage where

they project a new green or dirty plant. Innovation along the green technological trajectory reduce

the installation fixed costs. Formally, the installation cost of a new vintage of green plants, ICτ
ge,

is lowered by a factor xge ∈ (0, 1) (a random draw from a Beta distribution) with respect to the

9



previous vintage:

ICτ
ge = ICτ−1

ge xge. (14)

Innovation in dirty technology can improve plants’ thermal efficiency and reduce greenhouse gas

emissions. The thermal efficiency and emissions intensity coefficients (Aτ
de, emτ

de) of the new vintage

τ of dirty technology are given by:

Aτ
de = Aτ−1

de (1 + xA
de) emτ

de = emτ−1
de (1 − xem

de ) (15)

where xA
de and xem

de are independent random draws from a Beta distribution.10

3.2.4 Profits and liquid assets

Energy sold to the capital- and consumption-good industry is paid in advance. Hence, the total

profits realized in the energy industry reads:

Πe(t) = Se(t)− PCe(t)− ICe(t)− RDe(t) (16)

where Se(t) indicate energy sales, PCe(t) are production costs, ICe(t) denotes expansion and re-

placement investment, and RDe(t) are R&D expenditures. At the end of the period, the stock of

liquid assets in the energy sector is accordingly updated:

NWe(t) = NWe(t − 1) + Πe(t). (17)

3.3 Climate change and climate damages

A climate model is added to our economic system to fully endogenize the relationship between

climate change and the growth pattern of the economy. In particular, we rely on a discrete-time

version of the C-ROADS model described in Sterman et al. (2012, 2013). Such model accounts in a

parsimonious away for the complex physical and chemical relations governing climate’s evolution,

especially including the multiple feedbacks responsible for non-linear dynamics. Note that while

the economy reacts quarterly, the climate module updates annually.

A core carbon cycle, whose details are included in Appendix A, takes the annual emissions from

the industry and the energy sector as input and models carbon exchanges between the atmosphere,

the biomass and the oceans. The latter two elements constitute the main in-take channels, whose

dynamics are affected by the temperature through two main feedback loops. Then, the equilibrium

concentration of carbon in the atmosphere impacts the size of the Earth’s radiative forcing and

finally, the evolution of the temperature.

In particular, building on Schneider and Thompson (1981) and Nordhaus (1992), the heat content

of the two layers (upper layer: atmosphere and surface of oceans; lower layer: deep oceans) is

modulated by their reciprocal exchanges and, with respect to the upper compartment, by the CO2

10A more realistic depiction of green energy technologies would set their thermal efficiencies far below 100% (i.e. they
can only convert a relatively small fraction of the energy they receive from renewable sources) and allow for efficiency-
improving innovations. Higher thermal efficiency allows a faster amortization of the fixed construction cost. The way we
model innovation in green technologies, however, yields the same effects, because a lower fixed construction cost allows
to anticipate the break-even point, too.
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radiative forcing (FCO2
):11

Tm(t) = Tm(t − 1) + c1 {FCO2
(t)− λTm(t − 1)− c3[Tm(t − 1)− Td(t − 1)]} (18)

Td(t) = Td(t − 1) + c4 {σmd[Tm(t − 1)− Td(t − 1)]} , (19)

where Ti is the temperature in the different layers relative to pre-industrial levels, Ri is the thermal

inertia in the two boxes, λ is a climate feedback parameter, FCO2
represents the radiative forcing in

the atmosphere from greenhouse gasses (relative to pre-industrial levels), and σmd is the transfer

rate of water from the upper to lower ocean layers accounting also for the heat capacity of wa-

ter. The main climate variable we are interested in is the temperature of the surface-upper oceans

compartment, Tm.

How does climate change affect economic dynamics? In most IAMs, the negative impact of rising

temperatures on the economy is simply captured via an aggregate damage function expressing

fractional losses of GDP.12 Apart from the difficult (and often arbitrary) choice of parameters, one

issue with the use of such aggregate damage function is that it does not distinguish among different

microeconomic impact channels. Is climate change reducing labour productivity? Is it increasing

capital depreciation? Or, is it augmenting, caeteris paribus, energy demand? And are firms and

households hit in the same way?13

A recent econometric strand of literature is increasingly focusing on the analysis of climate

damages, thus providing empirical estimates to answer such questions. Carleton and Hsiang (2016)

propose a survey of recently investigated climate impacts on labour productivity, labour supply,

mortality, electricity consumption and a series of other variables. There is little doubt that such

micro impacts will manifest, in aggregate terms, through a variation of final income. However,

disentangling the various channels, the possible heterogenous impacts on agents, and their effects

on the behaviour of the economy remains under-investigated.

The DSK model relys on stochastic agent-based damage generating function, which endogenously

evolve according to the dynamics of the climate. Such a function simply takes the form of a density

and, at the end of each period, multiple draws establish the size of the shocks hitting firms and

workers. Notably, shocks are heterogeneous across agents and across economic variables, with

only a subset of firms facing climate disasters. Given its flexibility, we take advantage of a Beta

distribution over the support [0, 1], whose density satisfies:

f (s; a, b) =
1

B(a, b)
sa−1(1 − s)b−1, (20)

where B(·) is the Beta function and a, b are respectively the location and scale parameters. Both

11Radiative forcing is a measure of the influence a factor has in altering the balance of incoming and outgoing energy in
the Earth-atmosphere system. It is then an index of the importance of the factor as a potential climate change mechanism
(IPCC, 2007b). To simplify we use CO2 as a proxy for all green house gases and we consider only its radiative forcing.

12For example, Nordhaus (2008) uses an inverse quadratic loss function, Weitzman (2009) proposes a negative expo-
nential specification emphasizing the catastrophic role of large climate changes, while Tol (2002) uses sector and area
specific loss function.

13For more extensive and circumstanced critiques to the existing damage functions see Ackerman et al. (2010) and
Pindyck (2013).
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Table 1: Summary statistics on selected variables under business-as-usual scenario and no climate
shocks, and comparison with historical empirical counterparts.

MC average MC st. dev. Empirical counterpart Data source

Yearly GDP growth 0.032 0.004 0.044 WDI
Unemployment rate 0.088 0.021 0.061 WDI
Energy demand growth 0.028 0.003 0.023 WDI
Emissions growth 0.013 0.001 0.018 CDIAC
Relative volatility of consumption 0.64 0.03 0.79 FRED
Relative volatility of investments 1.95 0.05 2.77 FRED
Volatility of output 0.258 0.013 0.0157 FRED
Likelihood of crises 0.10 0.065 - -
Share of green energy at 2100 0.50 0.22 - -
Emissions at 2100 26.81 9.510 - -
Temperature at 2100 4.45 0.543 - -

Note: All values refer to a Monte Carlo of size 200. Emissions are expressed in GtC, which can be converted in GtCO2 using
the following conversion factor: 1 GtC = 3.67 GtCO2. Temperature is expressed in Celsius degrees above the preindustrial level,
which is assumed to be 14 Celsius degrees. WDI stands for World Development Indicators, provided by the World Bank. Empirical
counterparts are computed over large time spans, but are subject to data availability: World real GDP, unemployment and CO2

emissions data refer to the period from 1980 to 2010; employed energy consumption data go from 1991 to 2013; quarterly data for
volatility analysis are from 1970 to 2002 and refer to the US economy, but the reported features are quite robust across countries, see
also Stock and Watson (1999); Napoletano et al. (2006). Volatilities are expressed as standard deviations of bandpass filtered series;
relative volatilities use output volatility as comparison term. A crisis is defined as an event where the yearly loss of output is higher
than a 5% threshold. Growth rates computed as (yfinal − yinitial)/(yinitial ∗ T).

parameters are assumed to evolve across time reflecting changes in climate variables:

a(t) = a0[log(1 + Tm(t))] (21)

b(t) = b0
σ10y(0)

σ10y(t)
, (22)

where σ10y(t) is a measure of the variability of surface temperatures across the previous decade

and a0, b0 are positive integers.14 Equations (21) and (22) shape the disaster generating function as

a right-skewed, unimodal distribution, whose mass moves along the positive axis as temperature

increases, thereby raising the likelihood of larger shocks. Equation (22) determines the size of the

right tail of the distribution and allows to account for the importance of climate variability on

natural disasters (Katz and Brown, 1992; Renton et al., 2014).

Formally, climate shocks hit the economy at the end of each period according to the following

specification:

Xi,τ(t) = X′
i(t)[1 − ŝx

i (t)], (23)

where i indexes firms in the economy, ŝx(t) is the draw from the disaster generating function, while

X(t) captures the target impact variable one wants to study. In the simulation experiments below,

we will focus on labor productivity and energy efficiency characterizing machines and production

techniques.

14For modelling purposes we estimate the standard deviation of previous ten recorded temperatures; however, a widely
used measure of climate variability corresponds to the count of extreme temperatures.
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Figure 2: Temperature projections and their density estimates.

(a) Temperature projections. (b) Distribution of temperature.

(c) Average firm productivity projections. (d) Distribution of average firm productivity.

Note: All panels show 50 model runs under different seeds of the pseudo-random number generator. Red dashed lines
in panel 2b indicate mean values. In panel 2d the x-axis is in logarithmic scale.

4 Empirical validation

We start exploring whether the DSK model can account for micro and macro empirical regularities

concerning economic and climate dynamics. The DSK model should be considered as a global

model. In its baseline (benchmark) configuration, the model runs in absence of climate damages

and the parametrization reported in Appendix B.

In line with the indirect calibration approach discussed in Windrum et al. (2007) and Fagiolo

et al. (2007) and following the prevailing practice in the agent based macro modelling literature

(see the survey in Fagiolo and Roventini, 2012, 2017), the parameters of the DSK models have been

selected to reproduce six empirical features of the real world system.15 More precisely, simulated

data should account for: (i) presence of self-sustained growth and business cycles punctuated by

15In a nutshell, the indirect calibration approach first identifies a set of empirical features that the model wants to
match, then employs a search strategy to select points into the parameter space and finally test weather the identified
empirical properties are robustly present in the simulated series. For a survey of validation approaches in the macro
ABM literature we refer the interested reader to Fagiolo et al. (2017) and to the literature review sections in Lamperti
(2017a,b) and Guerini and Moneta (2017).
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Table 2: Main empirical stylized facts replicated by the DSK model. Source: Lamperti et al. (2018b).

Stylized facts Empirical studies (among others)

Macroeconomic stylized facts

SF1 Endogenous self-sustained growth Burns and Mitchell (1946); Kuznets and Murphy (1966)
with persistent fluctuations Zarnowitz (1985); Stock and Watson (1999)
SF2 Fat-tailed GDP growth-rate distribution Fagiolo et al. (2008); Castaldi and Dosi (2009)

Lamperti and Mattei (2016)
SF3 Recession duration exponentially distributed Ausloos et al. (2004); Wright (2005)
SF4 Relative volatility of GDP, consumption, investments and debt Stock and Watson (1999); Napoletano et al. (2006)
SF5 Cross-correlations of macro variables Stock and Watson (1999); Napoletano et al. (2006)
SF6 Pro-cyclical aggregate R&D investment Wälde and Woitek (2004)
SF7 Cross-correlations of credit-related variables Lown and Morgan (2006); Leary (2009)
SF8 Cross-correlation between firm debt and loan losses Foos et al. (2010); Mendoza and Terrones (2012)
SF9 Pro-cyclical energy demand Moosa (2000)
SF10 Syncronization of emissions dynamics and business cycles Peters et al. (2012); Doda (2014)
SF11 Co-integration of output, energy demand and emissions Triacca (2001); Ozturk (2010); Attanasio et al. (2012)

Microeconomic stylized facts

SF12 Firm (log) size distribution is right-skewed Dosi (2007)
SF13 Fat-tailed firm growth-rate distribution Bottazzi and Secchi (2003, 2006)
SF14 Productivity heterogeneity across firms Bartelsman and Doms (2000); Dosi (2007)
SF15 Persistent productivity differential across firms Bartelsman and Doms (2000); Dosi (2007)
SF16 Lumpy investment rates at firm-level Doms and Dunne (1998)
SF17 Persistent energy and carbon efficiency heterogeneity across firms DeCanio and Watkins (1998); Petrick et al. (2013)

endogenous crises; (ii) average growth rate of output between 2.5% and 3.5%; (iii) average unem-

ployment rate between 5% and 15% percent; (iv) investment more volatile than output, consumption

less volatile than GDP; (v) growth rate of energy consumption lower than growth rate of output,

but higher than the growth rate of emissions, (vi) growth rate of emissions lower than the growth

rate of output, but consistent with RCP 8.5, (vii) projected temperature anomaly at 2100 in line with

the ranges relative to RCP 8.5.16

The simulation protocol adopted to inspect the baseline configuration employs 400 simulation

steps, which should be interpreted as quarters. Accordingly, the model can simulate and project

GDP and temperature dynamics till the year 2100 as commonly done by integrated-assessment

models. To wash away the effects due to stochastic terms, we performs Monte Carlo exercises of

size 200 on the seed of pseudo random number generator. The same protocol will be maintained

throughout the paper.

Simulation results show that the baseline DSK model is consistent with the seven requested

conditions introduced earlier and, further, it reasonably matches the long run empirical counterparts

of many key variables (e.g. growth paces of output and energy demand; see Table 1). The economy

exhibits endogenous fluctuations and self-sustained growth (3.2% on average; see also Figure 2)

punctuated by crises, emissions grow at an average pace that is close to those observed in the last 30

years and energy intensity to GDP is decreasing over time as suggested by the empirical evidence.

In addition, final projections of total emissions (average of 26.81 GtC at 2100) are in line with those

produced in the business-as-usual scenario by many other integrated assessment models used by

the IPCC (Clarke et al., 2009; Nordhaus, 2014). Moreover, the projections of temperature anomaly

over pre-industrial levels are consistent with RCP 8.5 and show an average of 4.45 Celsius degrees

(see Figure 2).

Beyond these general features, the DSK model jointly reproduces a large ensemble of micro

and macro stylized facts characterizing short- and long-run behavior of modern economies. Table

16RCP stands for Representative Concentration Pathways; they describe four possible climate futures, all of which are
considered possible depending on how much greenhouse gases are emitted in the years to come. RCP 8.5 is the most
pessimistic scenario and reflects a world without policy intervention, uncontrolled emissions and high energy demand.
See Riahi et al. (2011) for details.

14



Table 3: Percentages of non-rejection of statistical equilibrium and ergodicity tests.

baseline carbon lock-in transition to green

Variable Equilibrium Ergodicity Equilibrium Ergodicity Equilibrium Ergodicity

Output 0.85 0.83 0.95 0.91 0.90 0.89

Average productivity 0.91 0.89 0.96 0.92 0.89 0.86

Emissions 0.46 0.41 0.95 0.91 0.89 0.88

Temperature 0.74 0.72 0.92 0.90 0.85 0.83

Note: The results come from T(T − 1)/2 and T · M pairwise comparisons for equilibrium and ergodicity respectively.

2 reports the main empirical regularities replicated by the model together with the corresponding

econometric evidence. Relevantly, from a long run perspective, the model matches co-integration

relationships between output, energy demand and emissions. Moreover, growth rates and duration

of recessions display fat-tailed distributions, pointing to the fact that crises are more frequent that

what expected in a Gaussian world. As a consequence, macroeconomic volatilities are relevant and

should be also taken into account in climate change economic analysis as advocated by e.g., Rogoff

(2016). Indeed, from a short run perspective, we find that DSK exhibits business cycles properties

akin to those observed in developed economies: investments are lumpy and more volatile than

output and consumption, R&D expenditures are pro-cyclical and tend to anticipate the economy’s

fundamentals. This, in particular, supports the idea that technical change is a relevant element in di-

recting the pattern of growth. Finally, we notice that emissions and GDP are strongly synchronized,

which suggest a careful interpretation of emission slow-downs.17

5 Green transitions and climate change dynamics

Let us now consider under which conditions a green transition to a sustainable growth path can

emerge and if such a process is characterized by path-dependency and possible carbon lock-ins.

More specifically, we adopt the following strategy. First, we study green transitions switching off

climate-change shocks (cf. Section 5.1). In this way, by isolating the economy from the possible

negative impacts of climate change, we can focus on the economic processes and constrains affect-

ing the energy choices of firms. We then introduce feedbacks from climate change to economics

dynamics, thus studying the co-evolution of the economy and the climate (see Section 5.2). Finally,

we analyze the possible policy interventions to support the transition to a sustainable growth path

grounded on renewable energies (Section 5.3).

5.1 Green transition in an economy with zero climate-change impacts

We begin considering the adoption of green vis-à-vis dirty energy technologies and we study the en-

suing economic dynamics assuming that higher level of temperatures never trigger climate shocks.

This is a strong assumption as a closer scrutiny of Figure 2 suggests that the model projects tem-

perature anomaly at the end of the century well above 4 degrees in the vast majority of cases.

However, in some simulation runs, temperature growth is much less pronounced and it does not

17For a more detailed analysis of the empirical regularities that the model reproduces, together with their formal
investigation, we refer the reader to Lamperti et al. (2018b).
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Figure 3: Example of runs where a carbon lock in or a green transion occurs.
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(a) Share of green energy production - Lock in.
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(b) Share of green energy production - Transition.
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(d) Energy demand - Transition.

Table 4: Kolmogorov-Smirnov tests for difference between equilibria.

Variable Kolmogorov-Smirnov test statistic p-value Test-type N

Output growth 0.2125 0.1017 two-sided 200

Emissions growth 0.4438 0.0000 two-sided 200

Emissions at 2100 0.8250 0.0000 two-sided 200

Temperature at 2100 0.5688 0.0000 two-sided 200

Note: output and emission growth are averages over the whole time span.

exceed the 3 degrees threshold at 2100. Since the model is run in a business-as-usual (BAU) scenario,

i.e. without mitigation and adaptation policies, two reasons could explain the observed patterns.

First, the economy growth’s engine could loose momentum, thereby reducing aggregate produc-

tion, emissions and, finally, climate change. Second, the economy endogenously changes its energy

mix and, in some cases, moves away from fossil-fuels to renewables, thus reducing the increase in

temperature.

To disentangle the two possible effects, we rely on a series of formal tests for stationarity and

ergodicity of stochastic simulation models (Grazzini, 2012; Guerini and Moneta, 2017; Dosi et al.,

2017b). Such tools allow checking whether a model exhibits one or more statistical equilibria. In

a nutshell, the model runs in an ergodic statistical equilibrium state if the properties of the series

it generates are constant. In particular, we will first study whether the series (or a transformation
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of them) have distributional properties that are time-independent. Then, we will test whether the

series are ergodic, meaning that the unknown stochastic process selecting the observed time series

can be treated as a random sample. Following Guerini and Moneta (2017), we simulate the model

in its baseline configuration, transform the data removing trends (if necessary), and collect them in

a M × T matrix, where M = 200 represents the size of the Monte Carlo experiment and T = 400 the

simulation length. Then, we use a series of Kolmogorov-Smirnov tests on pairs of series to detect the

presence of a statistical equilibrium and its ergodicity. In particular, the model can be considered in

a statistical equilibrium if a good proportion (e.g., 90%, as suggested in Guerini and Moneta, 2017) of

tests do not reject the null hypothesis of equality of distributions, where each of these distributions

is obtained polling data relative to the same simulation period but to different MC runs. Further,

the statistical equilibrium is said to be ergodic if a good proportion (90%) of Kolmogorov-Smirnov

tests confirm that distributions across time and seeds do not differ. In particular, ergodicity is

determined by checking the equality of pairs of distributions, where the first is obtained pooling

observations across time (within the same MC run) and the second pooling observations across

runs (at the same time). Additional details on tests for statistical equilibria and their ergodicity are

included in Appendix C. In what follows, we focus on 4 variables: (i) GDP, (ii) average productivity,

(iii) emissions and (iv) temperature, where trends are removed through logarithmic differences.

Table 3 presents the percentage of non-rejections of the Kolmogorov-Smirnov tests carried out for

each pairwise comparison of series. It clearly shows that the time series delivered by DSK model do

not appear to exhibit one statistical equilibrium and ergodicity. Emissions and temperature anomaly

appear to drive such a result. In particular, the very low non-rejection rate for emissions suggests

that different dynamics of climate change may be closely linked to the energy mix adopted in the

economy.

In turn, we find that the model produces a non-ergodic behaviour characterized by two statistical

equilibria, each encompassing model runs characterized by specific dynamics of the share of green

energy production (cf. Figure 3 and the last columns of Table 3 ). A carbon intensive lock in occurs

whenever in a given run, the share of green energy drops below 15% and never rises again. Con-

versely, in the transition to green outcome, the share of green energy reaches the 85% threshold and

never fall back afterward. As the energy market employ the cheapest power plant first (see Sec-

tion 3), the transition toward sustainable growth occurs under comparable energy demand patterns

observed in the carbon lock in cases. This suggests that the emergent energy mix depends on the

relative competitiveness of different technologies, rather than on market design elements. A battery

of Kolgomorov-Smirnov tests applied to average output and emission growth rates, and to the final

observation (at 2100) of emissions and temperature anomaly confirm that the two statistical equilib-

ria are statistically different in terms of model behaviour they produce, especially for climate-related

variables (cf. Table 4).

Let us now investigate the behaviour of the model under carbon lock ins and green transitions.

Table 5 reports the Monte Carlo average values of output growth, unemployment, emission growth,

emissions and temperature at 2100, as well as their standard deviations. In addition, it further

clusters runs on the basis of the timing they employ to reach their equilibrium state. As one could

reasonably expect, carbon-intensive lock-ins are much more frequent (82%) than carbon decoupling

outcomes (18%).18 Moreover, we find that the most of (90%) of carbon lock-ins take place fast, i.e.

18In no Monte Carlo runs the share of renewable energy continues to fluctuate in way that does not allow categorization
in one of the two types of equilibrium patterns.
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Table 5: Likelihood of transition in the baseline configuration and main features of the different
endogenous scenarios.

Stat. Eq. I: Carbon intensive lock-in Stat. Eq. II:Transition-to green

Likelihood 82% 18%

before 2025 after 2025 before 2075 after 2075

90% 10% 91% 9%

Output growth 3.16% 3.14% 3.20% 3.18%
(0.001) (0.002) (0.001) (0.004)

Unemployment 11.4% 12.1% 9.12% 10.0%
(0.016) (0.020) (0.019) (0.012)

Emission growth 1.22% 1.25% 0.77% 0.96%
(0.001) (0.002) (0.001) (0.002)

Emissions at 2100 28.64 30.12 18.22 23.13

(1.761) (2.237) (1.52) (2.172)
Temperature at 2100 4.59 4.91 1.75 2.68

(0.103) (0.178) (0.123) (0.153)

Note: all values refer to the average computed on the sub-sample of runs from a Monte Carlo of size 200 that are classified in each
scenario. Standard errors are reported below each coefficient in parenthesis.

before 2025. A similar feature characterizes the transition to the sustainable scenario: when green

technologies start to diffuse and reach some critical mass, their relative share with respect to dirty

ones suddenly increases and they saturate the market, showing a typical S-shaped diffusion curve.

Such results stems from the large investment outlays required to build renewable energy plants (in

line with empirical evidence, see e.g. EIA, 2013). Moreover, a growing penetration of renewables

causes a merit order effect whereby fossil-fuel plants are crowded out and the average electricity

price falls (see various contributions from de Miera et al., 2008). In turn, unit production costs of

capital- and consumption-good firms decline (see also Appendix A), leaving larger cash flows for

investments in R%D and new green production capacity.

Our findings suggest that transition to green energy production ought to be timely in order to

achieve sustainable growth with temperature projections below the +2 degree threshold at the end

of the century. More specifically, simulation results show that transition should take place before

2030 to meet the +2 degree target and that temperature will likely rise above +3 degrees if the switch

to green energy production occurs after 2075 (cf. Table 5). At the same time, economic growth is

higher and unemployment rate is lower in carbon decoupling outcomes vis-à-vis fossil fuel lock-

ins. Such results find in line with recent empirical evidence showing that investments in renewable

energies creates substantially more jobs than in fossil fuels (Garrett-Peltier, 2017). Transitions to-

ward sustainable growth trajectories could thus lead to win-win outcomes characterized by lower

temperature and higher economic growth. However, the foregoing results do not account for the

possible feedback effects from climate change to the economy. Let us study whether they are robust

in presence of climate-change shocks hitting the economy.

5.2 Climate impacts and green transition

In the previous sections we have voluntarily excluded climate change shocks from the picture. This

allowed to explore the properties of the model in absence of damages, while keeping consistency
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Table 6: Likelihood of transition, economic performances and emissions under the different climate
shock scenarios. Aggregate shocks use the damage function in Nordhaus and Sztorc (2013) and
target aggregate output. Labour productivity and energy efficiency shocks hit individual firms.

Shock scenario: Transition likelihood Output growth Energy growth Emissions at 2100

Aggregate output 18% 3.18% 3.09% 28.33

(of which 83% before 2025) (0.001) (0.003) (6.431)
Labour productivity 20%* 1.51%* 1.16%* 25.70*

(of which 69% before 2025) (0.002) (0.003) (4.921)
Energy efficiency 7%* 3.02% 3.37%* 40.64*

(of which 43% before 2025) (0.003) (0.003) (3.872)

Note: all values refer to the average computed from a Monte Carlo of size 200. Standard errors are reported below each coefficient
in parenthesis. * indicates a statistically significant (0.05 level) difference with respect to the Aggregate output scenario; tests for
transition likelihoods are carried out via bootstrapping.

with the macro agent based and system dynamics literature on transitions (e.g. Safarzynska and

van den Bergh, 2011; Ponta et al., 2016; see section 2 for details). However, as moving away from

fossil fuels and developing low carbon energy capacity can take time (in our simulation the average

time is around 40 years, consistent with the discussion in Markard et al., 2012), climate change is

likely to exert significant effects on the transition (IPCC, 2014; Schleussner et al., 2016; Springmann

et al., 2017), especially in absence of corrective policies. Here we present results from a series of

computational exercises that investigate the impact of micro-level climate damages (see section 3.3)

on the likelihood and feature of transitions to low carbon energy sources.

We model climate damages across three scenarios:

• Aggregate shocks on GDP as in traditional IAMs (Nordhaus and Sztorc, 2013; Nordhaus, 2014).

• Micro labour productivity (LP) shocks. Labor productivity (AL
i,τ and BL

i,τ, see Appendix A) falls by

a factor that varies across firms, as climate change negatively impacts on workers’ operational

and cognitive tasks (see Seppanen et al., 2003, 2006; Somanathan et al., 2014; Adhvaryu et al.,

2014.

• Micro energy efficiency (EF) shocks. Firm-level energy efficiency (AEE
i,τ and BEE

i,τ , see Appendix A)

is reduced as climate shocks increase energy requirements in production activities (e.g. more

stringent needs of cooling in response to higher temperatures and of heating in response to

weather extremes, or partially ruined machines in response to natural disasters; see Auffham-

mer and Aroonruengsawat, 2011; Auffhammer and Mansur, 2014; Jaglom et al., 2014).

. While in the aggregate shocks case we adopt the damage function proposed in Nordhaus and Sztorc

(2013), in the two remaining scenarios we employ the bottom-up approach described in section

3.3. In that, heterogeneous climate shocks hitting firms are drawn from a Beta distribution whose

first and second moments closely follows the quadratic behaviour assumed in DICE and in a large

part of the literature. Indeed, we account both for damages triggered by increases in temperature

levels and variability. To provide an insight, equations 21 and 22 imply that the average individual

climate shock would size about 1.46% for a temperature anomaly of 2 degrees, which becomes

3.69% at 3 degrees and 6.7% at 4. Table 6 collects the results of our comparison across the three

impact scenarios.

Simulation results show that the likelihood of transitions towards green growth depends on

how climate damages are modelled. In the standard aggregate perspective commonly adopted
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by the majority of IAMs (Table 6, upper row), the likelihood of transition is invariant to climate

damages as shocks affect only aggregate potential output. However, when one assumes that the

occurrence and magnitude of micro climate damages affects agents heterogeneously, the probability

of achieving a sustainable, low emission growth pattern depends on the dynamics of climate change

(cf. Table 6, middle and lower row). More specifically, shocks to labour productivity might increase

the likelihood of transitions (20% vs. 18% in the case of aggregate damages), while the opposite

happens for energy-efficiency shocks (only a 7% likelihood).

Such results stem from the size of the final demand for energy and the role path dependence.

Indeed, if energy efficiency is reduced by climate shocks, the energetic needs to produce a given ag-

gregate output will increase, thereby inducing the energy industry to adapt its generation capacity.

Since fossil-fuel technologies start with a lower lifetime production cost, expansionary investment

will favour such a technological trajectory.19 Dynamically, this leads to a much larger spending in

R&D activities aimed at improving the efficiency of brown plants, which creates a vicious cycles im-

peding the shift to low carbon technologies. This phenomenon turns out to dominate the dynamics,

notwithstanding the penalizing effect the merit order market mechanisms exerts on brown plants.

By a similar token, shocks to labour productivity induce an increasingly sharp contraction in

industrial production, wages and final demand (notice the low growth rate of output in Table 6, see

also Lamperti et al., 2018b for additional details). In presence of merit order activation protocol,

the lower energy demand will induce an increase in the share of green plants’ production in the

energy mix, which will further stimulates green R&D and improves the competitiveness of low

carbon technologies. When such technologies catch-up their initial backwardness, the transition

start to take place and, further self-sustains, as the marginal cost of green plants remains below the

one of the brown counterparts, making them operating at increasing under-capacity.20 At the end

of their lifetime, un-activated brown plants will be replaced by green energy generation units, thus

sustaining the transition.

5.3 Climate policy and green transition

Given the presence of substantial and heterogenous climate impacts, what is the role of climate

policies in triggering and sustaining the transition to renewable energy sources? The last battery

of simulations exercises will reply to this question. In particular, we will focus on price-related

instruments, which modify the cost of fossil fuels and, in turns, the relative cost-competitiveness of

green vs. brown technologies. In that, we study the imposition of an implicit carbon tax (Martin

et al., 2014).21

In the following experiments, we assign different values to the parameter, θ, which modifies the

price of fossil fuels and, in turns, the relative lifetime and production costs of brown energy plants.

In particular, the unitary production cost of a fossil-fuel plant of vintage τ can be written as

cde(τ, t) =
p f + θ

Aτ
de

. (24)

Then, the lifetime total cost of a brown plant, LCde(t), is obtained, under the assumption that

19See also Acemoglu et al. (2012) and Aghion et al. (2015) on this point.
20This findings are in line with the results in Van Der Ploeg and Withagen (2012) and Ploeg and Withagen (2014).
21Note that a good portion of climate policies is ultimately representable through the policy effect on energy prices,

which reflect the cost-structure of energy generation (Marin et al., 2017).
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the plant is employed at full capacity for its entire life, by simply multiplying cde(τ, t) by be, which

represents the accountable life of the plant. On the green side (cf. section 3), unitary production costs

of renwable energy plants are virtually set to zero, while installation fixed costs are represented by

ICτ
ge, which is dynamically affected by innovations in the green technological trajectory. This implies

that the lifetime total cost of a green plant, LCge(t), is exactly equal to ICτ
ge. Our policy experiments

focus on the ratio LCde/LCge, which expresses the cost-advantage of dirty technologies. By varying

the parameter θ, we modify the relative cost-competitiveness of low carbon technologies: θ > 0

mimics a tax on fossil fuels or a subsidy toward investments in green energy technologies (e.g. a

sort of feed-in tariff increasing the expected profitability of a green investment), whereas θ < 0

captures fossil fuel subsidies, which are diffused policy instruments (Coady et al., 2017).22

We adopt the following simulation protocol: starting from the baseline configuration described

in section 4, where brown energy technologies have a 20% cost-advantage at the beginning of the

simulation23, and we modify θ through the whole simulation time (in line with policy exercises in

macro ABMs, c.f. e.g. Dosi et al., 2015; Popoyan et al., 2017; Ponta et al., 2016). Such experiments

are combined with the three climate-change impact scenario described in the previous sub-section

and, namely, aggregate shocks to GDP, micreconomic shocks to labour productivity and microeconomic

shocks to energy efficiency. Figures 4 - 6 summarize our main findings.

Simulation results show that price of fossil fuels influences the likelihood of transition in a

non-linear way (panels 4a, 5a and 6a). A policy-engineered increase in the cost-competitiveness

of green energy technologies can increase the likelihood of a transition, regardless of the type of

climate damage we assume. However, given the initially larger installed capacity of brown vis-á-vis

green plants (see Appendix B) and the cumulative nature of the technical change process, small

variations of the LCde
LCge

ratio have a remarkable low impact on inducing the transition. In presence

of sufficiently carbon tax and/or subsidies to green energy, the likelihood of achieving growth

decoupled from carbon emission improves substantially. Naturally, the transition to sustainable

growth is almost impossible in presence of subsidies to fossil-fuel energy plants. These results

suggest that energy policy interventions needs to be substantial in order to significantly affect the

environmental sustainability of the economy’s growth process. Moreover, policies ought to be timely

as path-dependence in the process of technological change (David, 1985; Arthur, 1994) deeply affect

the policy outcome.24

Further, we find that the effectiveness of policy interventions also depends on the type of climate

damage. As already documented in section 5.1 with respect to the likelihood of transition, policy

impact differs shifting from aggregate to individual climate damage scenarios. When shocks are

aggregate, consumers suffer the damage and reduce consumption, thereby cutting output levels

but leaving unaltered the production schedule for the next period. In that, aggregate shocks have

no memory and policy intervention is not affected by the shock. Things change when climate di-

rectly reduce productive abilities of firms. In particular, when climate change shocks affects labour

productivity, policies supporting green energy technologies are substantially more effective than in

the case of shocks targeting energy efficiency. Similarly to what discussed above, the size of final

demand matters. When aggregate demand is lower (see panels 4b, 5b and 6b), the economy is more

22Note that such policy experiments are akin to a variation of the price of fossil fuels in international markets.
23Such an initial setting is broadly consistent with the existing estimates and modeling assumptions for energy tech-

nologies. We refer the interested reader to the series of annual reports of the IEA (https://www.eia.gov/outlooks/aeo/)
and to Tidball et al. (2010) for information about costs of energy plants.

24For further readings on the role of path dependence in shaping the technological landscape, see e.g. Liebowitz and
Margolis (1995); Frenken and Nuvolari (2004); Castaldi and Dosi (2006) and, more recently, Dosi et al. (2017a).
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responsive to energy policies aimed at increasing the competitiveness of green technologies. On

the contrary, when climate change exerts its negative effects on plants’ efficiency, the final demand

of energy increases, and green plants face a comparative disadvantage in terms of R&D spend-

ing, which cuts the chances of observing a surge in green energy production. As a consequence,

stronger policies are required to support the transition, whose likelihood remains, however, remark-

ably low (17%) even when cost-advantage of brown plants is initially reduced to 1% by the policy

intervention. Climate damages increasing energy demand exacerbate the role of path-dependence

in the energy industry, pointing to the need for additional complementary policy instruments (e.g.

command-and-control; see Lamperti et al., 2015) to market-based incentives.25

6 Discussion and conclusions

Climate change can impact both the process of transition towards low-carbon energy systems and

the effectiveness of related policy interventions. In the paper, we have employed the DSK agent-

based integrated assessment model (Lamperti et al., 2018b) to study the shift from brown (fossi-fuel

based) to green (low-carbon) energy technologies and its macroeconomic implications in presence

of climate change.

We find that the model exhibits two statistical equilibria (a carbon intensive lock-in and a tran-

sition to green energy) characterized by different energy mix. Transitions from brown to a green

energy system might endogenously happen, but the likelihood of such events is exceptionally small

and it depends on exceptional technological breakthrough.26 Further, we found that climate change

can influence the likelihood of carbon decoupling according to the way climate damages are mod-

elled. When an aggregate and linear damage function is considered, as in the majority of general-

equilibrium IAMs, the likelihood of transition is invariant to climate shocks, which simply reduce

aggregate GDP. However, in presence of microeconomic climate damages, the probability of tran-

sition depends on the channels climate damages affect agents and firms. When climate shocks hit

labor productivity, economic growth is reduced, but the likelihood of transition to green energy is

higher. This result supports the idea that the economic environment is more responsive to climate

policy in times of crisis (Jaeger et al., 2011; Ekins et al., 2014), also in line with recent systematic

evaluations of the green stimulus programs implemented in the aftermath of the 2008 financial cri-

sis in the U.S. (Mundaca and Richter, 2015). On the other side, climate damages reducing energy

efficiency exacerbates the role of path-dependence in the energy industry, thereby increasing the

difficulty of the catch-up process of clean energy technology.

Of course, the climate damages emerging in the present paper are somewhat downwardly biased

by the fact our impact scenarios constraint shocks to a single variable (e.g. labour productivity

or energy efficiency). This is - however - a necessary condition to study how different impact

channels affect the macro-economy. Table 7 provides insights on the overall damage of climate

change, assuming that all impacts other than those studied in the scenarios can be represented by a

variable, labelled “environmental quality”, which deteriorates over time by a factor corresponding

to the average shock suffered by agents in that particular period (this is consistent with the similar

25As reported in Figure 6, in presence of energy efficiency shocks, GDP and emissions growth remains relatively
high with respect to the other two scenarios, as individual damages just decrease energy efficiency, whose aggregate,
macroeconomic effects are found to be limited (see the extensive discussion on macroeconomic impacts of climate change
in Lamperti et al., 2018b).

26See also Unruh (2002) for thoughtful discussion on escaping carbon lock-ins with and without supporting policy.
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Table 7: A simplified approach to welfare evaluation of climate damages in case of labour produc-
tivity and energy efficiency shocks. All values are relative to the case of no damages (a value of 100

would indicate identity with respect to the scenario where climate damages are not considered).
Welfare is proxied as a simple average of normalized GDP, employment rate and environmental
quality. Environmental quality degradation represents all dimensions of climate impacts other than
labour productivity and energy efficiency. Environmental quality is assumed to start at 100 and
decrease by a factor equal to the average climate shock suffered by agents in that period.

GDP Employment rate Environmental quality Well being index

Labour Productivity Shocks
2000-25 0.90 0.96 0.98 0.95

25-50 0.76 0.88 0.94 0.86

50-75 0.47 0.71 0.90 0.69

75-2100 0.21 0.48 0.84 0.51

Energy Efficiency Shocks
2000-25 0.96 0.99 0.98 0.98

25-50 0.88 0.99 0.94 0.94

50-75 0.87 0.93 0.90 0.90

75-2100 0.84 0.92 0.84 0.87

Note: all values refer to the average computed from a Monte Carlo of size 200.

shape damage functions show in different sectors, see Hsiang et al., 2017). Results show that in both

our scenarios climate damages are substantial. For example, using a simplistic “welfare” measure

averaging GDP level, employment share and environmental quality (all conveniently normalized),

climate change would reduce well-being by 49% in the labour productivity shock scenario and 13%

in the energy efficiency shock scenario, pointing to the need of an early green transition whatever

the impact channel might actually be.

Our findings have both theoretical and policy implications. From a modelling perspective, the

traditional way of representing damages in the climate economics literature in terms of GDP losses

oversimplifies the effects of climate change in a complex economic system, hiding the role of cli-

mate impacts in fostering a carbon lock-in or in favoring a transition to sustainable energy. As

a consequence, policies supporting the transition to sustainable growth fueled by green energy

should careful consider the possible different channels through which climate damages affect the

economy. Indeed, we find that the effectiveness of policies measures depends on the impact chan-

nel of climate change and that, in general terms, policies constructed around monetary incentive

often produce limited results in fostering a transition whose likelihood reduces over time due to

path dependence in technological change. Such results point to the necessity of rapidly taking into

consideration complementary policy instruments to market-based incentives and carbon taxes of a

deemed optimal size (see also Unruh, 2002; Aznar-Mrquez and Ruiz-Tamarit, 2016): regulation and

adequate monitoring are often much more effective than other tools (Lamperti et al., 2015; Shapiro

and Walker, 2015). Finally, one of the future developments of our model envisions the inclusion of

financial actors shaping the investment-incentive landscape for different energy technologies, and

points to the analysis of credit policies in addition to fiscal and regulatory initiatives as a necessary

step forward in the study of green transitions.27

27The interested reader might want to look at Linnenluecke et al. (2016) for a research agenda on environmental finance.
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Figure 4: Likelihood of transition, average output and emissions growth under different policy
strengths and aggregate climate damages as in (Nordhaus and Sztorc, 2013). LCde/LCge represents
the relative cost-advantage of brown energy technologies at the beginning of the simulation; 20% is
the baseline. MC of size 200 is used, shaded area represents 90% percentile interval.
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Figure 5: Likelihood of transition, average output and emissions growth under different policy
strengths and individual climate damages targeting labour productivity. LCde/LCge represents the
relative cost-advantage of brown energy technologies at the beginning of the simulation; 20% is the
baseline. MC of size 200 is used, shaded area represents 90% percentile interval.
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Figure 6: Likelihood of transition, average output and emissions growth under different policy
strengths and individual climate damages targeting energy efficiency. LCde/LCge represents the
relative cost-advantage of brown energy technologies at the beginning of the simulation; 20% is the
baseline. MC of size 200 is used, shaded area represents 90% percentile interval.
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A Appendix - Model details

The capital good industry

Capital-good firms’ technology is defined by a set of six firm-specific coefficients composed by Ak
i,τ with

k = {L, EE, EF}, which represent the technical features of the machine produced, and Bk
i,τ , which represent

the features of the production technique employed by firm i, with τ being the technology vintage. Firms
define their price by applying a fixed mark-up (µ1 > 0) on their unit cost of production defined by the
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nominal wage, nominal cost of energy, labour productivity, energy efficiency and, eventually, a carbon tax.
Capital-good firms can increase both their process and product technology levels via (costly) innovation and
imitation. Indeed, R&D expenditures, defined in each period as a fraction of past sales are split between both
activities according to the parameter ξ ∈ [0, 1].

The innovation process has two steps: first a random draw from a Bernoulli distribution with parameter

ϑin
i (t) = 1 − exp−ς1 INNOVi(t) determines whether firm i innovates or not, with 0 ≤ ς1 ≤ 1. Note that higher

amounts of R&D expenditures allocated to innovation, INNOVi(t), increase the probability to innovate. If
an innovation occurs, the firm draws the new technology whose main features are described by equations
(??), (??) and (??) in section ??. The imitation process is similarly performed in two steps. A Bernoulli draw

(ϑim
i (t) = 1 − exp−ς2 IMITi(t)) defines access to imitation given the imitation expenditures, IMITi(t), with

0 ≤ ς2 ≤ 1. In the second stage, a competitor technology is imitated, based on an imitation probability
which decreases in the technological distance (computed adopting Euclidean metrics) between every pair of
firms. Note that the innovative and imitation processes are not always successful as the newly discovered
technology might not outperform firm i’s current vintage. The comparison between the new and incumbent
generations of machines is made taking into account both price and efficiency, as specified by equation (??).
Next, capital-good firms advertise their machine’s price and productivity by sending a “brochure” to potential
customers (both to historical clients, HCi(t), and to a random sample of potential new customers, NCi(t)

28

consumption-good firms thus have access to imperfect information about the available machines.

The consumption good industry

Consumption-good firms produce a homogeneous good using two types of inputs (labor and capital) with
constant returns to scale. The desired level of production Qd

j depends upon adaptive expectations De
j =

f [Dj(t − 1), Dj(t − 2), ..., Dj(t − h)], desired inventories (Nd
j ), and the actual stock of inventories (Nj):

Qj(t)
d = De

j (t) + Nd
j (t)− Nj(t), (25)

where Nj(t) = ιDe
j (t), ι ∈ [0, 1].

Consumption-good firms’ production is limited by their capital stock (Kj(t)). Given the desired level of

production firms evaluate their desired capital stock (Kd), which, in case it is higher than their current one,
calls for desired expansionary investment (EId):29

EId
j (t) = Kd

j (t)− Kj(t). (26)

Each firms’ stock of capital is made of a set of different vintages of machines with heterogeneous pro-
ductivity. As time passes by, machines are scrapped according to (??) . Total replacement investment is then
computed at firm level as the number of scrapped machines satisfying the previous condition, and those
with age above η periods, η > 0. Firms compute the average productivity of their capital stock, the unit cost
of production, and set prices by applying a variable mark-up on unit costs of production as expressed by
equation (??). Consumers have imperfect information regarding the final product (see Rotemberg, 2008 , for
a survey on consumers’ imperfect price knowledge) which prevents them from instantaneously switching to
the most competitive producer. Still, a firm’s competitiveness (Ej(t)) is directly determined by its price, but
also by the amount of past unfilled demand lj(t):

Ej(t) = −ω1 pj(t)− ω2 Ij(t), (27)

where w1,2 ≥ 0.30 At the aggregate level, the average competitiveness of the consumption-good sector is
computed averaging the competitiveness of each consumption-good firm weighted by its past market share,
f j. Market shares are finally linked to their competitiveness through a “quasi” replicator dynamics:

f j(t) = f j,t−1

(

1 + χ
Ej(t)− Ēt

Ēt

)

, (28)

28The random sample of new customers is proportional to the size of HCi(t). In particular, NCi(t) = ΥHCi(t), with
0 ≤ Υ ≤ 1.

29In line with the empirical literature on firm investment behaviour (Doms and Dunne, 1998), firms’ expansion in
production capacity is limited by a fixed maximum threshold. Moreover, as described below, credit-constrained firms’
effective investment does not reach the desired level.

30Such unfilled demand is due to the difference between expected and actual demand. Firms set their production
according to the expected demand. If a firms is not able to satisfy the actual demand, its competitiveness is accordingly
reduced. On the contrary, if expected demand is higher than actual one, inventories accumulate.
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where χ > 0 and Ēt is the average competitiveness of the consumption good sector.

The banking industry, complements.

Our financial system is relatively stylized. We assume a banking sector composed by a unique commercial
bank (or multiple identical ones) that gathers deposits and provides credit to firms. In what follows, we first
describe how credit demand is calculated by each firm. Next, we discuss how total credit is determined by
the bank, and how credit is allocated to each firm.

The financial structure of firms matters (external funds are more expensive than internal ones) and firms
may be credit rationed. Consumption-good firms have to finance their investments as well as their production
and start by using their net worth. If the latter does not fully cover total production and investment costs,
firms borrow external funds from the bank. Total production and investment expenditures of firms must
therefore satisfy the following constraint

cj(t)Qj(t) + EIj(t)
d + RIj(t)

d ≤ NWj(t)
d + Debj(t)

d (29)

where cj(t)Qj(t) indicates total production costs, EIj(t)
d expansion investment, RIj(t)

d replacement in-
vestment, NWj(t) the net worth and Debj(t) is the credit demand by the firm. Firms have limited borrowing
capacity: the ratio between debt and sales cannot exceed a maximum threshold: the maximum credit demand
of each firm is limited by its past sales according to a loan-to-value ratio 0 ≤ λ ≤ +∞. The maximum credit
available in the economy is set through a credit multiplier rule. More precisely, in each period the bank is
allowed by the Central Bank to grant credit above the funds obtained through deposits from firms in the two
industries (and equal to firms’ past stock of liquid assets) according to a multiplier k > 0:

MTCt = k
N

∑
j=1

NWj,t−1. (30)

Since deposits are the only form of debt for the bank, k determines also the debt to asset ratio that should
be satisfied by the bank while providing credit. Such a total credit, which generates endogenous money,
is allocated to each firm in the consumption-good sector on a pecking order basis, according to the ratio
between net worth and sales. If the total credit available is insufficient to fulfill the demand of all the firms
in the pecking order list, some firms that are lower in the pecking order are credit rationed. Conversely, the
total demand for credit can also be lower than the total notional supply. In this case all credit demand of
firms is fulfilled and there are no credit-rationed firms. It follows that in any period the stock of loans of the
bank satisfies the following constraint:

N

∑
j=1

Debj(t) = Loan(t) ≤ MTCt. (31)

The profits of the bank are equal to interest rate receipts from redeemable loans and from interests on
reserves held at the Central Bank minus interests paid on deposits. Furthermore, the bank fixes its deposit
and loan rates applying respectively a mark-down and a mark-up on the Central Bank rate.

Consumption, wages, taxes and public expenditures

The consumption of workers is linked to their wage. We assume that the wage rate, w(t) is determined by
institutional and market factors, with indexation mechanisms upon the inflation, average productivity, and
the unemployment rate:

w(t) = w(t − 1)

[

1 + ψ1
∆ĀB(t)

ĀB(t − 1)
+ ψ2

∆cpi(t)

cpi(t − 1)
+ ψ3

∆U(t)

U(t − 1)

]

, (32)

where ĀB indicates the average productivity in the economy, cpi is the consumer price index and, intu-
itively, U stands for unemployment rate.

The public sector levies taxes on firm profits and worker wages (or on profits only) and pays to un-
employed workers a subsidy, which corresponds to a fraction of the current market wage. In fact, taxes
and subsidies are the fiscal instruments that contribute to the aggregate demand management. All wages
and subsidies are consumed: the aggregate consumption (Ct) is the sum of income of both employed and
unemployed workers. We notice that consumption, in this model, does not directly entail production of
emissions. The model satisfies the standard national account identities: the sum of value added of capital-
and consumption-goods firms (Yt) equals their aggregate production since in our simplified economy there
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are no intermediate goods, and that in turn coincides with the sum of aggregate consumption, investment
(It = EIt + RIt) and change in inventories (∆N):

∑
i=1

Qi(t) + ∑
j

Qj(t) = Yt ≡ Ct + It + ∆N. (33)

Climate module: carbon cycle and time-line of events

As in Goudriaan and Ketner (1984) and Oeschger et al. (1975), our carbon cycle is modeled as a one-
dimensional compartment box. Atmospheric CO2 evolve according to anthropogenic emissions and oceans
and biomass intakes.

Terrestrial net primary production (NPP), grows with CO2 stocks (Wullschleger et al., 1995) and is nega-
tively affected by rising temperatures:

NPP(t) = NPP(0)

(

1 + βC log
Ca(t)

Ca(0)

)

(1 − βT1
Tm(t − 1)) (34)

where Ca(t) represent the stock of carbon in the atmosphere, Tm is the increase in mean surface temperature
from the pre-industrial level (corresponding to t = 0), βC is the strength of the CO2 fertilization feedback
(Allen, 1990; Allen and Amthor, 1995; Matthews, 2007), and βT1

captures the magnitude of the temperature
effect on NPP. In line with the recent findings of Zhao and Running (2010), we model a negative effect of
global warming on NPP as in Sterman et al. (2012). This constitutes the first positive climate-carbon feedback
in our model.31

The concentration of carbon in the atmosphere depends also on the structure of exchanges with the
oceans. The latter are represented by a two-layer eddy diffusion box which simplifies Oeschger et al. (1975).32

The equilibrium concentration of carbon in the mixed layer, Cm, depends on the atmospheric concentration
and the buffering effect in the oceans created by carbonate chemistry:

Cm(t) = C∗
m(t)

[

Ca(t)

Ca(0)

]
1

ξ(t)

(35)

where C∗
m is the reference carbon concentration in the mixed layer, Ca(t) and Ca(0) are the concentrations

of atmospheric carbon at time t and at the initial point of the simulation, and ξ(t) is the buffer (or Revelle)
factor.33 The Revelle rises with atmospheric CO2 (Goudriaan and Ketner, 1984; Rotmans, 1990) implying that
the oceans’ marginal capacity to uptake carbon fall as its concentration in the atmosphere increases. Moreover,
rising temperatures also reduces seawater solubility of CO2 (Fung, 1993; Sarmiento et al., 1998), introducing
another climate-carbon cycle positive feedback which accelerate climate change by reducing C∗

m (Cox et al.,
2000). Finally, CO2 is gradually transferred from the mixed to the deep layer of the oceans according to a
speed that varies with the relative concentration of carbon in the two layers.

The flux of carbon though atmosphere, biosphere and oceans affects the heat transfer across the system
and, hence, the dynamics of Earth surface mean temperature. Such a relationship is modelled through
equations (18) and (19) in the main text, and mediated by the accumulation of carbon leads to global warming
through increasing radiative forcing according to a logarithmic relationship:

FCO2
(t) = γ log

(

Ca(t)

Ca(0)

)

. (36)

Equation (36) represents the main link between anthropogenic emissions, which contribute to increase the
concentration of carbon in the atmosphere at any period, and climate change, which is induced by the
radiative forcing of atmospheric GHGs. On the other side, global warming exerts two important feedbacks
on the dynamics of carbon, affecting its exchanges with the biosphere and the oceans.

31Even if the role of climate change on biosphere’s carbon uptake of is still object of debate (Shaver et al., 2000; Chiang
et al., 2008; IPCC, 2001, ch. 3), the recent IPCC (2007a) provides evidences of stronger positive climate-carbon cycle
feedbacks.

32In particular, it is composed by a 100 meters mixed layer (which constitutes upper oceans) and a deep layer of 3700

meters for an average total depth of 3800 meters. Our representation of the oceans resembles that in Nordhaus (1992).
33The Revelle factor (Revelle and Suess, 1957) expresses the absorption resistance of atmospheric carbon dioxide by the

ocean surface layer. The capacity of the ocean waters to take up surplus CO2 is inversely proportional to its value.
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B Appendix - Parameters’ value

Table 8: Main parameters and initial conditions in the economic system. For previous parametriza-
tion of some sub-portions of the model and for model sensitivity to key parameters see Dosi et al.
(2006, 2010, 2013).

Description Symbol Value

Monte Carlo replications MC 200

Time sample in economic system T 400

Time sample in climate system T 400

Number of firms in capital-good industry F1 50

Number of firms in consumption-good industry F2 200

Capital-good firms’ mark-up µ1 0.04

Consumption-good firm initial mark-up µ̄0 0.28

Energy monopolist’ mark-up µe 0.01

Uniform distribution supports [ϕ1, ϕ2] [0.10, 0.90]
Wage setting ∆ĀB weight ψ1 1

Wage setting ∆cpi weight ψ2 0

Wage setting ∆U weight ψ3 0

R&D investment propensity (industrial) ν 0.04

R&D allocation to innovative search ξ 0.5
Firm search capabilities parameters ζ1,2 0.3
R&D investment propensity (energy) ξe 0.01

Share of energy sales spent in R&D ve 0.01

Beta distribution parameters (innovation) (α1, β1) (3, 3)
Beta distribution support (innovation) [χ1, χ̄1] [−0.15, 0.15]
New customer sample parameter ω̄ 0.5
Desired inventories l 0.1
Physical scrapping age (industrial) η 20

Physical scrapping age (energy) ηe 80

Payback period (industrial) b 3

Payback period (energy) be 10

Initial (2000) share of green energy 0.1
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Table 9: Climate box main parameters and initial conditions.

Parameter Symbol Value Unit of Measurement Source

Preindustrial Global Mean Surface Temp. Tpre 14 degree Celsius Sterman et al. (2013)
Preindustrial carbon in the ocean (per meter) 10.237 GtonC Sterman et al. (2013)
Preindustrial reference CO2 in atmosphere Ca0 590 GtonC Sterman et al. (2013)
Preindustrial Net Primary Production NPPpre 85.177 GtonC/year Goudriaan and Ketner (1984)
Initial carbon in the atmosphere 830.000 GtonC Nordhaus and Sztorc (2013)
Initial carbon in deep oceans 10,010.000 GtonC Nordhaus and Sztorc (2013)
Initial temperature in atmosphere T0 14.800 degree Celsius Nordhaus and Sztorc (2013)
Response of primary production to carbon conc. βC 1 Dmnl Goudriaan and Ketner (1984)
Reference buffer factor revelle 9.7 Dmnl Goudriaan and Ketner (1984)
Index for response of buffer factor to carbon conc. deltaC 3.92 Dmnl Goudriaan and Ketner (1984)
Eddy diffusion coefficient for circulation in oceans deddy 1 Dmnl Oeschger et al. (1975)
Mixed oceans depth dmixed 100 m Oeschger et al. (1975)
Deep oceans depth ddeep 3500 m Sterman et al. (2013)
Sensitivity of carbon uptake to temperature by land βTC -0.01 1/degree Celsius Friedlingstein et al. (2006)
Sensitivity of carbon uptake to temperature βT 0.003 1/degree Celsius Friedlingstein et al. (2006)
Diffusion for atmospheric temperature equation c1 0.098 Nordhaus and Sztorc (2013)
Equilibrium climate sensitivity λ 2.9 degree Celsius Nordhaus and Sztorc (2013)
Diffusion in deep oceans temp. equation c3 0.088 Nordhaus and Sztorc (2013)
Sensitivity of atmospheric temp. to deep ocean temp. c4 0.025 Nordhaus and Sztorc (2013)
Radiative forcing coefficient γ 5.35 W/m2 Sterman et al. (2013)
GtC to GtCO2 conversion factor 3.67 IPCC (2001)

Climate Shocks

Sensitivity to location a0 4 authors
Sensitivity to scale b0 100 authors
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C Appendix - Tests for statistical equilibrium and ergodicity

This section largely draws on Guerini and Moneta (2017). Assume that a simulation model is used to produce
synthetic series Xk for a set of variables k = 1, ..., K. In particular M Monte Carlo realizations, each of length
T simulation periods are collected. Then, one can test that the series, or a transformation of them, have
distributional properties that are time-independent; and that they are, ergodic, meaning that the stochastic
process underlying the observed time series can be treated as a random sample. These two assumptions can
be tested through a simple procedure. Indeed if we consider all the M time series realization of a variable k of
interest we will collect a matrix with dimensions M× T containing all the observations Xm

k,t, where m indicates

the number of the MC run and t the simulation time. We here define ensembles all the possible column vectors
of such a matrix; therefore, each of these vectors contains the M observations Xm

k,· with m = 1, ..., M, in which

the time dimension is fixed; we instead define samples all the possible row vectors of such a matrix, each
of which contains the T observations Y·

k,t with t = 1, ..., T in which the Monte Carlo dimension is fixed.

Hence, denoting by Ft(Xk) the empirical cumulative distribution function of an ensemble and by Fm(Xk) the
empirical cumulative distribution function of a sample, testing for statistical equilibrium and for ergodicity
reduces to test respectively for the following conditions using the Kolmogorov-Smirnov statistic:

Fi(Xk) = Fj(Xk) ∀i, j ∈ {1, ..., T} (37)

Fh(Xk) = Fg(Xk) ∀h ∈ {1, ..., T}, g ∈ {1, ..., M}. (38)

Therefore, we performed two kind of tests as represented in Figure 7: we recursively run tests of pairwise
equality of distributions and we presented the percentage of non-rejection of such tests. Rejecting the test
would imply that the distributions under investigation are different one from the other. For the model to
be in an ergodic statistical equilibrium, we need to have high percentages of non-rejection, meaning that we
cannot distinguish between distributions. In case this is not verified, MC runs can be clustered and, then, the
same procedure will be applied to any cluster. If we register high percentages of non-rejection within each
cluster we can claim these clusters represent multiple statistical equilibria. Finally, if some summary statistics
of model behaviour exhibit distributions that are statistically different across clusters, we claim that statistical
equilibria are truly different one from the other.

Figure 7: Diagram showing the elements of comparison when testing for statistical equilibrium (left)
and for ergodicity (right). Source: Guerini and Moneta (2017).
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