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Abstract

We propose a statistical identification procedure for recursive structural vector autoregressive

(VAR) models that present a nonlinear dependence (at least) at the contemporaneous level. By

applying and adapting results from the literature on causal discovery with continuous additive

noise models, we show that, under certain conditions, a large class of structural VAR models

is identifiable. We spell out these specific conditions and propose a scheme for the estimation

of structural impulse response functions in a nonlinear setting. We assess the performance of

this scheme in a simulation experiment. Finally, we apply it in a study on the effects of the

macroeconomic shocks that propagate through the economy, allowing for asymmetry between

responses from positive and negative impulses.
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1 Introduction

Since the seminal work of Reiersøl (1950), the econometric literature has made clear that linear

additive noise models with Gaussian and spherical errors are not identifiable unless a priori re-

strictions or external instruments are employed. Structural vector autoregressive (VAR) models,

widely used in empirical macroeconomic research since Sims (1980), share the same problem of

identification. This has been addressed by relying on constraints derived from economic theory

(i.e., short-run, long-run, and sign restrictions, as pioneered, respectively, by Sims, 1980, Blan-

chard and Quah, 1989, and Faust, 1998), by using external instruments (from Romer and Romer,

1989 to Montiel Olea et al., 2021), or, alternatively, by exploiting specific statistical properties of

the data that are at odds with the standard model.

This paper contributes to the statistical identification approach. As regards this approach, one

finds two strands of the structural VAR literature. One of them exploits non-Gaussianity of the

errors, the other exploits heteroskedasticity. In common, they have the use of higher moments

for identification (Montiel Olea et al., 2022; Herwartz et al., 2022). This is possible thanks to the

introduction of assumptions that depart from the standard model. In this contribution, we want to

show that another swerve from the linear model with spherical-normal errors can be exploited for

the identification of structural VAR models, namely nonlinearity.

Identification by non-Gaussianity is achieved by the application of ideas and techniques devel-

oped in the literature on Independent Component Analysis (ICA), a research field that emerged at

the intersection of statistics with signal processing (Comon, 1994; Hyvärinen et al., 2001). Stud-

ies in the machine learning literature have shown that ICA can be used for causal inference, and

more specifically, for the identification of linear structural equation models, under the assumption

of noise independence and non-Gaussianity, as well as the presence of a recursive (i.e. acyclic)

structure among the variables (see, e.g., Shimizu et al., 2006, 2011; Hyvärinen, 2013). Moneta

et al. (2013) have applied some of these techniques to structural VAR analysis. The structural

VAR-ICA literature has been rapidly growing in the recent years, with contributions by Lanne and

Lütkepohl (2010); Lanne et al. (2017); Gouriéroux et al. (2017); Herwartz (2018); Fiorentini and

Sentana (2023), among others. It is important to note that the recursiveness assumption has been

abandoned in these studies so that the impact matrix of the shocks is identified up to the post-

multiplication of a generalized permutation matrix, which means, in practice, that one is able to

label the shocks only after involving ex post some form of economic reasoning, jointly with an in-

spection, for instance, of the obtained impulse response functions. Recent studies have also relaxed

the independence assumption but maintaining non-Gaussianity and use of higher moments (Lanne

and Luoto, 2021; Guay, 2021; Mesters and Zwiernik, 2022). Identification by heteroskedasticity

was pioneered by Sentana and Fiorentini (2001) and further pursued by Rigobon (2003); Lanne

and Lütkepohl (2008); Sims (2020); Brunnermeier et al. (2021); Lewis (2021), among others.1

1Identification by heteroskedasticity is a “higher-moment” procedure in the sense of using information from condi-

tional (instead of unconditional) second moments (Montiel Olea et al., 2021), but its underlying model is not, differently

from the ICA model, part of the general class of models we consider in this paper.
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We claim that nonlinearity, analogously to non-Gaussianity and heteroskedasticity, can be ex-

ploited for (recursive) structural VAR identification. This idea has been much less explored in the

econometric literature and we believe that it is important to trigger a novel discussion on this. We

put forth this idea by — similarly to what has been done in the VAR-ICA approach — import-

ing techniques from the machine learning literature on causal discovery (see the review by Peters

et al., 2017) and by presenting a class of autoregressive processes in which it is possible to recover

structural shocks (without any problem of labelling) and their dynamic effects on variables of in-

terests directly from the data. In tune with the causal discovery literature, we frame the problem

of identifying structural shocks and their contemporaneous impacts in a structural VAR model as

a particular case of the general problem of learning a causal structure (which can be usefully rep-

resented by a graph) from an observational joint distribution. Hoyer et al. (2008) and Peters et al.

(2014) have shown that if the observational distribution follows a structural equation model with

an additive noise structure, then the causal graph becomes identifiable from the distribution under

specific assumptions. Peters et al. (2014) have also provided practical algorithms to retrieve the

causal structure from finite samples.

It is noteworthy that, in the causal discovery framework we introduce, identification by non-

Gaussianity and identification by nonlinearity are nested within the general framework of causal

discovery with additive noise models. In the first case the key assumptions are, as noted above,

shocks’ non-Gaussianity plus independence, while in the second case nonlinearity in the shock

transmission mechanism plus (again) independence. A related contribution of this paper is to

shed light on the connection between these two related identification methods. Furthermore, we

spell out the conditions that allow identification where the underlying model is a VAR process

with nonlinear dependence at the contemporaneous level. Such a process may or may not show

nonlinearities in the autoregressive structure, but the functional autoregressive form is not key for

identification. Similarly to the first wave of applications of ICA to VAR analysis (Moneta et al.,

2013; Guerini and Moneta, 2017), however, the recursiveness assumption is here required.

We also provide a practical scheme (two algorithms) to recover the structure linking shocks to

(reduced-form) VAR innovations and, on the basis of this, to estimate nonlinear structural impulse

response functions from time series data. Apart from the role it plays in identification, there are

many empirical cases in which the presence of nonlinearity in the processes underlying observed

data should not be underestimated. As Ramey (2016) points out, “positive shocks might have

different effects from negative shocks, effects might not be proportional to the size of the shock,

or the effect of a shock might depend on the state of the economy when the shock hits.”

In the next section we present the model set up and the identification methodology, which

includes both theoretical results and practical algorithms. In section 3 we present the results of a

simulation study. Section 4 presents an empirical application. Section 5 concludes.
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2 Identification methodology

In this section, we present our method to achieve statistical identification of a specific class of

VAR models, namely VAR models with generic time dependence and nonlinear but recursive

contemporaneous causal structure.

In section 2.1, we introduce this class of models, which we call generalized VAR models

with additive noise innovations. This class of VAR models is characterised by a recursive causal

structure among innovation terms, which can be represented by a directed acyclic graph (DAG).

Recovering such causal structure is key for identification, since it allows transforming the reduced-

form model into a structural model with independent shocks. In section 2.2, we define and discuss

the concept of identification used in this framework.

In section 2.3, we show that the contemporaneous recursive structure among the innovation

terms can be recovered by exploiting nonlinearity. In section 2.4, we present an algorithm which

infers such structure from estimated reduced-form VAR innovations. In section 2.5, we introduce

an algorithm to estimate structural impulse response functions. Theoretical results related to the

consistency of the procedure are referred to and discussed in Appendix B.

2.1 Model setup

We consider here a general class of VAR models (see, e.g., the nonlinear structural VAR models

in Kilian and Lütkepohl, 2017, ch. 18), in which a vector of K time series variables yt depends on

its lags with an additive vector of disturbances ut:

yt = Ft(yt−1, . . . , yt−L) + ut, (1)

where Ft(·) is a generic (possibly time dependent) nonlinear or linear function, and ut is a zero-

mean i.i.d. vector of innovations terms and depends only on contemporaneous structural shocks

εt,1, . . . , εt,K :

ut = G(εt) (2)

We assume that equation (2), for an appropriate ordering of the variables yt = (yt,1, . . . , yt,K),

can be written as:

ut,k = ϕk(ut,k) + εt,k, for k = 1, . . . ,K (3)

where ut,k is a subset of the variables ut,1, . . . , ut,k−1, and ϕk(∅) = 0. In other words, ut can

be arranged in a recursive order. We also assume that εt,1, . . . , εt,K are cross-sectionally mutual

independent and that each εt,i (i = 1, . . . ,K) is i.i.d.. Henceforth, we will refer to the model

as formalized in equations (1-3) as the generalized VAR with additive noise innovation model

(GVAR-ANIM).

Equations (1) - (2) can be seen as a generalization of the standard-linear structural VAR model:
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yt =
L∑

ℓ=1

Aℓyt−ℓ + ut, (4)

where

ut = A0εt. (5)

If εt,1, . . . , εt,K are mutually independent and non-Gaussian, equation (5) is an ICA model and

the matrix A0 can be identified up to a post-multiplication of a generalized permutation matrix

(Eriksson and Koivunen, 2004; Gouriéroux et al., 2017). If, for any permutation matrix P , the

matrix PA−1
0 P T is lower triangular (i.e. A−1

0 is essentially triangular), under this assumption

the matrix A−1
0 is uniquely identified (Shimizu et al., 2006)2. We call the assumption on A−1

0

recursiveness assumption, since it imposes a recursive causal structure on the contemporaneous

variables of the structural VAR model: if this assumption is true, one can re-order the variables

entering in yt in a “Wold causal chain” (Wold, 1960), so that each variable yt,i causes yt,j and no

variable yt,j causes yt,i (i < j, for i, j in 1, . . . ,K).

If A−1
0 is essentially triangular, a convenient way to represent the ut from equation (5) is with

a directed acyclic graph (DAG) (see Spirtes et al., 2000; Pearl, 2009). Let us suppose, only for the

sake of illustration, that PA−1
0 P T is lower triangular for P = I and K = 3. Then we have this

system of structural equations between the innovation terms:





ut,1 = εt,1

ut,2 = α ut,1 + εt,2

ut,3 = β ut,1 + γ ut,2 + εt,3,

(6)

which is represented by the DAG in Figure 1.

ut,1 ut,2 ut,3

εt,1 εt,2 εt,3

Figure 1: Example of DAG between innovation terms.

If the true DAG were known, one would be able to put (just-identifying or over-identifying)

zero restrictions on A−1
0 and eventually to recover the independent shocks εt (Swanson and

Granger, 1997; Demiralp and Hoover, 2003; Moneta, 2008).

Knowing the causal structure is key for identification also in the general nonlinear case of

2Shimizu et al. (2006) prove identifiability of linear, non-Gaussian and recursive model (LiNGAM in their termi-

nology) using ICA and, specifically, the Darmois-Skitovich theorem (Comon, 1994, Theorem 11) (see also Peters et al.,

2017, Theorem 7.6).
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equations (1) - (2). Let us consider the following instance of equation (2), which we have assumed

that can be arranged in a recursive order with noises entering in an additive fashion:





ut,1 = εt,1

ut,2 = ϕ2(ut,1) + εt,2

ut,3 = ϕ3(ut,1, ut,2) + εt,3

(7)

The structure of equation (7) can also be represented by the DAG of Figure 1. Knowing the DAG,

or having a method that infers it, allows us to recover the shocks and the manner they impact

innovations from observed realizations of ut. This can be done in a recursive way. Suppose the

DAG in Figure 1 is true. Then, following equation (7), one can (i) assign εt,1 to ut,1; (ii) run

an adequate (e.g., nonparametric) regression of ut,2 on ut,1 and get εt,2 as residual; (iii) regress

ut,3 on ut,1 and ut,2 and get εt,3 as residual. In the next subsections, we will present a method to

recover the DAG that represents the causal structure at stake from estimates of ut in the GVAR-

ANIM framework, where nonlinearity (with additive noise) is the general case and linearity (with

non-Gaussian noise) is only a special case.

2.2 A note on identification

The concept of identification of linear structural VAR models hinges on the theory of identifi-

cation in parametric models (Rothenberg, 1971). In this framework, criteria for structural VAR

identification have been provided and discussed by Rubio-Ramirez et al. (2010) and Bacchiocchi

and Kitagawa (2022). The notion of identification involved in this paper relies on a general for-

mulation, encompassing both parametric and nonparametric models, that has been proposed by

Koopmans and Reiersøl (1950) and further developed by Roehrig (1988) (see Matzkin, 2007, for

a definition of identification in a purely nonparametric setting). In this general formulation, the

target of identification is not (necessarily) a set of parameter points, but, rather, a set of “charac-

teristics” C of a structure S = (f,Φ). A structure consists of a set f of relationships of interest

(“structural relationships”) between observed variables Y and latent variables V (f(Y, V ) = 0),

and a probability distribution on the latent variables Φ(V ). A structure implies a unique prob-

ability distribution Ψ on the observed variable Y . The set of possible structures are restricted

a priori by a model M, which is defined as a set of structures which share certain pre-defined

characteristics.

Definition (observational equivalence): Two structures inM are said to be observational equiva-

lent if they imply the same probability distribution Ψ for the observable variables Y (cf. Koopmans

and Reiersøl, 1950; Rothenberg, 1971).

Definition (identification): A structure S is identified inM if and only if there is no other S∗ ∈

M that is observational equivalent to S . A set of characteristics C(S) is identified in M if and

only if every structure S∗ ∈ M that is observational equivalent to S has the same characteristics

C(S) (cf. Roehrig, 1988, p.435).
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Thus, in our case, GVAR-ANIM, as defined in subsection 2.1 limits the set of possible struc-

tures to restricted characteristics that will be specified in subsection 2.3. The model is nonparamet-

ric in not imposing a parameterization of the functions Ft and G (equations 1 and 2). Therefore,

the characteristics that turn out to be identifiable in GVAR-ANIM are not parameter points, but

rather the recursive causal structure among the innovations, like the one displayed in equation (7).

2.3 Exploiting nonlinearity

The causal discovery principle that we exploit here was first introduced in the literature by Hoyer

et al. (2008). This can be seen as a generalization of the principle underlying causal inference in

the linear non-Gaussian case. Let us first show this case, starting from a two-variables model.

Consider a bivariate VAR model, whose vector of reduced-form residuals is ut = (ut,1, ut,2).

In the following, to improve readability, we drop the time-subscript t when it is evident from the

context and is not relevant, so that, for instance, u ≡ ut and ui ≡ ut,i. The following result was

proven by Peters et al. (2017, Theorem 4.2).

Theorem 13 Consider the following linear model:

u1 = αu2 + ε1, ε1 ⊥⊥ u2. (8)

Then there exists β ∈ R and a random variable ε2 such that

u2 = βu1 + ε2, ε2 ⊥⊥ u1 (9)

if and only if ε1 and u2 are Gaussian (where ⊥⊥ denotes statistical independence).

As a corollary of this theorem, it follows that in a bivariate linear structural VAR, as the one in

equation (4) but with K = 2 and non-Gaussian shocks, if ε1 is independent of u2, then equation

(8) is the true structural model and the causal structure can be represented by the DAG u2 −→ u1.

Shimizu et al. (2011) extend this result to a multivariate framework. But let us focus here on

another possible extension, namely the generalization of this result to the nonlinear case, under

the condition that we preserve the noise-additivity assumption. It turns out that, in the strictly

nonlinear case, Gaussianity does not preclude identification any longer. Following the terminology

by Peters et al. (2017, Definition 4.4), we introduce the additive noise model (ANM) property.

Definition (bivariate ANM): The joint distribution P (u) is said to admit a (bivariate) ANM from

ui to uj if, for any measurable function ϕj and a variable εj we have:

uj = ϕj(ui) + εj , εj ⊥⊥ ui (10)

Identifiability of a bivariate ANM is based on the following theorem proven by Hoyer et al. (2008,

Theorem 1) (see also Peters et al., 2014, 2017):

3The proof of this theorem hinges heavily on the Darmois-Skitovich Theorem (see Peters et al., 2017, Theorem 4.3).
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Theorem 2 Let us assume that P (u) admits an ANM from ui to uj and that εj and ui have strictly

positive densities P (εj), and P (ui), with ϕj , P (εj), and P (ui) three times differentiable. To

simplify notation, let f := ϕj , and ξ := logP (ui) and ν := logP (εj), skipping the arguments

uj − f(ui), ui and ui for ν, ξ and f and their derivatives, respectively. Consider the following

condition (see Peters et al., 2014, Condition 19).

Condition (C1): the triple (ϕj , P (ui), P (εj)) does not satisfy the following differential equa-

tion for all ui, uj with ν ′′(uj − f(ui))f
′(ui) 6= 0:

ξ′′′ = ξ′′(−
ν ′′′f ′

ν ′′
+

f ′′

f ′
)− 2ν ′′f ′′f ′ + ν ′f ′′′ +

ν ′ν ′′′f ′′f ′

ν ′′
−

ν ′(f ′′)2

f ′
, (11)

If condition C1 is satisfied, then a backward ANM from uj to ui, i.e. ui = ϕi(uj) + εi with

εi ⊥⊥ uj , is not admitted.

Remark. As shown by Hoyer et al. (2008), a “generic” triple (ϕj , P (ui), P (εj)) is expected

to satisfy condition C1. Zhang and Hyvärinen (2009) actually provide an exhaustive list of five

settings that admit an ANM in both the forward and backward direction, the most remarkable case

being the linear Gaussian case. Notice that if a joint distribution admits a (bivariate) ANM in one

direction (say from uj to ui), but not in the backward direction, the DAG representing the ANM

is identifiable (uj −→ ui).

Figure 2 shows results from an illustrative simulation (see also Peters et al., 2017), in which

data x and y are generated from a structural model y = βx + Ny, with x and Ny following a

uniform distribution, with x ⊥⊥ Ny. In the top left panel, we show the results of a linear regression

of y on x, whose residuals are plotted over x in the top right panel. It is easy to notice the lack of

dependence between such residuals and x. The bottom left panel show the regression with exactly

the same data, but performed in the opposite direction, namely we regress x on y. Residuals of

such regression are plotted over y (the covariate in the new regression) in the bottom right panel.

It is easy to note a (higher-order) statistical dependence. This asymmetry can also be detected in

the nonlinear generic case. Figure 3 shows results from another illustrative simulation in which

data x and y are generated from a structural model y = x3 + Ny, with x and Ny following a

normal distribution, with x ⊥⊥ Ny. In the top left panel, we show the results of kernel regression

of y on x, whose residuals are plotted over x in the top right panel. The lack of dependence

between such residuals and x is confirmed by a nonparametric independence test, specifically

the Hilbert-Schmidt Independence Criterion proposed by Gretton et al. (2007). The p-value for

the null hypothesis of independence between residuals and covariate is reported inside the plot.

Bottom left panel show the kernel regression with exactly the same data, but performed in the

opposite direction, namely we regress x on y. Residuals of such kernel regression are plotted

over y (the covariate in the new regression) in the bottom right panel. The p-value for the null

hypothesis of independence between residuals and covariate is reported inside the plot and clearly

suggests to reject independence.

Peters et al. (2014) proved that the identifiability result stated in Theorem 2 can be extended

from the bivariate to the multivariate case. First of all, the definition of ANM given above can be
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Figure 2: Illustration of the ANM principle with a sample generated from the linear model

y = βx + Ny with x and Ny independent and drawn from a uniform distribution. Left-side

panels: scatter plot of y on x with OLS regression line (red) corresponding to the ‘forward’ (true)

specification (top panel) and to the ‘backward’ specification (bottom panel). Right-side panels:

corresponding regression residuals are plotted with respect to their regressor values, either x (top

panel) or y (bottom panel).

straightforwardly extended.

Definition (multivariate ANM). We call a system of K structural recursive equations a (multi-

variate) ANM if it can be written as:

uk = ϕk(Pa(uk)) + εk for k in 1, . . . ,K, (12)

where ε1, . . . , εK are mutually independent. The set of variables Pa(uk), called parents of uk, is

defined as Pa(uk) ⊆ {u1, . . . , uK}\{uk}. We denote by G the DAG representing the structural

relations between the u’s, i.e. ui −→ uj iff ui ∈ Pa(uj).

Notice that the causal structure G is a DAG because the system is recursive. Identifiability of
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Figure 3: Illustration of the ANM principle with a sample generated from the nonlinear model y =
x3+Ny with x and Ny independent and drawn from a normal distribution. Left-side panels: scatter

plot of y on x with kernel regression line (red) corresponding to the ‘forward’ (true) specification

(top panel) and to the ‘backward’ specification (bottom panel). Right-side panels: corresponding

regression residuals are plotted with respect to their regressor values, either x (top panel) or y

(bottom panel).

the multivariate ANM is based on the following theorem:

Theorem 3. Consider a multivariate ANM

uk = ϕk(Pa(uk)) + εk for k in 1, . . . ,K, (13)

associated to DAG G and entailing joint distribution P (u), with ϕk three times differentiable and

P (εk) strictly positive for all k. An alternative ANM with DAG G′, where G′ 6= G, also entailing

P (u), is not admitted under the following conditions:

Condition (C2) The functions ϕ1(·), . . . , ϕK(·) are not constant in any of their arguments.

Condition (C3) Let us denote with ND(uj) the set of graphical “non-descendant” of uj , i.e.
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there is no directed path from uj to any variable in ND(uj) (see Spirtes et al., 2000). For all

uj ∈ u, and for all ui ∈ Pa(uj), and all uS ∈ u such that Pa(uj)\ui ⊆ uS ⊆ ND(uj)\{ui, uj},

there is a value uS of uS with p(uS) > 0 such that the triple

(
ϕj(Pa(uj) \ {ui}, ui), p(ui|uS), p(εj)

)
(14)

satisfies condition C1. In equation (14) the upper bar indicates a specific value that a random

variable or vector takes.

The conditions related to Theorem 3 and its proof can be found in (Peters et al., 2014, see

section 3.2 and appendix A therein). Thorem 3 allows us to recover the contemporaneous causal

structure among the innovation terms in the GVAR-ANIM. In the next subsection, we will present

an algorithm to learn such causal structure from estimated reduced-form VAR residuals.

Topological order

As shown above, knowing the causal structure among innovation terms in the form of a DAG al-

lows specifying the structural model, since the set of graphical parents determines the arguments

of ϕk(·) in equation (12). Structural shocks can be recovered by regression (parametric or non-

parametric) methods applied to the same equation.

Let us now introduce the notion of topological order. Given a DAG over vertices v1, . . . , vK ,

it is possible to associate a total order on its vertices such that if vi is a parent of vj (i.e. there

is a directed edge from vi to vj), then vi comes before vj in the ordering. Notice that there is

only one topological order associated to a fully connected DAG (a DAG in which each pair of

vertices is connected). But, in the case of a sparse DAG, there are possibly multiple topological

orders associated to it. Also notice that removing an edge from a fully connected DAG does not

invalidate the original topological order, but there could be alternative ordering compatible with

it.4

Suppose that a set of structural recursive equations, associated to a graph G0, has generated

some data, and suppose that there are multiple topological orders associated to G0. One can deduce

a unique fully connected DAG, which we call Gmax, for each of these topological orders. It may

be the case G0 6= G
max. But Gmax differs from G0 only in displaying extra edges, i.e. G0 is a

subgraph of Gmax. Therefore, if we write down a set of structural equations (as in equation 12)

associated to Gmax, this set of equations will differ from the “true” one, i.e. the one associated

to G0, only in that it includes extra variables in right-hand side. These extra-variables are not

in a parent set in (the structural model associated to) G0. But since the original causal ordering

(associated to G0) is maintained, no endogeneity issues arise when one uses Gmax as a template for

a regression model. Indeed, if one applies regression methods to the set of equations associated to

Gmax, which may therefore include extra variables (with respect to the “true” structural model) on

4Consider the fully connected DAG on v1, v2, v3 associated to the topological order 〈v1, v2, v3〉. From removing

v1 −→ v3, we get v1 −→ v2 −→ v3, and the original topological order 〈v1, v2, v3〉 is still the only one valid. From

removing v2 −→ v3, we get v2 ←− v1 −→ v3, and there are two possible topological orders: 〈v1, v2, v3〉, 〈v1, v3, v2〉.
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the right hand side, one obtains consistent estimates, since these variables are at most irrelevant,

but do not entail reverse causality problems.

In practice, if the aim of the study is to estimate the structural shocks (e.g., in impulse response

function analysis), one may aim at recovering a topological order instead of a DAG, so that to min-

imize inference errors in finite samples. Instead, if causal discovery is the goal, then a topological

order is not enough. This is why in the next section we will present a search algorithm that can be

stopped at the topological order step.

A simple case

While the paper, including the algorithms presented in the next subsections, covers a wide class

of models that we have labelled GVAR-ANIM (see equations 1-3), in both the simulation and

the empirical analysis, we are going to focus on a simpler case, namely the case of linear lagged

relationships with nonlinear contemporaneous relationships between innovations (with additive

structural shocks). In terms of equations:




yt =

∑L
ℓ=1Aℓyt−ℓ + ut,

ut,k = ϕk(Pa(ut,k)) + εt,k for k in 1, . . . ,K.
(15)

We decide to focus on this simple case because the crucial issue in VAR identification (see, e.g.

Stock and Watson, 2001) is the solution of the contemporaneous causality problem, which allows

to estimate the structural shocks. This holds both in the linear and nonlinear VAR case. Since

the method we propose exploits contemporaneous nonlinearity, equation (15) represents the most

simple time series model in which we can apply it.

2.4 Algorithm for the contemporaneous structure

Previous sections showed that, under the assumption of additive noise, the (graphical) causal

structure of a recursive structural equation model is generically identifiable. There are alterna-

tive strategies that exploit this identifying principle using sample data (see Peters et al., 2014 and

Peters et al., 2017 for an overview). Here we are presenting the RESIT (REgression with Sub-

sequent Independence Test) algorithm proposed in Peters et al. (2014), which incorporates the

principles of identification in the nonlinear additive noise setting directly and straightforwardly. It

also has the advantage of segmenting the causal search in, first, a topological order search phase

and, subsequently, a DAG search phase. This modular architecture fits well with the possibility

that for shock recovery (and impulse response analysis) a topological order can be sufficient for

the scope (in finite samples), as noted above. The original RESIT algorithm of Peters et al., 2014

operates in two phases (see Appendix A). We add a preliminary phase, which we call Phase 0, in

which we estimate a reduced-form GVAR-ANIM (see equation 1) and use its estimated residuals

as input for the next phase.
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Phase 1 aims at ranking the input variables in a topological order. The topological order is

elicited in a backward fashion by determining which variable is the latest (i.e. a sink node) among

the whole set of variables to be ordered, removing it from the set and repeating the search over the

resulting subset until only one element remains, which is given the first position in the ranking.

At each iteration, the search is performed by regressing each variable jointly on all the others and

measuring the dependence (more on this below) between the regressors and the obtained residual.

The regressand yielding the weakest dependence is regarded as the sink node among the current

set of candidates; it is removed from the set of candidates and is assigned the first position among

the set of variables that have already been removed. The topological order simply corresponds

to the reversed order of elimination. The topological order determines, for each variable, a set of

potential parents. This set coincides with all the variables ranked higher.

Phase 2 (which we call pruning phase) further narrows down the sets of potential parents

by performing variable selection (see Appendix A). In other words, it prunes edges from the

fully connected DAG which one can draw from the topological order of Phase 1. It essentially

performs a variable selection task. It regresses each variable on its putative parents (according

to the topological order derived above) but omitting iteratively one of them. If the estimated

residual of the corresponding nested model is found independent of all preceding variables in the

topological order, the omitted regressor is removed from the set of parents of the regressand. The

search stops when no regressor can be removed without creating dependence.

Any regression method and dependence measure can be embedded in the RESIT algorithm, as

long as they are adequate with respect to the data-generating process. Not knowing the functional

dependence, i.e. ϕk(·) in equation (12), an appropriate strategy would be to use a nonparamet-

ric kernel estimator (Fan and Gijbels, 2018). In our implementation, in tune with Hoyer et al.

(2008), we opt for the Gaussian process approach (see Williams and Rasmussen, 2006). An alter-

native, more restricted, nonparametric model is the generalized additive noise model (Hastie and

Tibshirani, 2017). At the extreme, the functional form can be “restricted” down to linearity, as

long as one assumes non-Gaussianity of the noises. In this case, the ANM collapses to the Linear

Non-Gaussian Acyclic Model studied by Shimizu et al. (2006) (see also Shimizu et al., 2011).

As regards the dependence measure, any measure that accounts for higher order statistics

(rather than linear dependence only) can in principle work. This feature is essential because re-

gression techniques that minimize quadratic errors including linear components yield estimated

noises that are orthogonal to the covariates. Peters et al. (2014) propose to use the p-value of a

nonparametric independence test as dependence score, so that the dependence is minimized when

the p-value, under the null hypothesis of independence, is maximized. This follows the principle

of Hodges-Lehmann estimation, which was proposed by Herwartz (2018) for independent com-

ponent analysis. The specific independence test that we perform in our implementation, following

(Peters et al., 2014), is the kernel independence test proposed by Gretton et al. (2007) with the

Hilbert-Schmidt Independence Criterion (HSIC). The asymptotic results presented by these au-

thors guarantee a convergence of the p-value to zero only under dependence.

We mentioned above that the RESIT algorithm can be stopped at the topological order step
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(i.e. Phase 1) if the aim is to estimate structural shocks and impulse response functions. The

second phase should instead be applied if one is interested in uncovering the exact causal structure

among the innovation terms. Since both in our simulation study and in the empirical application

we focus on structural impulse response analysis, the algorithm shown in the main body of the

text skips the edge pruning phase (see Algorithm 1 here below). In Appendix A, one can find the

original RESIT algorithm embedded in a more general procedure that deals with time series data.

Notice that the motivation to skip Phase 2 of RESIT is only of practical nature, when one deals

with finite sample. Contrary to Phase 1, Phase 2 operates on the basis of statistical hypothesis

testing (independence test), in which one has to decide a rejection threshold. In finite sample,

this decision may lead to mistakenly classify weak dependence as independence and therefore to

mistakenly cutting edges between directly causally related variables. For the sake of retrieving

structural shocks from reduced-form VAR residuals, one has to run a battery of regressions of the

form expressed in equation (13), in which shocks will be the residuals of these regressions. If we

omit any variable from the parents’ set (i.e. covariates of these regressions) because we have made

a mistake in Phase 2, we introduce an omitted variable bias. But if we keep an irrelevant variable

in the parents’ set, we may add some variance in the estimates but we do not introduce any bias.

Given this trade-off, we opt for not using Phase 2 for the sake of estimating impulse response

functions.

Algorithm 1 VAR + RESIT (Phase 1 is from Peters et al., 2014)

1: Input: A K-dimensional time series vector (yt,1, . . . , yt,K)′

2: PHASE 0: Estimate the reduced-form model.

3: Estimate a reduced-form time series model of the class GVAR-ANIM, see eq. (1) and extract

residuals ût = (ût,1, . . . , ût,K)′. To simplify the notation, let us call ût,k ≡ vk, for k =
1, . . . ,K.

4: S := 1, ...,K, π := [ ]

5: PHASE 1: Determine topological order and potential parent set

6: repeat

7: for k ∈ S do

8: Regress vk on {vi}i∈S\{k} and obtain residuals ek
9: Measure dependence between ek and {vi}i∈S\{k}

10: end for

11: Let k∗ be the k with the weakest dependence

12: S := S \ k∗

13: pa(k∗) := S

14: π := [k∗, π]
15: until #S = 0
16: Output: π

17: Output: (pa(1), . . . , pa(K))
Note: with pa(k) we refer to the set of indices associated to the variables in Pa(vk), for any k.
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A simple illustration

Let us suppose that a 3-variable GVAR-ANIM process of the type of equations (1-3) has generated

some data. Specifically, suppose that equation (3) corresponds to:





ut,1 = εt,1

ut,2 = ϕ2(ut,1, ut,3) + εt,2

ut,3 = εt,3

(16)

The DAG associated to these equations is ut,1 −→ ut,2 ←− ut,3. Now, consider to have estimated

ut,1, ut,2, ut,3 as reduced-form residuals of a VAR of the form of equation (1), following Phase 0 of

Algorithm 1. A mistake-free output of Phase 1 will be either the topological order 〈ut,1, ut,3, ut,2〉

or 〈ut,3, ut,1, ut,2〉. A mistake-free output of Phase 2 (see Appendix A) will be ut,1 −→ ut,2 ←−

ut,3. In order to estimate the structural shocks ε1, ε2, ε3 one can run a set of regressions on the

basis of equations (16). But suppose one stops at Phase 1. Then one would estimate one of the

following regression models instead:





ut,1 = εt,1

ut,2 = ϕ2(ut,1, ut,3) + εt,2

ut,3 = ϕ3(ut,1) + εt,3

(17)





ut,1 = ϕ1(ut,3) + εt,1

ut,2 = ϕ2(ut,1, ut,3) + εt,2

ut,3 = εt,3

(18)

Both systems of equations (17) and (18) differ from (16) in including irrelevant variables in

the regression systems, but not involving any reverse causality issue.

2.5 Algorithm for the structural impulse response functions

The advantage of identifying a structural model is that one can estimate the dynamic effects of

structural shocks. But, under the generic GVAR-ANIM framework, this cannot be done by us-

ing the conventional tools of impulse response analysis. Indeed in such a framework the variables’

responses to a specific shock at a certain time depend on the system’s past history, sign and magni-

tude of all contemporaneous shocks and subsequent ones. Following Koop et al. (1996) and Kilian

and Lütkepohl (2017, ch.18), we define the structural (nonlinear) impulse response function (IRF)

as:

IRF(h, δ,Ωt−1) = E(yt+h|εt,i = δ,Ωt−1)− E(yt+h|Ωt−1), (19)

where δ is the (positive or negative) magnitude of the shock εt,i, whose effects one wants to study,

Ωt−1 is the history of the model data up to time t − 1, and h is the horizon point up to which

the impulse response function is studied. To estimate equation (19), we can use the Monte Carlo

integration approach suggested by Kilian and Lütkepohl (2017).
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The idea of this approach, whose detailed scheme is presented in Algorithm 2, is to take pairs

of simulation runs: Ỹ δ,n and Ỹ n (for n = 1, . . . , N ), in which Ỹ δ,n denotes the “treated” time

series and Ỹ n the “control” one, where N is the number of Monte Carlo runs. Both elements

share a common history Ωt−1, but diverge at date t, in which a structural shock of interest is set

to δ in one run (treatment), while no such restriction applies to the other (control). Apart from

this restriction, all shocks are free to fluctuate in both groups of series from time t onwards. The

difference is then taken for each pair. Finally, estimated impulse response functions are calculated

by taking average of these simulated differences.

Algorithm 2 requires as input estimates (from the observed data) of the functional relationship

ϕ̂k(·) between innovations in ut,k = ϕk(Pa(ut,k)) +εt,k (for k in 1, . . . ,K); estimates of the

lagged functional relationship f̂k(·) in yk,t = fk(yt−1, . . . , yt−p)+ uk,t (for k in 1, . . . ,K);5

estimates of the structural shocks εt,1, . . . , εt,K . These can be estimated through the following

procedure. For each k = 1, . . . ,K, if Pa(ut,k) = ∅ then set ε̂t,k := ût,k; else (non-parametrically)

regress ût,k on {ût,i}i∈pa(k) and set ε̂t,k := ût,k − ϕ̂k({ût,i}i∈pa(k)).
6

Each simulated7 path (Ỹ δ,n and Ỹ n) is computed iteratively at each time period, starting from

the time point of the “treatment”. At each step, new values are generated summing (i) lagged

effects fk(yt−1, . . . , yt−L); with (ii) innovation terms ut,k = ϕk(Pa(ut,k)) + εt,k, for every k.

New values of εt,k are independently drawn from their marginal empirical distribution at each

time horizon (except for the one set at δ at time t in the treatment run). Since the innovation

model is recursive, each ũt,k is computed iteratively at each time step by adding its structural

shock εt,k to the contemporaneous effect of its parents (Pa(ut,k)). Parents’ sets can be assigned

in two alternative ways: (i) by simply taking the parents’ sets as given by the full version of

RESIT as it appears in Appendix A; or (ii) in a more conservative fashion (see discussion above),

by considering the sole topological order (see Algorithm 1 in section 2.4) and by regarding any

variable ut,k as a parent of those it precedes in that ordering. Either way, the functional forms ϕ̂k(·)

of the contemporaneous effects are estimated via (nonparametric) regression of each variable over

the parent set considered.

3 Simulation analysis

The simulation study documented in this section aims at evaluating the performance of our ap-

proach in estimating structural impulse response functions. We simulate a simple VAR with dif-

ferent contemporaneous causal structures and different parametrizations. We then estimate the

structural IRFs using Algorithm 2, but under different identification approaches, and, we system-

atically compare them. Our simulation results, as reported below, demonstrate that, in case of

nonlinearity in the data generating process, our procedure is able to satisfactorily estimate the

5For simplicity, we dropped the time index from the lagged effects fk,t(·). A time-varying function can be incorpo-

rated into the algorithm we are discussing in this subsection by updating the fk,t(·) at each step.
6With pa(k) we refer to the set of indices associated to the variables in Pa(ut,k), for any k.
7Simulated variables are marked with a tilde sign (∼).
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Algorithm 2 Structural IRFs at time t∗

1: Setting Values:

• t∗: date of the shock to be studied

• H: max horizon

• k∗: index of the shocked variable

• δ: shock magnitude

• N : number of Monte Carlo runs

2: Input data

• history (Ωt∗−1) at date t∗

• estimated structural shock matrix Ê

• estimated f̂k(·), ϕ̂k(·) (for each k)

• topological order: π = (π1, . . . , πK); parents set: (pa(1), . . . , pa(K))

3: PHASE 1: Simulate N couples of time paths and get the difference

4: for n ∈ {1, . . . , N} do

5: Create a (t∗ +H)×K empty matrix Ỹ n. Set 1 : (t∗ − 1) rows := Ωt∗−1

6: Ỹ δ,n := Ỹ n

7: Create a (H + 1)×K matrix Ẽ, randomly sampling from Ê (columnwise)

Note: denote any (t, k) entry of any matrix E with Et,k

8: Create a (H + 1)×K matrix Ẽδ, as in line 7, but set Ẽδ
t∗,k∗ := δ

9: Create a (H + 1)×K matrices Ũ and Ũ δ(initially empty)

10: Create a (H + 1)×K matrices Ĩn;k
∗,δ (initially empty)

11: for h ∈ {0, . . . , H} do

12: for k ∈ {π1 . . . πK} do

13: Ũ δ
h,k := ϕ̂k({Ũ

δ
h,i}i∈pa(k)) + Ẽδ

h,k (with ϕk(∅) = 0)

14: Ỹ
δ,n
t∗+h,k := f̂k(Ỹ

δ,n
t∗+h−1, . . . , Ỹ

δ,n
t∗+h−L) + Ũ δ

h,k

15: Ũh,k := ϕ̂k({Ũh,i}i∈pa(k)) + Ẽh,k

16: Ỹ n
t∗+h,k := f̂k(Ỹ

n
t∗+h−1, . . . , Ỹ

n
t∗+h−L) + Ũh,k

17: Ĩ
n,k∗,δ
h,k := Ỹ

δ,n
t∗+h,k − Ỹ n

t∗+h,k

18: end for

19: end for

20: end for

21: PHASE 2: Average values

22: Ĩk
∗,δ,t∗ := 1

N

∑N
n=1 Ĩ

n,k∗,δ,t∗

23: Output: Ĩk
∗,δ,t∗
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structural IRFs and that a linear approximation may lead astray even under correctness of the

recursive order.

3.1 Data generating processes

We simulate a 3-variables VAR model with one lag, which can be written as

yt = A1yt−1 + ut, (20)

where A1, to control for the persistence of the process, is a lower triangular matrix with all ele-

ments below and on the main diagonal equal to 0.5. The ut terms are generated following three

types of causal structures, which we call the “causal chain” (21), “common cause” (22), and “v-

structure” (23):

Causal chain





ut,1 = εt,1

ut,2 = ϕ2(ut,1) + εt,2

ut,3 = ϕ3(ut,2) + εt,3
(21)

Common cause





ut,1 = εt,1

ut,2 = ϕ2(ut,1) + εt,2

ut,3 = ϕ3(ut,1) + εt,3
(22)

v-structure





ut,1 = εt,1

ut,2 = εt,2

ut,3 = ϕ3(ut,1, ut,2) + εt,3
(23)

Furthermore, each generic model will be given three alternative parametrizations to (ϕ•(·), ε•).

We first define a “linear Gaussian” setting in which each ϕ•(x) = x and εt,1, εt,2, εt,3 are mutu-

ally independent and (standard) normally distributed. Second, the “linear non-Gaussian” setting

is characterized by the same identity function but the εt,1, εt,2, εt,3 are drawn from a Laplace dis-

tribution with scales parameters 1, 2, 4, respectively. Finally, we define a “nonlinear Gaussian”

setting in which shocks are drawn in the same fashion as in the “linear Gaussian” setting and the

functional forms taken by ϕ2(·) and ϕ3(·) in each causal structure are reported in Table 1. We

generate samples {yt}
T
t=1 of size T = 250, 500, 1000.

Table 1: Functional forms of nonlinear models. The parameters α and β are independently drawn

from a uniform distribution with support [1, 4].

Causal chain Common cause v-structure

ϕ2() sign(ut,1)|ut,1|
α sign(ut,1)|ut,1|

α sign(ut,1)|ut,1|
α

ϕ3() sin(sign(ut,2)|ut,2|
β) sin(sign(ut,2)|ut,2|

β) sign(ut,1)|ut,1|
α + sin(sign(ut,2)|ut,2|

β)

3.2 Identification schemes

For each selected T , type of structure and parametrization we generate 200 artificial (3-variate)

time series, from which we estimate IRFs. These are constructed following Algorithm 2, according

to five different schemes, which we call: (i) “theoretical” IRFs, (ii) Cholesky-based (linear) IRFs,

(iii) true-graph-based nonlinear IRFs, (iv) true-topological-order-based nonlinear IRFs, and (v)

Algorithm-1-based nonlinear IRFs.
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Scheme (i) builds IRFs by applying Algorithm 2 to each artificial time series, except that

instead of the estimated structural shock matrix (see “Input data” in the pseudo code) we use the

true DGP’s one, instead of the estimated functional forms we use the autoregressive matrix A1,

and the true generating functions ϕk(·), and we use the correct set of parents (and topological

order) implied by the true causal structure. We calculate IRFs using this scheme because we want

to have a ground truth against which we can assess our procedure. In practice, scheme (i) is the

application of Algorithm 2 to the true model, bypassing the model estimation step. For this reason,

we call the produced IRFs “theoretical”.

In contrast, the remaining four procedures are based on estimates of the model. Scheme (ii)

is meant to provide a benchmark to the approaches that, differently from this scheme, allow for

nonlinearity. Here structural shocks are computed via Cholesky factorization of the reduced-form

residuals’ covariance matrix, where the recursive ordering of the innovation structure is the true

one, instead of being determined in a data driven fashion as Algorithm 1 does. Moreover, for the

sake of comparison with the other schemes, we do not apply here the standard linear approach that

derives IRFs from MA coefficients, but we feed Algorithm 2 with the estimated linear coefficients.

We label IRFs from this scheme “CHOL” (from Cholesky).

Scheme (iii) is similar to scheme (i) except that the functional (autoregressive and contempo-

raneous) dependencies are estimated from the data, on the basis of the true causal graph (which

automatically implies a correct topological order). Functional forms are estimated via OLS as

regards the autoregressive components and through Gaussian process regression as regards the

contemporaneous structure. In practice, in this scheme we are bypassing the data-driven causal

(order) search by using the correct specification of the model. The aim here is to isolate the per-

formance of Algorithm 2, avoiding potentially compounding mistakes of Algorithm 1. We label

IRFs from this scheme “TDAG” (i.e. true DAG).

Scheme (iv) is a slight variant of scheme (iii): we feed Algorithm 2 with a correct topological

order and a fully connected DAG deduced from it, which may have extra edges with respect to the

true DAG. Thus, we also isolate here the performance of Algorithm 2 (as in (iii)), but we allow

the introduction of potentially irrelevant variables in its inputs, to see if they make a difference

in terms of performance. Notice that Algorithm 1, which is involved in the next scheme, may

also introduce these extra variables, so that scheme (iv) is a closer benchmark to scheme (v).

Furthermore, scheme (iv) is a nonlinear counterpart of the Cholesky scheme (ii) because they are

both based on the true topological order, without any further restrictions (i.e., they may include

irrelevant covariates). We label IRFs from this scheme “TTOP” (i.e. true topological order).

Scheme (v) implements the data-driven approach proposed in Section 2 so that its assessment

is the focus of this analysis, the previous schemes ultimately being benchmarks for this one. Here,

from each generated time-series sample we estimate the topological order, from which we deduce

a fully connected DAG and a corresponding set of parents, by Algorithm 1 and subsequently we

apply Algorithm 2. As input for the functional forms we use OLS for the autoregressive part (as

in schemes (ii-iii-iv)) and Gaussian process regression for the contemporaneous structure (as in

schemes (iii-iv)). Recall from Section 2.5 that the structural shocks (further input of Algorithm 2)
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are recovered from the residuals of the regression model at the contemporaneous level. We label

IRFs from this scheme “ALG1” (i.e. based on Algorithm 1).

3.3 Simulation results

Let us call IRF•
k,h the IRF referring to the responses of variable yt,k to shock εt,1, at horizon h,

using scheme •, where k ∈ {2, 3}, h ∈ {0, 1, 2, 3, 4}, • ∈ {CHOL,TDAG,TTOP,ALG1}. For a

given data generating process, we calculate the following average mean squared error:

ÂMSE
•
=

1

10

1

200

∑

k=2,3

4∑

h=0

200∑

l=1

(ÎRF
•

k,h − ÎRF
theor.

k,h )2, (24)

where l indicates a simulation run. We focus on the effect of the first shock to other variables since

the first variable is always exogenous in all the causal structures we consider.

Table 2 shows estimated AMSE, averaged across 200 simulation experiments, for different

values of T and parametrizations, along with standard errors, for the causal-chain structure. Anal-

ogous results for the common-cause (Table 3) and v-structure (Table 4) are reported in Appendix

C since they are qualitatively similar.

Looking at the top panels (of all these tables), we note that the ALG1 scheme (v) outperforms

the Cholesky one (scheme ii) whatever the structure and sample size when the DGP is nonlinear

(second row). Recall that scheme (v) has the advantage, over scheme (ii), of allowing for nonlin-

earity in the estimation of impulse response functions (since it uses Gaussian process regressions

via Algorithm 2), when the data are generated by a nonlinear DGP, as in this case. But it under-

takes the risky task of inferring the causal order from data.8 On the other hand, scheme (ii) runs

in this case under a misspecified model (the linear one). But it has the advantage of overriding the

search for a topological order from the data: it is given a correct one.

We observe a reversal in the relative accuracy of scheme (ii) and (v) when the model becomes

linear (see first and third row in Table 2, subtables CHOL and ALG1). The poor performance of

scheme (v) within the linear Gaussian setting does not come as a surprise since this class of ANMs

is not identified. In contrast, the linear non-Gaussian model is identified, but scheme (ii) has the

advantage of being endowed with the true topological order. Scheme (v) has the disadvantage

of learning the causal order from data and having an estimation method which is not the most

efficient for the linear case. Scheme (iv) (TTOP) fills the gap between scheme (v) and scheme

(ii) in being a nonlinear approach — like the former — and hacking the order search — like the

latter. As expected, scheme (iv) systematically beats scheme (v) in terms of AMSE. To assess in

8Peters et al. (2014) report simulation results about the accuracy of the RESIT algorithm, showing that the perfor-

mance (in a nonlinear setting) in terms of distance between the estimated structure and the correct DAG is good both in

outperforming other established causal discovery algorithms, but also in absolute terms. We have replicated this analy-

sis by applying RESIT to VAR residuals and we found similar results. We also studied the accuracy of Algorithm 1 in

returning a correct topological order. Both these results are available upon request. The accuracy rate is satisfactory in

most cases, but we also found that small samples (i.e. T < 500) can be problematic for some causal structure (specifi-

cally for the common cause). Note that, however, this problem seems to have only a limited impact on the estimates of

the structural IRFs (which is the main object of this study), as shown in the subsequent analysis reported in Figure 4.
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Table 2: Average MSE, across 200 simulations, between IRFs estimated using different schemes

(i.e. CHOL, TDAG, TTOP, ALG1) and the theoretical IRFs. MSE are calculated over the re-

sponses of yt,2 and yt,3 to the first shock (of one standard-deviation magnitude) and over the first

five periods. The contemporaneous structure is the “causal chain”. We consider different val-

ues of T (sample size) and three different model classes (Linear with Gaussian noises, non-linear

with Gaussian noises and linear with non-Gaussian noises). Standard errors are reported in round

brackets.

CHOL ALG1

T 250 500 1000 250 500 1000

Linear 0.034 0.020 0.015 0.257 0.244 0.249

Gaussian (1.42E-03) (7.51E-04) (5.20E-04) (8.26E-03) (7.81E-03) (7.97E-03)

Nonlinear 1.428 1.023 1.303 0.188 0.124 0.085

Gaussian (1.05E-01) (7.10E-02) (8.90E-02) (1.20E-02) (1.00E-02) (5.00E-03)

Linear 0.078 0.051 0.038 0.293 0.179 0.094

Non-Gaussian (3.53E-03) (1.92E-03) (1.82E-03) (1.36E-02) (8.11E-03) (4.88E-03)

TDAG TTOP

T 250 500 1000 250 500 1000

Linear 0.029 0.023 0.018 0.036 0.022 0.019

Gaussian (1.12E-03) (8.51E-04) (6.44E-04) (1.30E-03) (8.35E-04) (7.18E-04)

Nonlinear 0.142 0.086 0.091 0.135 0.086 0.081

Gaussian (8.00E-03) (9.00E-03) (8.00E-03) (7.00E-03) (7.00E-03) (8.00E-03)

Linear 0.152 0.085 0.060 0.230 0.123 0.079

Non-Gaussian (6.91E-03) (3.30E-03) (2.70E-03) (1.35E-02) (6.67E-03) (4.09E-03)

isolation the effect of the estimation method, one can compare scheme (ii) with scheme (iv) (cf.

subtables CHOL and TTOP in Table 2). To assess in isolation the effect of causal learning, one

can compare scheme (v) with (iv) (cf. subtables ALG1 and TTOP in Table 2). One can notice

that the main source of error of scheme (v) depends on the distribution of the shocks. In the linear

non-Gaussian case, the performance of scheme (v) is mostly hindered by the estimation method

(AMSEs of TTOP are much closer to those of ALG1 than of CHOL). Notice that, in this setting,

the estimation method improves as the sample size increases, so that the performance of scheme

(iii) and (iv) gets closer to scheme (ii). In the linear Gaussian case, the performance of scheme (v)

is mostly hindered by the structure learning method (AMSEs of TTOP are much closer to those of

CHOL than of ALG1).

Comparisons between scheme (iv) and scheme (iii) (subtables TTOP and TDAG) do not

clearly discriminate between the two. It seems that within our sample range the less parsimonious

modeling strategy (scheme iv) often allows to better mimic the DGP than what can be achieved by
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faithfully sticking to the actual DGP specification (scheme iii). This finding is important because it

supports our decision to use Algorithm 1, i.e. a truncated version of the original RESIT by Peters

et al. (2014). As regards of how AMSE changes with respect to the sample size T , we notice that

with scheme (ii) AMSE does not show any downward trend over T when the DGP is nonlinear,

while with scheme (v) AMSE shows a clear tendency to decrease, at least over the values of T we

consider.

Figure 4 shows structural IRFs in the causal chain setting computed via Monte Carlo integra-

tion (Algorithm 2) under the theoretical scheme (i), the CHOL scheme (ii), and the ALG1 scheme

(v), plotted from horizon 0 to 10. Dashed lines give the 68% confidence intervals of those averages.

Specifically, the top panels show the dynamic responses of variable 2 (yt,2) to setting structural

shock εt,1 to one at time t∗ = 2, while the bottom panels display their counterparts for variable 3

(yt,3). For the sake of conciseness and readability, we do not plot IRFs obtained with TDAG and

TTOP since they are very similar to each other and tend to overlap with those obtained by ALG1.

For the same reasons, we display simulation results only for the smallest samples (T = 250, left

panels) and largest (T = 1000, right panels). Analogous figures for the common-cause and v-

structure settings can be found in Appendix C (Figures 8 and 9, respectively). From these plots,

one can notice that the ALG1-IRFs are in most cases, even at horizon equal to zero, indistin-

guishable from the theoretical ones. Moreover, the failure of the CHOL scheme in recovering

contemporaneous shocks’ impacts is quite evident. Since CHOL is built on the correct (imposed a

priori) topological order, this suggests that knowing this order is not enough to accurately estimate

structural IRFs, but it is also crucial to allow for nonlinearities in the regression method, if present.

The nonparametric regression we use (GP regression) seems to successfully capture the nonlinear

contemporaneous effects.

4 Empirical application

Our empirical application studies the effects of macroeconomic shocks on nominal interest rate,

inflation, output and financial conditions, using U.S. data. The study allows for nonlinearity at the

contemporaneous level. We compare our findings with the results from a linear recursive SVAR

model, highlighting the difference between the two results. This fact allows us to depart from a

typical feature of linear SVAR models, namely the fact that the effect of a positive shock is by

construction symmetric to the effect of a negative shock. Asymmetric effects of shocks have been

studied, among others, by Lo and Piger (2005), Höppner et al. (2008), Kilian (2014), Hussain and

Malik (2016). We should notice, however, that we are imposing a recursive structure with additive

noises on the relationship among innovations, in a setting where the reduced form VAR is linear.

This implies that the shock which is last in the topological order can only have a linear impact on

the variables. Specifically, this means that if the monetary policy instrument is last, as it turns out

to be the case in our application, its shocks have linear effects by construction.

We estimate a linear reduced-form VAR model with five variables: inflation (pit), output gap

(outt), the federal funds rate (rt), industrial production (ipt), and excess bond premium (ebpt).
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Figure 4: DGP with “causal chain”. Theoretical (THEOR), linear (CHOL), and nonlinear (ALG1)

IRFs for T = 250 (left panels) and T = 1000 (right panels). Each solid line exhibits the average,

across 200 simulations, IRF from a unitary shock 1 (εt,1) to variable 2 (yt+h,2) (top panels) or

variable 3 (yt+h,3) (bottom panels), for h = 0, . . . , 9. Confidence interval at 68% are reported in

dashed lines.

We take the data from the Federal Reserve Economic Database (FRED), except ebpt, which we

took from Forni et al. (2024). The data are collected at the quarterly frequency in U.S. and cover

the period from 1973-Q1 to 2019-Q4 (188 observations). Inflation is computed as the change in

the logarithm of the GDP deflator (FRED mnemonic GDPDEF). Output gap is computed as the

deviation of the logarithm of real GDP (FRED mnemonic GDPC1) from the logarithm of potential

GDP (FRED mnemonic GDPPOT), which we take from the U.S. Congressional Budget Office’s

estimate. The series rt is set to the federal funds effective rate (FRED mnemonic FEDFUNDS).

The series ipt is taken from the index of industrial production (FRED mnemonic INDPRO). The

five time series are plotted in Figure 5. A three-lags VAR specification is selected according to the

Akaike information criterion. The “portmanteau” test for residual autocorrelation does not reject

the null hypothesis of zero autocorrelation at 0.01 level of significance.

We identify a SVAR model of the type of equation (15). As mentioned in Section 2, identifica-

tion can be obtained by knowledge of the causal structure among innovation terms. As noted, for
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Figure 5: Employed time series. From the top, inflation (π), output gap (o) and nominal interest

rate (r). Data sample from 1953-Q3 to 2019-Q4.

the sake of estimating structural impulse response functions, knowledge of the topological order

is sufficient in our framework, given the recursiveness assumption. Therefore, as in the simulation

analysis, we apply Algorithm 1 to the data (i.e., first step of RESIT to the reduced-form VAR

residuals). Having obtained the topological order and a set of (potential) graphical parents from

Algorithm 1, we feed Algorithm 2 with these two pieces of information. Thus, we can estimate

the structural IRFs, setting the number of simulations for the Monte Carlo integration N = 100.

Both in Algorithm 1 and Algorithm 2, estimates of ϕk(·) (i.e., functional dependence between

innovation terms) are obtained through Gaussian process regressions.

To address uncertainty in the estimates of the structural IRFs, we perform a bootstrap analysis

with 500 iterations. For each bootstrap iteration, we estimate a new VAR model and, maintaining

the topological order that we got from the application of Algorithm 1 to the original data, we
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compute new contemporaneous effects and structural shocks.9 On the basis of this, we calculate

structural IRFs following Algorithm 2.

The topological order that we obtain by applying Algorithm 1 to our time series is 〈pit, ipt,

outt, ebpt, rt〉, which supports the idea that the federal funds rate is set in reaction to movements

of the other variables, since the Fed is supposed to continuously monitor the macroeconomic and

financial conditions of the system. Inflation, macroeconomic activity, financial conditions do not

respond to changes in the federal funds rate within the period, according to our findings. This

is in tune with typical recursiveness assumptions used in SVAR-based monetary analysis (see

Christiano et al., 1999).

For each nonlinear IRF we analyze, we consider the response of a variable y(t+h),k to a shock

εt,j of magnitude equal to one standard deviation of the variable yt,j .
10 We do it for h = 0, . . . , 20.

We compare these nonlinear IRFs with linear IRFs estimated using the following scheme: (i) we

impose the Cholesky order derived from the topological order estimated by Algorithm 1 (i.e. 〈pit,

ipt, outt, ebpt, rt〉); (ii) hence we get the structural shocks and the coefficients of the impact

matrix; (iii) using the latter terms as input, we apply Algorithm 2 and get IRFs.

Figure 6 (left panels) shows the median effects of a positive interest rate shock (i.e. a con-

tractionary monetary policy shock) on the other variables, derived from bootstrapped nonlinear

and linear IRFs. Confidence intervals refer to the interquartile range (i.e. the 25th and 75th per-

centiles). Notice that the effects of an expansionary monetary policy shock (right panels) are by

construction completely symmetric to the contractionary ones, figuring r as last in the topological

order. Figure 7 shows the median effects of a positive (left panel) and negative (right panel) infla-

tion shock. In Appendix D (see Figure 10 and Figure 11), we also show the effects of the output

and the excess bond premium shocks.

As regards the r (positive) shock (Figure 6, left panel), the reaction of inflation is positive

for two quarters and then becomes negative after one year. The reactions of industrial production

and output gap are decisively negative. The excess bond premium responds positively, but only

after 3 quarters. Notice that the nonlinear and linear scheme cannot depart from each other by

construction as regards this shock.

Looking at the responses of a positive inflation shock (Figure 7, left panels), we see that

industrial production has an instantaneous positive reaction. This holds both for the linear and

nonlinear schemes. If we look at the responses of a negative inflation shock (Figure 7, right

panels), the instantaneous effects are symmetric to the positive shock in the linear scheme by

construction. But we find an asymmetry in the nonlinear scheme: the responses of ip to the

negative inflation shock are also positive at the impact. In the subsequent periods, for 2-3 quarters,

the effects of a positive pi shock on ip vanish and then backfire, under both the linear and nonlinear

9We maintain the same topological order at each bootstrap iteration because we do not want to account for un-

certainty about inference of the causal structure here. To do that, one can adapt the stability selection procedure by

Meinshausen and Bühlmann (2010).
10As starting date, we simply choose t∗ = 4, considering that the number of lags is equal to 3. Note, however, that

due to the linearity of the reduced-form model, different choices would not affect our results.

25



schemes. Under the latter scheme, the effects of a negative pi shock on ip remain on the positive

sign. Other asymmetries are detectable also as regards the reactions of out, ebp, and r to the

same shock: the instantaneous reactions of output gap and excess bond premium (in the nonlinear

scheme) are not symmetric between the positive and negative pi shock. In particular, although

output gap reacts instantaneously to the pi shock with the opposite sign, the absolute value of

such a reaction is greater and more evident (considering the position of confidence interval above

the zero line) in the case of a negative pi shock. The short-term response of the federal funds

rate (r) to positive and negative inflation shocks under the nonlinear scheme is noteworthy for its

asymmetry. Notably, when the system experiences a positive inflation shock, the federal funds

rate reacts much more strongly, nearly doubling in absolute terms compared to its response to

a negative inflation shock, as regards the point estimates. In terms of confidence intervals, the

impact is significantly positive after a positive inflation shock, but not significant after a negative

inflation shock. This suggest that the FED is more reactive, in terms of changing the short term

interest rate, to a positive inflation shock than a negative one.

Looking at Figures 10 and 11 (Appendix D), we can detect some asymmetries in the contem-

poraneous responses of r to both the out and ebp shocks. In particular, looking at the nonlinear

scheme, the contemporaneous median response of r is positive to out shocks, no matter the sign,

and, conversely, the contemporaneous median response of r is negative to ebp shocks, no matter

the sign.

5 Conclusions

There is a departure from the linear model with Gaussian disturbances that can be exploited for

identification, namely nonlinearity, as long as the disturbances are additive. We have shown that

this feature can be exploited to identify a structural VAR model that contains nonlinearities in the

cross-sectional structure. The identification criterion we have exploited in this paper is based on

the following simple idea: in case of nonlinearity it is admitted an additive noise model (i.e. a

model in which disturbances are independent of covariates) from the cause to the effect, but, in

the generic case (see conditions C1-C3 in section 2.3), not from the effect to the cause. Thus, by

iterative regressions and subsequent independence tests, it is possible to determine the contem-

poraneous causal structure underlying a VAR model, under the assumption of recursiveness and

mutual independence of the shocks. On this basis, we can recover structural impulse response

functions, which we define as difference of conditional expectations and estimate through Monte

Carlo integration. It also turns out that, for the sake of estimating impulse response functions,

the inferred causal structure can contain some redundant links, as long as the topological order

is correct. Simulation results have shown that the proposed search procedure and our scheme to

estimate impulse response functions perform correctly under data generating processes satisfying

the theoretical conditions. Moreover, if the data generating process is nonlinear, they outperform

methods based on linearity assumptions, even under the correct zero restrictions. Our empirical

analysis has shown that taking into account nonlinearity helps recovering the contemporaneous
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Figure 6: Structural IRFs to a positive (left panels) and negative (right panels) interest rate shock

of one-standard deviation magnitude. Each panel shows nonlinear structural IRFs obtained from

Algorithm 2 with GP regressions (red lines) and linear structural IRFs obtained from Algorithm

2 but fed with coefficients derived from Cholesky factorization (blue lines). Solid lines refer to

the median effects while dashed lines refer to the interquartile range computed over 500 bootstrap

simulations.
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Figure 7: Structural IRFs to a positive (left panels) and negative (right panels) inflation shock

of one-standard deviation magnitude. Each panel shows nonlinear structural IRFs obtained from

Algorithm 2 with GP regressions (red lines) and linear structural IRFs obtained from Algorithm

2 but fed with coefficients derived from Cholesky factorization (blue lines). Solid lines refer to

the median effects while dashed lines refer to the interquartile range computed over 500 bootstrap

simulations.
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structure of the SVAR system. It may also make a substantial difference in terms of predicting

the effect of macroeconomic shocks to the economy, particularly because it allows for asymmetric

effects between positive and negative structural shocks.

The idea of exploiting nonlinearity for identification has been put into practice in this paper

by recovering a topological order through Algorithm 1, but one can, of course, conceive different

ways to implement it. Other procedures worth exploring are those in the family of the score-

based approach to causal discovery (see, e.g., Peters et al., 2014: section 4.2, and Bühlmann et al.,

2014). A limitation of our procedure can be seen in the recursiveness assumption. This has been

relaxed, in the bivariate case, by Mooij et al. (2011), but further research is needed for the case with

more than two variables and, more in general, for its adaptation to the structural VAR framework.

Another interesting path of research is the nonlinear ICA approach, which has been pioneered by

Hyvärinen and Pajunen (1999) and recently developed by Monti et al. (2020) and Gunsilius and

Schennach (2023). This class of blind source separation methods departs from the additive noise

model framework studied in this paper and its applicability to macroeconomic data is still to be

explored. Our hope is that the potentiality that nonlinearity has shown for identification will foster

the adoption of this idea within the field of econometrics.
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Appendix

A Complete RESIT algorithm

Algorithm 1full VAR + RESIT (Phases 1-2 are from Peters et al., 2014)

1: Input: A K-dimensional time series vector (yt,1, . . . , yt,K)′

2: PHASE 0: Estimate the reduced-form model.

3: Estimate a reduced-form time series model of the class GVAR-ANIM, see eq. (1) and extract

residuals ût = (ût,1, . . . , ût,K)′. To simplify the notation, let us call ût,k ≡ vk, for k =
1, . . . ,K.

4: S := 1, ...,K, π := [ ]

5: PHASE 1: Determine topological order.

6: repeat

7: for k ∈ S do

8: Regress vk on {vi}i∈S\{k} and obtain residuals ek
9: Measure dependence between ek and {vi}i∈S\{k}

10: end for

11: Let k∗ be the k with the weakest dependence

12: S := S \ k∗

13: pa(k∗) := S

14: π := [k∗, π]
15: until #S = 0
16: Output: π

17: PHASE 2 (pruning): Remove superfluous edges.

18: for k ∈ {2, . . . ,K} do

19: for p ∈ pa(π(k)) do

20: Regress vπ(k) on {vi}i∈pa(π(k))\{p}.

21: if residuals are independent of {vi}i∈{π(1),...,π(k−1)} then

22: pa(π(k)) := pa(π(k)) \ {p}
23: end if

24: end for

25: end for

26: Output: (pa(1), . . . , pa(K))
Note: with pa(k) we refer to the set of indices associated to the variables in Pa(vk), for any k.
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B Discussion on consistency

The method proposed provides the topological order and causal structure among innovation terms

and allows us to estimate structural impulse response functions. As one gets more data, one would

hope that the recovered order/structure is correct and that the estimated IRFs would converge to

the true IRFs, under the assumptions that the underlying data generating process is GVAR-ANIM

and that the relationships between innovation terms (equation 3) can be described by a multivariate

ANM under assumptions (C1)-(C3). While it is clear that an unidentified model cannot be consis-

tently estimated, it is not necessarily true that identifiability implies consistency (see Deistler and

Seifert, 1978; Gabrielsen, 1978). Studying consistency and other statistical properties (e.g. asymp-

totic normality, efficiency) of the entire procedure, considering the different options in terms of

model specification and estimation, is a task we leave for future research. In the following, how-

ever, we refer to some key results for such task.

1. Assume a joint distribution P (u) generated by a GVAR-ANIM, associated to a DAG G

representing the structural relations between innovation terms ut = (ut,1, . . . , ut,K)′. Assume

that: (i) conditions C1-C3 are satisfied; (ii) the ut are consistently estimated from the reduced-

form VAR model (Alg. 1, Phase 0); (iii) ϕk(·) is estimated with a consistent regression method,

for each k; (iv) the dependence measures (Alg. 1, Phase 1) is correct and independence tests

(Alg. 1, Phase 2, see Appendix A) are consistent. Then the output of the (full) Algorithm 1 is

guaranteed to be correct. This statement generalizes Theorem 34 in Peters et al. (2014) to the case

of VAR-estimated input and presupposes the identifiability result of Theorem 3 (section 2.3).

2. The regression method to estimate ϕk(·) is user-specified in our procedure, with the caveat

that linear regression is not allowed, except in the case in which the structural shocks are non-

normal. In our simulation analysis and empirical application, we use Gaussian process regres-

sions, whose consistency has been studied by Williams and Rasmussen (2006, Chapter 7) in the

general case and by Choi and Schervish (2007) in the univariate case. Following the latter au-

thors, let us consider Yi = η(Xi) + ǫi (i = 1, . . . , n), where we are interested in estimating

η(x) = E[Y |X = x]. Assume: (i) ǫi ∼ N(0, σ2) or DE(0, σ) (DE stands for double expo-

nential, i.e. Laplace, distribution); (ii) η(·) is a random process with a Gaussian process prior

distribution: η(·) ∼ GP (µ(·), R(·, ·)); (iii) smoothness conditions on µ(·), R(·, ·)), and η(·) (in

particular, continuously differentiable mean function µ(x) and covariance function R(·, ·) having

continuous fourth partial derivatives). Let the posterior distribution pn,N (η|X,Y ) be, for each

neighborhood N of the true regression function η0 and each sample size n: pn,N = Pr({η ∈

N}|X1, . . . , Xn, Y1, . . . , Yn). Under the assumptions above, Choi and Schervish (2007) show

that the posterior distribution of η is almost surely consistent, i.e., for every N , limn→∞ pn,N = 1

a.s..

As an alternative nonparametric regression method to estimate ϕk(·), let us consider the Nadaraya-

Watson estimator. Considering again the regression function η(x), this estimator computes η̂(x) =∑n
i=1wiYi where wi =

Kh(Xi−x)∑n
j=1

Kh(Xj−x)
, being Kh a kernel function with bandwidth h. It has been

established (see, e.g., Györfi et al., 2002) that if nh → ∞ and n → ∞ then the estimator is con-
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sistent (the result has also been extended to the multivariate case).

3. Conditions for a consistent estimation of a fully non-parametric (but time invariant) reduced-

form GVAR-ANIM (see equation 1) are discussed in Härdle et al. (1997). Nonparametric ker-

nel estimation turns out to be consistent under the conditions discussed above for the Nadaraya-

Watson estimator with the addition that the underlying process must be α- or φ-mixing. In our

simulation and empirical application, we actually estimate a linear reduced-form VAR. Here the

least squares estimator is consistent and asymptotic normal (even in the presence of unit roots with

a number of lags strictly greater than one) under general conditions (see Kilian and Lütkepohl,

2017). Notice, however, that we cannot assume normality of the reduced-form residuals here,

since this would imply a linear form in the conditional expectation function. Conditions for con-

sistency in the case of a linear non-Gaussian SVAR are studied by Gouriéroux et al. (2017).

4. The dependence measure and the independence test used in the Algorithm 1 (full version,

see Appendix A) are also user-specified in our procedure, under the condition that they account

for order statistics. In our applications, we use the nonparametric measure of dependence and

the kernel independence test proposed by Gretton et al. (2007), who prove consistency of the

test by deriving distribution of the test both under the null hypothesis of independence and under

the alternative. The distribution of the test statistics, as the sample size approaches infinity, is

parameterised in terms of kernels of the data.
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C Further simulation results: common-cause and v- structure

Table 3: Average MSE, across 200 simulations, between IRFs estimated using different schemes

(i.e. CHOL, TDAG, TTOP, ALG1) and the theoretical IRFs. MSE are calculated over the re-

sponses of yt,2 and yt,3 to the first shock (of one standard-deviation magnitude) and over the first

five periods. The contemporaneous structure is the “common cause”. We consider different val-

ues of T (sample size) and three different model classes (Linear with Gaussian noises, non-linear

with Gaussian noises and linear with non-Gaussian noises). Standard errors are reported in round

brackets.

CHOL ALG1

T 250 500 1000 250 500 1000

Linear 0.031 0.019 0.014 0.200 0.209 0.189

Gaussian (1.29E-03) (7.05E-04) (4.74E-04) (7.27E-03) (7.40E-03) (7.22E-03)

Nonlinear 1.403 1.01 1.28 0.185 0.12 0.077

Gaussian (1.04E-01) (7.00E-02) (8.80E-02) (1.20E-02) (9.00E-03) (4.00E-03)

Linear 0.068 0.045 0.035 0.268 0.162 0.089

Non-Gaussian (3.09E-03) (1.74E-03) (1.58E-03) (1.22E-02) (7.12E-03) (4.51E-03)

TDAG TTOP

T 250 500 1000 250 500 1000

Linear 0.028 0.023 0.018 0.031 0.019 0.017

Gaussian (1.01E-03) (8.27E-04) (6.16E-04) (1.01E-03) (6.85E-04) (6.20E-04)

Nonlinear 0.155 0.093 0.094 0.14 0.089 0.081

Gaussian (8.00E-03) (9.00E-03) (8.00E-03) (7.00E-03) (6.00E-03) (8.00E-03)

Linear 0.179 0.102 0.069 0.182 0.102 0.070

Non-Gaussian (9.27E-03) (4.80E-03) (3.30E-03) (1.04E-02) (5.37E-03) (3.52E-03)
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Table 4: Average MSE, across 200 simulations, between IRFs estimated using different schemes

(i.e. CHOL, TDAG, TTOP, ALG1) and the theoretical IRFs. MSE are calculated over the re-

sponses of yt,2 and yt,3 to the first shock (of one standard-deviation magnitude) and over the first

five periods. The contemporaneous structure is the “v-structure”. We consider different values

of T (sample size) and three different model classes (Linear with Gaussian noises, non-linear

with Gaussian noises and linear with non-Gaussian noises). Standard errors are reported in round

brackets.

CHOL ALG1

T 250 500 1000 250 500 1000

Linear 0.019 0.010 0.008 0.084 0.089 0.094

Gaussian (8.23E-04) (4.23E-04) (2.97E-04) (4.56E-03) (5.01E-03) (5.11E-03)

Nonlinear 0.936 0.678 0.861 0.118 0.064 0.048

Gaussian (9.90E-02) (6.80E-02) (8.50E-02) (1.10E-02) (5.00E-03) (4.00E-03)

Linear 0.057 0.034 0.023 0.255 0.135 0.057

Non-Gaussian (2.79E-03) (1.42E-03) (1.26E-03) (1.40E-02) (7.07E-03) (3.44E-03)

TDAG TTOP

T 250 500 1000 250 500 1000

Linear 0.016 0.012 0.009 0.023 0.014 0.011

Gaussian (7.14E-04) (5.00E-04) (3.65E-04) (9.47E-04) (5.73E-04) (4.37E-04)

Nonlinear 0.088 0.049 0.053 0.089 0.053 0.046

Gaussian (7.00E-03) (6.00E-03) (7.00E-03) (7.00E-03) (6.00E-03) (5.00E-03)

Linear 0.121 0.064 0.049 0.207 0.102 0.066

Non-Gaussian (8.11E-03) (3.94E-03) (3.19E-03) (1.26E-02) (5.60E-03) (3.95E-03)
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Figure 8: DGP with “common cause”. Theoretical (THEOR), linear (CHOL), and nonlinear

(ALG1) IRFs for T = 250 (left panels) and T = 1000 (right panels). Each solid line exhibits

the average, across 200 simulations, IRF from a unitary shock 1 (εt,1) to variable 2 (yt+h,2) (top

panels) or variable 3 (yt+h,3) (bottom panels), for h = 0, . . . , 9. Confidence interval at 68% are

reported in dashed lines.
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Figure 9: DGP with “v-structure”. Theoretical (THEOR), linear (CHOL), and nonlinear (ALG1)

IRFs for T = 250 (left panels) and T = 1000 (right panels). Each solid line exhibits the average,

across 200 simulations, IRF from a unitary shock 1 (εt,1) to variable 2 (yt+h,2) (top panels) or

variable 3 (yt+h,3) (bottom panels), for h = 0, . . . , 9. Confidence interval at 68% are reported in

dashed lines.
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D Empirical results: further IRFs
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Figure 10: Structural IRFs to a positive (left panels) and negative (right panels) output gap shock

of one-standard deviation magnitude. Each panel shows nonlinear structural IRFs obtained from

Algorithm 2 with GP regressions (red lines) and linear structural IRFs obtained from Algorithm

2 but fed with coefficients derived from Cholesky factorization (blue lines). Solid lines refer to

the median effects while dashed lines refer to the interquartile range computed over 500 bootstrap

simulations.
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Figure 11: Structural IRFs to a positive (left panels) and negative (right panels) excess bond pre-

mium shock of one-standard deviation magnitude. Each panel shows nonlinear structural IRFs

obtained from Algorithm 2 with GP regressions (red lines) and linear structural IRFs obtained

from Algorithm 2 but fed with coefficients derived from Cholesky factorization (blue lines). Solid

lines refer to the median effects while dashed lines refer to the interquartile range computed over

500 bootstrap simulations.
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