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Abstract

We study the determinants of the spatial distribution of patent inventors at the county

level for Great Britain between 1700–1850. Our empirical analysis rests on the localiza-

tion model by Bottazzi et al. (2007) and on the related estimation procedure by Bottazzi

and Gragnolati (2015). Such an approach helps in particular to discriminate the role of

localized externalities against other descriptors of county attractiveness. Our results show

that, while the underlying geography of production remained a strong determinant of in-

ventor location all throughout the industrial revolution, the effect of localized externalities

among patent inventors went from being nearly absent in the early phases of industrial-

ization to becoming a major driver of inventor location. In particular, local interactions

among the “mass” of generic inventors turn out to be at least as important as interactions

with “elite” inventors.

JEL codes: C31, N73, N93, O33, R12.

Keywords: Inventor location · Patents · Localized externalities · Industrial Revolution.

1 Introduction

Technological innovation is widely regarded as a major source of economic growth. Yet, the

inventive activities that are responsible for innovation tend to be unevenly distributed in space,

which possibly plays a role in the economic differentiation of cities, regions, and countries. In

this sense, the determinants of inventor location may contribute to explain geographic hetero-

geneity in economic outcomes, while also shedding light on some of the mechanisms underlying
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technological innovation. Furthermore, the possibility of path-dependent dynamics imply that

the present spatial configuration of economic activities may ultimately depend on early episodes

of localization and development. For these reasons, the geography of inventive activities dur-

ing key historical periods of early cluster formation may contain relevant information about

the underlying enabling factors. In this respect, the British industrial revolution represents a

key historical discontinuity characterized by an unprecedented rate of innovation, which ulti-

mately allowed to escape Malthusian stagnation and to establish the modern growth regime

(Kuznets, 1966). What then were the drivers of location for inventive activities during the

British industrial revolution?

As a first approximation, the spatial distribution of inventive activities is commonly ex-

pected to reflect the location of production. When transportation costs are non negligible, for

instance, the inventors of process innovations may have an incentive to site near productive

activities as a way to minimize distance from demand. Incidentally, this was indeed the context

that characterized the British industrial revolution. Yet, the spatial link between innovative

and productive activities can also have a more profound underpinning. Specifically, as soon

as technical change is ascribed to experience and learning by doing, it follows that “the very

activity of production [. . . ] gives rise to problems for which favorable responses are selected

over time” (Arrow, 1962, p. 156). As a corollary, innovation would occur more frequently where

production is larger (see the related discussion in Audretsch and Feldman, 1996). While taking

for granted this basic tenet, however, a host of empirical studies point to some discrepancy

between the spatial distributions of inventive and productive activities. For example, Lam-

oreaux and Sokoloff (2000) show that the geographic dispersal of patented inventions in glass

manufacturing during the late 19th century presented non negligible deviations from the under-

lying location of production in the United States. Relatedly, Carlino and Kerr (2015) review

a variety of studies that document the excess spatial concentration of innovation relative to

other economic activities, so that some further agglomeration forces could act selectively on

innovative activities. Even during the British industrial revolution, then, some specific forces

could be potentially at play that affected the geography of innovation beyond its basic spatial

linkage with production.

In this respect, knowledge spillovers have long been regarded as a prime suspect. Indeed, the

manufacturing districts of 19th century England were famously described as an environment in

which “if one man starts a new idea it is taken up by others and combined with suggestions of

their own; and thus becomes the source of yet more new ideas” (Marshall, 1890, p. 332). If the

possibility of such interactions among inventors are somehow bounded in space, the location of

inventive activities becomes subject to a local self-reinforcing mechanism: namely, inventions

tend to occur more frequently where other inventions have already occurred. This hypothesis

has been tested using contemporary patent citations to conclude that indeed inventors tend

to be more frequently linked to other spatially proximate inventors, even after controlling

for the spatial distribution of production (see the discussion by Henderson et al., 2005, Jaffe

et al., 1993, Thompson and Fox-Kean, 2005). A number of successive studies, however, have

also pointed to several qualifications concerning the relation between knowledge spillovers,

proximity, and innovation (see Agrawal et al., 2008, Breschi and Lissoni, 2009, Giuliani, 2007,
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Giuri and Mariani, 2013, Tubiana et al., 2020, among others). Nonetheless, despite these

important caveats, the possible effect of local interactions among inventors on the resulting

spatial distribution of innovative activities can be hardly ignored.1

Yet, if local interactions matter, inventors could find it especially attractive to site with peers

of higher quality. Indeed, Mokyr (2016, 2018) argues that “elite inventors” had a pivotal role

in the British industrial revolution, as they represented the portion of upper-tail human capital

that was relevant for the production of new useful knowledge. Therefore, if local interactions

among inventors had any effect at all on the siting of innovative activities, great inventors

such as Abraham Darby, Richard Arkwright, or James Watt might have had an especially

attractive role toward their peers. Indeed, when looking at the US economy after the mid-

1980’s, Kerr (2010) finds that breakthrough inventions played an empirically relevant role in

driving the migration of innovation clusters. Relatedly, some studies point to the positive

impact of contemporary superstar inventors on the innovative performance of their local peers

or on the co-localization of a new industry (Almeida and Kogut, 1999, Zacchia, 2018, Zucker

and Darby, 1996). By contrast, other studies do not find a comparable local effect for superstars

in the specific context of academia (Azoulay et al., 2010, Oettl, 2012, Waldinger, 2012). In this

perspective, the extent to which the great inventors of the industrial revolution influenced the

spatial distribution of inventive activities may shed some light on the role of upper-tail human

capital during the first major wave of innovation in modern economic history.

Under these premises, the present work aims at evaluating the determinants of the spatial

distribution of patent inventors across British counties between 1700–1850. For this purpose,

we consider all the patents awarded in Great Britain during the period of interest as collected by

Woodcroft (1854, 1862) and the related industry classification and quality indicator introduced

by Nuvolari et al. (2011) and Nuvolari et al. (2021). In particular, we test for the role of

interdependencies in the siting of inventors relying on the localization model put forward by

Bottazzi et al. (2007) and on the related maximum likelihood estimation described by Bottazzi

and Gragnolati (2015). This approach allows to compare two different scenarios: one in which

inventor location is driven only by the intrinsic features of counties, and an alternative scenario

in which also local interdependencies in the siting of inventors come into play and lead to a

specific agglomeration effect. The historical patent data on which we rely do not allow to

define a citation network, as commonly the case for contemporary patent data. Therefore, our

analysis cannot fully disentangle the different sources of local interactions among inventors, as

done for instance by Agrawal et al. (2008) and Breschi and Lissoni (2009). Nonetheless, our

empirical strategy and the specific type of inventors that characterized the British industrial

revolution allow to provide at least some interpretation in this regard.

The present work differentiates its self from the related literature in economic history by

focusing explicitly on the location of inventive activities, whereas most other contributions

look at the geography of the British industrial revolution through the lens of production. For

instance, Broadberry and Marrison (2002) and Leunig (2003) discuss the possible impact of lo-

1See Audretsch, 1998, Boschma, 2005, Feldman, 1999 and Carlino and Kerr, 2015 for more comprehensive
surveys on the empirical literature assessing the role of knowledge spillovers on the geography of innovation.
See also Breschi and Lissoni, 2001a,b for some further critical assessments.
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calized externalities on productivity in the British cotton textiles industry looking in particular

at Lancashire in 1900. On the other hand, Crafts and Wolf (2014) take a broader geographical

view by assessing the county-level determinants of location for the textiles industry across the

whole of the United Kingdom in 1838. Relatedly, Kelly et al. (2022) look in particular at En-

glish counties to analyze which pre-determined factors have a stronger impact on the local share

of industry employment in 1831 and 1851. Finally, Hanlon and Miscio (2017) try to disentangle

the various sources of agglomeration economies potentially at play in England between 1851–

1911, but they focus on population as a dependent variable. Overall, then, the present work

adds to the aforementioned literature by providing new county-level evidence regarding specifi-

cally the location of inventive activities in Great Britain between 1700–1850. In this sense, the

historical focus adopted in this paper can also serve to establish a useful benchmark for the

analysis of long-term developments in the geography of innovation. For example, Andrews and

Whalley (2021) have recently adopted a long-term view to study how the spatial distribution

of inventive activities has evolved within the US from 1865 to 2015. In a somewhat similar

spirit, Crescenzi et al. (2020) discuss the patterns of spatial behavior that are specific to the

more recent waves of innovation as compared to the earlier ones.

2 Data and descriptive statistics

The location of inventive activities during the British industrial revolution is here identified

by an inventor’s county of residence at the moment in which they were awarded a patent in

Great Britain between 1700–1850. Counties are defined according to their historic borders

as reconstructed by the Cambridge Group (CAMPOPb, 2021, CAMPOPc, 2021), with the

City of London merged into Middlesex. Our analysis then aims at explaining the cross-county

distribution in the number of patented inventions observed over a given period of time. For

this purpose, we link the patent data collected by Woodcroft (1862) to the related information

on inventor residence reported by Woodcroft (1854). These data regard only inventions that

obtained a patent from the administration of England and Wales, which remained separate from

its counterpart in Scotland until the Patent Law Amendment Act in 1852. However, nearly all

patents awarded in Scotland were granted also in England and Wales (see Bottomley, 2014a,

p. 54). As a result, our analysis spans virtually all the inventions that were patented in Great

Britain from the early developments in iron smelting and metallurgy, to the early introduction

of steam engines, up to the mature phases of the cotton industry. In particular, each patent in

our sample is associated with its inventors and their county of residence, so that the possible

spatial mobility of recurring inventors is fully tracked.

The original patent data for the span 1700–1850 is filtered according to three criteria. First,

we drop those observations for which the inventor’s county of residence is entirely unknown

(about 2% of the total). Second, one wants to ensure that each patentee coincides with the

actual inventor and with the corresponding locus of innovation. For this reason, we drop the

399 patents that were registered in the name of patent agents on behalf of unknown actual

inventors (about 3% of the total). Indeed, patent agents resided almost exclusively in London

precisely to benefit from proximity to the only patent office in the country, whereas their clients
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Figure 1: Inventor share difference between patented and unpatented inventions.

The figure illustrates the difference between county shares of inventors with and without a patent. Patented
inventions are taken from Woodcroft (1854, 1862), whereas unpatented inventions are taken from Moser’s (2011)
for the 1851 Crystal Palace world fair. Left panel : The map shows that the difference between county shares
of patented and unpatented inventions is slightly positive in Lancashire (0.09) and Surrey (0.07), while being
slightly negative in Middlesex (−0.07) and Yorkshire West Riding (−0.05). Right panel : The histogram shows
that the difference between county shares of patented and unpatented inventions ha a symmetric empirical
distribution closely centered around 0.

could well be based in other counties (see Bottomley 2014b, p. 65–72, Dutton 1984, p. 86–89,

and Khan 2005, p. 58). Third, we consider only the contiguous counties that compose mainland

Great Britain plus Bute and Anglesey, thus dropping all inventors that resided on other minor

British isles, in Ireland, or abroad (about 3% of the total). This leaves us with 85 spatial units

and 12 021 patents, which correspond to about 92% of the total between 1700–1850.

The typical inventor in our sample obtained only one patent during his lifetime and relied

rather limitedly on co-patenting. For instance, about 72% of all inventor names in our sample

occur only once throughout the period 1700–1850, while recurring names often correspond

to widespread English names that are likely to identify homonyms. In this setting, the high

cost of patenting can contribute to explain why it was a relatively rare event in the course

of a lifetime. As expressed in 2010 constant prices, the overall cost of obtaining a patent in

Great Britain during the period of interest is estimated in the range £107 000–£178 000 (see

Bottomley, 2014b, p. 61). These high patenting costs did not seem to induce an especially high

propensity to co-patent as a possible strategy for cost sharing. By means of comparison, in

present-day United Kingdom “more than 80% of all patents are registered to more than one

inventor [. . .] often in collaboration with universities, public agencies, and research centres”

(Crescenzi et al., 2016, p. 177). On the other hand, less than 11% of all patents awarded

in Great Britain over the time period 1700–1850 were associated to more than one patentee;

moreover, when co-patenting occurred, it often involved father and son. Overall, then, we are

looking at a sample of “independent inventors” that had to bear significant costs in order to

obtain a patent.

Clearly, the use of patent data to capture the spatial distribution of innovative activities is
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1700 1750 1775 1800 1825 1850

Argyll
Ross & Cromarty

Caithness
Radnorshire

Nairn
Rutland

Kirkcudbright
Bute

Clackmannan
Kincardine
Roxburgh

Berwick
Anglesey

Montgomeryshire
Pembrokeshire

Selkirk
Dumfries

Brecknockshire
Carnarvonshire

Dumbarton
Linlithgow

Stirling
Haddington

Westmorland
Flintshire

Denbighshire
Fife

Herefordshire
Huntingdonshire

Dorset
Aberdeen

Perth
Forfar

Ayr
Cumberland

Monmouthshire
Carmarthenshire

Berkshire
Buckinghamshire

Yorkshire NR
Cambridgeshire

Northamptonshire
Bedfordshire
Lincolnshire

Renfrew
Hertfordshire

Oxfordshire
Glamorganshire

Shropshire
Sussex

Wiltshire
Norfolk

Yorkshire ER
Suffolk

Cornwall
Durham

Hampshire
Essex

Leicestershire
Cheshire

Derbyshire
Worcestershire

Edinburgh
Somerset

Northumberland
Devon
Lanark

Nottinghamshire
Kent

Gloucestershire
Staffordshire

Yorkshire WR
Warwickshire

Surrey
Lancashire
Middlesex

1 214 inventors

Figure 2: Arrival of patent inventors by county and year, 1700–1850.
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potentially subject to some limitations. In particular, given the high cost of patenting, many

inventions could remain unpatented and their distribution across counties could possibly diverge

from that of patented inventions, for instance as a result of differential access to credit markets.

In order to check whether our patent data suffer from this type of distortion, we compare the

residence of patent inventors in our sample between 1826–1850 with the residence of other

inventors that participated at the 1851 Crystal Palace World’s Fair in London but did not

obtain a patent (see Moser, 2011). As shown in Figure 1, these two types of inventors display a

very limited discrepancy in their spatial distributions across counties. In particular, the map in

Figure 1a shows that the difference between the county shares of inventors that patented their

inventions and those that did not obtain a patent is nearly null in most counties, while being

slightly higher in Lancashire, Surrey, Middlesex, and Yorkshire West Riding. In addition, the

histogram in Figure 1b shows that the difference between county shares of inventors with and

without patents has a symmetric distribution tightly centered around 0, so that the location

of patent inventors does not seem to suffer from any systematic bias as compared to inventors

that did not obtain a patent. These visual insights are furthered by a standard statistical test.

Namely, the two-sample Kolmogorov-Smirnof test does not reject the null hypothesis that the

county shares of patent inventors between 1826–1850 follow the same distribution as the county

shares of 1851 Crystal Palace inventors that did not obtain a patent (p-value = 0.45). In fact,

these two measures of inventor location have a correlation coefficient of 0.95. Overall, then,

this evidence suggests that the patent data in our sample may well be representative of the

spatial distribution of inventive activities by and large.

As shown in Figure 2, patent inventors in our sample are unevenly distributed across coun-

ties and become gradually more frequent over the course of British industrialization. Again,

patenting remained a very expensive and complicated administrative process throughout the

period 1700–1850, so that the increasing frequency of patents is unlikely to be associated with

a systematic decline in their quality (see Bottomley 2014b, pp. 42–65, 74 and MacLeod 1988,

p. 76). At any rate, each patent is linked to multiple quality indicators that serve here to iden-

tify high-quality inventions. Such indicators have been developed starting from Woodcroft’s

(1862) work for the English Patent Office, in which each patent is associated to the various

references it receives in some of the main legal and technical publications of the time. Using

this source, Nuvolari and Tartari (2011) construct a reference count known as the Woodcroft

Reference Index (WRI), which can also be normalized by sub-period average (WRI*) to reduce

the possible bias in favor of more recent patents. Then, to further correct for time and industry

biases while also sensibly extending the set of publications considered in the reference count,

Nuvolari et al. (2021) construct the so-called Bibliographic Composite Index (BCI). Being more

accurate and sophisticated, this latter indicator represents our preferential way to identify high-

quality inventions according to an upper-tail threshold. In our baseline specification, we set

such threshold to the top 5% of the BCI distribution so as to identify the high-quality inventors

shown in Figure 3. Yet, all of the estimates that will be discussed in Section 4.1 are robust

to the use of any of the other patent quality indicators discussed above, as well as to sensible

variations of the quality threshold.

Notably, our patent data display some industry specificities as soon as they are observed
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1617 1700 1750 1775 1800 1825 1850

Sussex

Yorkshire NR

Leicestershire

Norfolk

Aberdeen

Lincolnshire

Shropshire

Stirling

Herefordshire

Worcestershire

Denbighshire

Wiltshire

Dumfries

Haddington

Hertfordshire

Gloucestershire

Edinburgh
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Figure 3: Arrival of high-quality patent inventors by county and year, 1617–1850 (top 5%).
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Figure 4: Number of patents by industry.

Note: The classification of patents by industry comes from Nuvolari and Tartari (2011). See text for further
details.

from a spatial perspective. For each patent, we identify its industry of application according to

Nuvolari and Tartari’s (2011) classification, which rests on the synthetic description of invention

provided in Woodcroft (1854).2 As shown in Figure 4, almost all patents regard the secondary

sector, with engines and textiles representing the most common industries of application for

patents granted between 1700–1850. Specifically, both engines and textiles are associated to

about 1500 patents each, accounting overall for nearly 25% of our sample. By contrast, the third

most common industry of application (chemicals) follows from afar with about 1000 patents.

More importantly for the purpose of this study, the spatial distributions of inventors in engines

and textiles display significant specificities.

On the one hand, the typical county of residence differs substantively for inventors in engines

and textiles as compared to their homologues in other industries. Figure 5 illustrates this type

of evidence by associating each patent inventor to the centroid of his county of residence, so as

to trace the resulting mean spatial center between 1700–1850. As a general rule, all industries

tend to move from South-East to North-West during the industrial revolution: by and large,

this evolution reflects the gradual growth of Lancashire, the West Riding of Yorkshire, and

Warwickshire as possible alternatives to Middlesex and Surrey (see also Figure 2). Nonetheless,

the mean spatial center of patent inventors differs across industries both in its starting point

and subsequent spatial evolution. As shown in Figure 5, textiles inventors were not as driven

toward London until the first half of the 19th century, and later on they moved even more

markedly toward Lancashire. Inventors in engines, instead, were initially more comparable

to their homologues in other industries from a spatial point of view, but during the mature

phase of industrialization they took a more pronounced step toward Lancashire. For inventors

in other industries, instead, the displacement over time is much less accentuated and London

essentially continued to be their main hub all throughout the industrial revolution.3

2Following this approach, Nuvolari and Tartari (2011) classify all patents granted between 1617–1841. In
this paper we extend their classification to 1850.

3To be sure, Figure 5 aggregates all industries other than engines and textiles precisely because the typical
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Figure 5: Evolution of the mean spatial coordinate of patent inventors, 1700–1850.

Note: This figure is constructed by associating each patent inventor to the centroid of his county of residence.
Observations are then divided into five quantile groups according to the year of patent registration, so as define
the time periods indicated on the map. This periodization ensures that the amount of spatial noise remains
approximately constant across time periods, so that the evolution of the mean spatial center can be meaningfully
compared over time and across industries with a sufficiently large number of observations.

On the other hand, industry specificities emerge also by looking at the dispersion of patent

inventors across British counties. To illustrate this aspect, Figure 7 shows the cross-country

distribution of patent inventors in each sub-period of the industrial revolution. For instance,

between 1700–1750, about 90% of counties hosted less than 0.01% of inventors in textiles

(see the leftmost white bar in Figure 7a), thus indicating that a vast majority of counties

was essentially void of engines inventors while a few counties had large shares of them. A

similar fact holds for inventors in the textiles industry during the same time period (see the

leftmost white bar in Figure 7b). By contrast, just above 60% of counties were equally void

of inventors operating in other industries between 1700–1750 (see the leftmost white bar in

Figure 7c). In this sense, during the fist half of the 18th century, inventors in textiles and

engines were less geographically common than their homologues in other industries. Then, over

the course of industrialization, all patent inventors became more geographically common: that

is, the leftmost bar in Figures 7a-7c systematically decreases as times elapses from 1700 to

1850. Nonetheless, the extent of dispersion—and thus of spatial concentration—is again rather

heterogeneous across industries. Although a very few counties keep dominating the landscape

by hosting a very large share of inventors all throughout the time period under scrutiny, the

county of residence for inventors in each of these other industries closely resembles the aggregate pattern. Hence,
we chose to show only the aggregate pattern in order to facilitate the visualization of the figure.

11



Table 2: PST-industry matching.

PST code Group Section Occupation Industry

2,65,1,1-2
Machines and tools

Machine making
Engine maker, pump
maker, millwright,
mechanic.

Engines
2,65,3,– Engineering

Engineer5,35,8,– Professions
Engineering professions

5,36,8,– Professional support

2,20,–,– Textiles Manufactures of textiles

Spinner, weaver, dyer,
printer, preparer,
threader, twister,
processor, maker,
fuller, carder,
scribbler, shearman,
etc.

Textiles

2,[0-15],–

Other manufacturing occupations
Other

manufacturing

2,[25-63],–

2,65,1,[3-60]

2,65,2,–

2,65,4,–

2,65,99,60

2,[66-95],–

Note: PST codes, groups, sections, and occupations are taken from the PST dictionary provided by CAM-
POPa (2021), while the allocation of the various occupations to each industry is the authors’ own elaboration.

extent of such spatial dominance is heterogeneous across industries (see the rightmost bar in

each sub-plot of Figure 7). For instance, the leading county may host up to 50% of industry

inventors in engines (see Figure 7a), while its counterpart in textiles attracts at most 38% of

industry inventors (see Figure 7b). Overall, then, these descriptive statistics point to a complex

geography of innovation in which industry specificities are to be taken into account.

The present work rests also on a variety of other data that serve as descriptors of county

attractiveness. Table 1 summarizes these data and their sources, while Figures 6 and 9 map

some of the main control variables to provide a visual summary of their evolution over the

course of British industrialization. Typically, only one or a few snapshots are available for

each of the relevant variables, so that interpolation and extrapolation must be used to estimate

missing observations when needed. Given the admittedly approximate nature of the data at

stake, we resort simply to linear interpolation/extrapolation over time. Under these caveats,

our control variables are broadly meant to trace the spatial distribution of productive activities

as well as the different potential for the expansion of production that characterized each county.

Controlling for the location of production poses some constraints to our empirical analysis

because employment data by county become available only with the 1841 Census Report. As

long as we run our analysis without any distinction on the industry in which inventors were

active, we can overcome this data limitation by using population size by county as a proxy for

the spatial distribution of aggregate production. Population size by county can be recovered

also for the early phases of industrialization relying on the census data reported by the House
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Figure 6: Some of the main control variables in 1699, 1775, and 1841.
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of Commons Parliamentary Papers (1831, 1851) and by Webster (1952), as well as on the esti-

mates by Wrigley (2007, 2009). The correlation between population size and total employment

by county is indeed about 0.99 in 1841, so that little accuracy should be lost by using the

former as proxy for the latter. At any rate, we also construct a dummy variable to identify

counties that hosted fast-growing manufacturing centers (see in particular the identification of

“textile or metalworking towns” made by Trinder, 2008 and the “industrial counties” defined

in Shaw-Taylor and Wrigley, 2014, as well as the related account by Barry, 2008). Albeit

admittedly crude, this dummy variable serves to highlight the distinct spatial distribution of

manufacturing activities, so as to capture the specific linkages that patent inventors might

have with this particular sector of production. For the post-1841 period, instead, we recover

industry-level employment by exploiting occupational data from the Cambridge Group for the

History of Population and Social Structure, using both male and female occupations for workers

aged under and over twenty years (see CAMPOPa, 2021, for further details). Starting from

occupational data classified into primary, secondary, and tertiary (PST) sectors and groups, we

reconstruct industry-level employment by county according to the scheme reported in Table 2

(see Wrigley, 2010, for further details on the PST classification). Similarly to the manufactur-

ing dummy discussed above, these various employment variables serve in particular to control

for industry-specific linkages between inventive and productive activities, such as the ancillary

relations discussed by Balderston (2010, p. 578).

The organization of production at the county level is further characterized in terms of its

concentration across urban centers. When the population of a county concentrates in a few

larger cities, the resulting local labor markets tend to be deeper than what they would be if the

same number of individuals were dispersed across several smaller towns. In turn, deeper labor

markets increase the potential for specialization, which may ultimately stimulate innovation.

To account for this possible effect, we compute the Herfindahl–Hirschman index (HHI) of city

concentration by county. Specifically, we use the data on city size by Bairoch et al. (1988) to

obtain the county population share sl,i of city i in county l, so that the corresponding measure

of city concentration by county is defined as HHIl =
∑

i s
2
l,i. Clearly, this measure can also be

interpreted more broadly as an indicator of urbanization.

Another key aspect relating to the productive potential of counties during the British indus-

trial revolution has to do with local access to coal. Authors such as Wrigley (1990) emphasize

the key role of coal as the “new” source of energy that ultimately allowed for the large-scale

growth of production during the industrial revolution. In parallel, Clark and Jacks (2007) show

that the transportation cost of coal determined most of its final price, so that the access to this

key resource generally decreased with the physical distance from the coal fields. To capture

these aspects, we resort to the notion of potential accessibility from the transport geography

literature (see Rodrigue, 2020, pp. 380–382). According to this approach, the potential access

that a spatial unit has to a mobile resource depends on its local endowment and on the dis-

tance from other sources. Formally, the vector eh = (e1,h, . . . , eL,h)
′ describes the endowment

of resource h across L counties, while WL×L is the related spatial weight matrix. Given the dis-

tance measure di,j between county i and j, matrixW is conventionally defined as having entries

wi,j = 1/di,j for i 6= j and 0 on the diagonal. To avoid dependence on the unit of measurement
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(c) Other industries.

Figure 7: Distribution of inventors across counties, 1700–1850.

Note: For each sub-period and industry, the leftmost bar includes all and only counties hosting exactly zero
patent inventors, whereas the rightmost bar includes counties that host more than 10% of patent inventors in
the relevant sub-period and industry.

while preserving symmetry, these entries can be transformed as wsi,j = wi,jL/
∑

i

∑
j wi,j, thus

obtaining the globally standardized spatial weight matrix W s. A measure of potential access

to resource h can then be defined as ẽh = eh + W seh. In the present context, we use this

definition to construct our measure of access to coal. In particular, we realy on Flinn’s (1984)

coal output data to construct the vector of endowments by county and we define di,j as the

Euclidean distance between counties. As shown in Table 1, we use the same approach also

to quantify potential accessibility to high-quality and out-of-industry inventors. As a remark,

the results presented here are qualitatively robust to alternative definitions of W relying on

higher-order contiguity criteria, as well as to the use of row-normalization.

3 Localization model

We rely on the localization model introduced by Bottazzi et al. (2007) to assess the determi-

nants of inventor location during the industrial revolution. In broad terms, such model studies

how N agents distribute across L discrete alternatives when positing a stochastic process with

Ehrenfest-like “disruptions” and Brillouin-like “creations”. These can be invariably interpreted

either as the genuine exit and entry of agents or as preference revision. The resulting stochastic

process bears a close connection with the generalized Polya urn framework discussed in Arthur

et al. (1987) and Dosi et al. (1994), particularly for the role played by positive feedback mecha-

nisms. Here, however, the stochastic process entails an irreducible Markov chain characterized

by a unique invariant distribution independent from the initial state of the system, thus being

ergodic. Such distribution represents the stochastic equilibrium of the model and its governing

parameters can be estimated thanks to ergodicity. In this section we provide only an essential

summary of the model as introduced by Bottazzi et al. (2007) and the related working paper by

Bottazzi and Secchi (2007). Instead, Garibaldi and Scalas (2010, esp. Ch. 7) provide a general

characterization of models in the Ehrenfest-Brillouin class and further clarify their relation with

the Polya urn framework.

Consider a population of N agents and L discrete locations. Due to agent heterogeneity
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and limited information about their preferences, the attractiveness of a location is defined in

probabilistic terms rather than in a deterministic way. Following Arthur (1990), the probability

pl for site l to be selected is proportional to a fixed component plus a function of the number

of agents in l. Namely,

pl =
al + bnl
A+ bN

, a > 0, b ≥ 0 , (1)

where nl is the number of agents in l, A =
∑L

j=1 aj, and N =
∑L

j=1 nj. In equation (1), the fixed

term al represents the “intrinsic attractiveness” of site l, as it captures those location-specific

advantages that are independent from how many agents site in l. For example, a location

that hosts more productive activities can prove intrinsically more attractive for inventors, as

it may guarantee a higher local demand for technological innovation. On the other hand,

equation (1) allows for pl to depend also on a “social term”, which grows linearly with the

number of agents in l according to the magnitude of the global parameter b.4 Specifically, the

siting of agents is subject to a positive feedback mechanism for b > 0. In this case, having

an extra agent that localizes in l leads other agents to select l with higher probability, thus

generating an interdependence in the siting of agents. We thus refer to such an effect as a

localized externality, given that it is entirely self-contained within site l without any spatial

diffusion toward other sites.

What form of spatial order, if any, can emerge under this setup? To address this question,

one can consider a dynamical system in which a state is represented by the occupancy vector

n = (n1, . . . , nl, . . . , nL) , (2)

where nl ≥ 0 ∀l and
∑L

l=1 nl = N . In such system, the transition from n to the subsequent

state n′ occurs via a unary move, which decreases the occupancy vector by one unit in m while

increasing it by one unit in l. Formally,

n′ = n+ δl − δm , (3)

where δj = (0, . . . , 0, 1, 0, . . . , 0) is a vector of length L with the j-th entry equal to 1 and

all other entries equal to 0. This elementary event can be invariably interpreted either as the

genuine exit of an incumbent followed by the entry of a new and generally different agent, or

as choice revision on the side of an agent.

The evolution from state n to n′ is specified by a transition probability. Assuming that none

of the agents has a higher chance to revise its location, the probability of “disruption” in m is

uniform. Hence, the so-called “Ehrenfest term” is P (nm |n) = nm/N , where nm = n− δm. In

turn, the probability of “creation” in l derives from conditioning equation (1) to the “disruption”

in m, thus defining the so-called “Brillouin term” P (n′ |nm). It follows that the one-step

transition probability from state n to n′ is

P (n′ |n) = P (nm |n) · P (n′ |nm) =
nm
N
· al + b(nl − δl,m)

A+ b(N − 1)
, (4)

4See Bottazzi et al. (2017) for a version of the model in which pl is a quadratic function of nl.
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Figure 8: Marginal distributions of π(n;a, b)

where δl,m is Kronecker’s delta equal to 1 for l = m and zero otherwise. Equation (4) determines

a finite Markov chain having as state space the set of L-tuples SNL = {n, nl ≥ 0,
∑L

l=1 nl = N}.
Given that al > 0 ∀l, each state in SNL can be reached with positive probability, and a location

that is empty once can be successively occupied again. Hence, all states in SNL are persistent and

the related Markov chain is irreducible. Consequently, it admits a unique invariant distribution

π(n;a, b) independent from the initial state of the system. In this sense, the distribution

π(n;a, b) is ergodic (see Bottazzi and Secchi 2007, especially Propositions 3.3–3.4 and Garibaldi

and Scalas 2010, especially Chs. 6–7).

The invariant distribution π(n;a, b) is governed by the intrinsic attractiveness parameters

a = (a1, ..., aL), and by the externality parameter b. Together, these (L + 1) parameters fully

determine the expected number of agents in each of the L locations in n. In general, π(n;a, b)

has the Polya form

π(n;a, b) =
N !Γ(A/b)

Γ(A/b+N)

L∏
l=1

1

nl!

Γ(al/b+ nl)

Γ(al/b)
. (5)

However, π(n;a, b) reduces to a multinomial form in the specific case of null externalities (that

is b = 0):

π(n;a, b = 0) = N !
L∏
l=1

1

nl!

(al
A

)nl

. (6)

Therefore, the model predicts two qualitatively distinct scenarios depending on whether local-

ized externalities have a role in the siting of agents.

The qualitative behavior of π(n;a, b) is illustrated in Figure 8 by plotting the marginal

distributions of π(n;a, b) for varying values of al and b. In each sub-figure, only one of the

underlying parameters is allowed to vary while all other parameters are kept constant, so as

to highlight the effect of the varying parameter on the probability mass. On the one hand,

locations associated to a higher value of al face a higher probability to host more agents (see

Figure 8a). On the other hand, a higher value of b moves the probability mass from center

to tails of the distribution other things being equal (see Figure 8b). Indeed, when localization

is more interdependent, a site faces higher chances to end up being either highly populated

17



or nearly void, despite being similar to all other locations in terms of its intrinsic attractive-

ness al. In this scenario, some degree of spatial concentration arises with certainty and its

primary driver is the positive feedback underlying localization. By converse, the weakening of

b drives the distribution to become more symmetrically centered around some “typical” value

of nl, which is ultimately determined by how location l fares relative to other locations in

terms of its intrinsic attractiveness al. If b is sufficiently low and al is fairly uniform across

locations, then the expected number of agents will tend to be similar across locations. In this

case, spatial concentration would be low. But if locations are more heterogeneous in their

intrinsic attractiveness al while b remains low, then those locations with a higher al will be

expected to host more agents (see Figure 8a). Also in this case, therefore, spatial concentration

would be relatively strong. In this sense, the observed degree of spatial concentration is an

insufficient information to infer whether localized externalities are particularly strong. In fact,

such concentration could emerge also from the combination of low externalities with highly

heterogeneous intrinsic attractiveness (on a similar point, see also Ellison and Glaeser, 1997,

pp. 896–897, Proposition 1). The present model and the related estimation procedure serve

precisely to discriminate these different scenarios and disentangle the various underlying effects

starting from the observed spatial distribution of patent inventors.

4 Empirical approach

The model described in Section 3 can be taken to the data presented in Section 2 with the

methodology described by Bottazzi and Gragnolati (2015) for cross-sectional data. In broad

terms, such an approach consists in implementing maximum likelihood estimation as well as a

procedure of model selection, so as to ultimately derive the marginal elasticities associated to

the various determinants of localization.

4.1 Estimation and marginal elasticities

The model presented in Section 3 has L+ 1 unknown parameters, namely the intrinsic attrac-

tiveness vector a = (a1, . . . , aL) and the externality coefficient b. Hence, the model cannot

be estimated in such form on a single cross section with L observations. To overcome this

limitation, one can instead interpret the equilibrium distribution π(n) as being governed by a

set of H � L observed variables xl = (x1,l, . . . , xh,l, . . . , xH,l) via the function g(β,xl), where

β = (β1, . . . , βh, . . . , βH) is a vector of unknown parameters to be estimated. Notice in particu-

lar that π(n) depends on the ratio al/b in equation (5), so that a generic functional specification

of the Polya model can be obtained by setting al/b = g(β,xl). On the other hand, π(n) de-

pends only on al in equation (6), so that the corresponding functional specification for the

Multinomial model is obtained by setting al = g(β,xl).

Substituting g(β,xl) for al/b in (5) and for al in (6), one can express the equilibrium dis-

tribution π(n;β) for the Polya and Multinomial model respectively. In each of these cases,

the maximization of log π(n;β) with respect to the unknown parameters β yields the maxi-

mum likelihood point estimates β̂. Specifically, the log-likelihood as function of the unknown
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parameters β for the Polya model reads

log π(β | n,x) = log(N !)−
L∑
l=1

log(nl!) +
L∑
l=1

nl−1∑
k=0

log(g(β,xl) + k)−
N−1∑
k=0

log(G+ k) , (7)

where G =
∑

l al/b =
∑

l g(β,xl). Maximizing (7) with respect to β yields the point estimates

β̂ and the coefficients ĝl = g(β̂,xl) = ˆal/b and Ĝ =
∑L

l=1 ĝl for the Polya model. On the other

hand, the log-likelihood for the Multinomial model reads

log π(β | n,x) = log(N !)−
L∑
l=1

log(nl!) +
L∑
l=1

nl (log g(β,xl)− logG) , (8)

where G =
∑

l al =
∑

l g(β,xl). Maximizing (8) with respect to β yields the point estimates

β̂ and the coefficients ĝl = âl = g(β̂,xl) and Ĝ =
∑L

l=1 âl for the Multinomial model.

The estimated coefficients ĝl can then be straightforwardly plugged into equation (1) to

estimate the probability pl. By doing so, one can assess the impact of xh,l or nl on the probability

pl and thus on the attractiveness of a location. In order to work on an unbounded measure of

attractiveness, we consider the probability transformation

ql = − log(1− pl) . (9)

Equation (9) is unbounded from above, so that enough room for variation is provided even when

the overall attractiveness of a location is high. By measuring how much ql varies in response

to an infinitesimal change in xh,l and nl, one can assess the impact of these variables on the

attractiveness of a location.

As a last step for estimation, one needs to specify the function g(β,xl). Here we adopt the

log-linear specification

g(β,xl) = exp

(∑
h

βh log(xh,l) + β0

)
. (10)

Equation (10) is equivalent to the standard Cobb-Douglas form eβ0
∏

h x
βh
h,l. Hence, if the

different effects associated of the variables xl = (x1,l, . . . , xH,l) were independent from each

other, gl could be interpreted from a probabilistic perspective as the accumulated multiplicative

effect of these variables on the probability of localization. As a remark, the Multinomial log-

likelihood function (8) is invariant for a rescaling factor, so that the transformation al →
λal applied to each al leaves the likelihood level unchanged. Hence, when estimating the

Multinomial model, we set β0 = 0 to avoid over specification.

Given specification (10) and considering that ql is a logarithmic transformation of pl, the

proportionate impact of xh an n on the overall attractiveness of a location can be estimated
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with the following marginal elasticities:

∂q

∂ log xh
=

L∑
l=1

∂ql
∂ log xh,l

= β̂h
Ĝ

N + Ĝ
, (11)

∂q

∂ log n
=

L∑
l=1

∂ql
∂ log nl

=
N

N + Ĝ
, (12)

for the Polya model and

∂q

∂ log xh
=

L∑
l=1

∂ql
∂ log xh,l

= β̂h , (13)

for the Multinomial model. Equations (11)–(13) measure of how much a proportionate increase

in xh or n affects total attractiveness q, and naturally these measures depend on the distribution

of agents and features across locations. The statistical significance of the estimated marginal

elasticities (11)–(13) is assessed by bootstrap resampling, which allows to associate a p-score

to each estimate. To provide an intuitive illustration of estimate behavior under the Polya and

Multinomial model, Appendix A discusses the result of estimation and model selection for three

different toy examples representing easily recognizable scenarios.

4.2 Model selection

The invariant distributions (5) and (6) associated respectively to the Polya and Multinomial

model represent two alternative scenarios. To evaluate which of these predictions is more

compatible with the data, one can rely on a standard procedure of model selection. Specifically,

we use the Akaike Information Criterion corrected by finite sample size (AICc) to compare the

relative performance of alternative models contemplating a different number of parameters

(see Akaike, 1974, Hurvich and Tsai, 1989, for a theoretical fundation). In the present case,

for instance, the Polya model has the extra parameter β0 as compared to the Multinomial.

Formally,

AICc = 2k − 2 ln(L) +
2k(k + 1)

L− k − 1
, (14)

where L is the sample size (i.e. the number of counties in our case), k is the number of

parameters in the model, and L is the maximized value of the likelihood function. Between two

alternative models, the one with a lower AICc is to be preferred, as it dissipates less information

about the underlying data generating process. In this sense, the AICc prizes goodness of fit via

L and penalizes the number of parameters through k.

As a remark, it is worth noting that the AICc will not generally lead to select the Multino-

mial over the Polya model only when localized externalities are nearly null. Also intermediate

estimates of ∂q/∂ log n may be associated to Polya AICc values that exceed their Multinomial

counterparts. In this sense, our criterion of model selection seems rather severe in admitting the

superiority of a scenario that contemplates localized externalities. In Appendix A, we provide

an example that further illustrates this point (see especially Figures A1e–A1f and the related

discussion). Once a model is selected, one can also assess its absolute performance via standard
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pseudo-R2 measures.

5 Estimating the drivers of inventor location

The H regressors that enter g(β,xl) ultimately define the intrinsic attractiveness of counties.

Besides the obvious limitations regarding data availability for the time period under scrutiny,

there are four considerations to be made about the various estimations presented in the following

sections and the related variables summarized in Table 1.

First, all control variables are pre-determined relative to the time period at which the spatial

distribution of patent inventors is observed. This serves to mitigate concerns of simultaneity

between the location choices of inventors and those of other economic agents, which could

otherwise bias the estimates.

Second, we insert all controls that manage to diminish the magnitude of ∂q/∂ log n, so that

the resulting estimates of localized externalities is as conservative as possible given the available

data. In particular, we devote special attention to accounting for the spatial distribution of

production. Additionally, we also take in consideration other key factors such as the specific

role of high-quality inventors or the transportation costs involved in the patent application

process.

Third, the choice of controls can also partly serve to characterize the type of externality

captured by ∂q/∂ log n. In particular, Scitovsky (1954) traces a distinction between pecuniary

and technological externalities, as a way to capture the role of market exchanges in the unfolding

of interdependicies among economic agents. In turn, Storper (1995) argues for an especially

important role of “untraded interdependencies” in shaping the economic success of regions.

The present analysis will then try to provide some interpretation in this regard based on the

specific type of patent inventors that characterized the British industrial revolution as well as

on the descriptors that shape the intrinsic attractiveness of counties.

Fourth, the relevant control variables necessarily differ between estimations operating at

the aggregate level and at industry level. In particular, when looking at the aggregate pool of

patent inventors, the county population size can be a sufficiently accurate proxy of aggregate

employment. By contrast, industry-level estimation have to rely on industry-level employment,

which in turn constrains our analysis of the engines and textiles industries to the time period

1842–1850.

Given these considerations, in the following sections we focus our presentation only on

those specifications of g(β,xl) involving regressors whose estimated marginal elasticity reaches

at least a 95% confidence level in at least some of the estimations at stake (such regressors

are summarized in Table 1). We test also other specifications of g(β,xl) including more vari-

ables, but their marginal elasticities turn out to have a lower statistical significance and their

removal does not significantly affect the results. For this reason, we streamline the exposition

by presenting only the more minimal specifications of g(β,xl).
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5.1 Aggregate estimations by sub-period

Our first application of the empirical approach presented in Section 4 consists in estimating

the marginal elasticities associated to the various determinants of inventor location across the

sub-periods in which the industrial revolution is traditionally subdivided. In doing so, one is

essentially running an empirical exercise in comparative statics. Each sub-period is interpreted

as a separate realization of the spatial equilibrium described in Section 3, so that different

underlying parameters are generally expected to be governing such an equilibrium across sub-

periods. The objective is then to trace how the resulting marginal elasticities have evolved over

time.

In each estimation, the variable to be predicted at the county level is the number of resident

patent inventors that obtained a patent during the sub-period under scrutiny. In this respect,

it is worth noting that sub-periods must avoid being too short, considering that the minimum

length of protection guaranteed by a patent was 14 years and inventions could well retain eco-

nomic value beyond the length of protection. For this reason, we stick to the periodization

that is traditionally used to study the industrial revolution. This facilitates also the compara-

bility of our results with the existing literature. On the other hand, all control variables are

pre-determined to minimize concerns of simultaneity: namely, if the sub-period under scrutiny

runs between years [t, t + k], the related control variables will date in year t − 1. In the case

of high-quality inventors, however, we consider all occurrences from the previous sub-period:

for instance, if the sub-period of interest is 1776-1800, the high-quality patents that enter the

controls are those that were granted between 1750–1775.

In our sub-period estimations, we control for the underlying geography of production by

means of four separate variables, which are meant to capture different facets of the possible

spatial relations between inventive and productive activities. First, we use population size by

county to proxy the spatial distribution of aggregate production. While allowing to investi-

gate also the early phases of industrialization, this control is especially important in virtually

all of the aggregate estimations that we run. Second, we account specifically for the local-

ization of manufacturing—as opposed to aggregate—production with a dummy variable that

identifies counties which hosted historically known manufacturing centers. The main reason

to control specifically for the spatial distribution of manufacturing is that a typical inventor

of the industrial revolution possibly had to rely on a variety of intermediate inputs that were

provided by auxiliary manufacturing activities. In this respect, the manufacturing dummy con-

stitutes an admittedly imperfect variable, which will in fact undergo some refinement in the

industry-level estimations of Section 5.2. Third, we further qualify the spatial distribution of

aggregate production by measuring the extent to which population is spatially concentrated

within each county, so as to characterize the typical depth of local labor markets. Deeper local

labor markets indicate a higher potential for labor specialization, which in turn could favor the

achievement of relevant innovations. To capture this possible effect, we include as a regressor

the Herfindahl–Hirschman index of city concentration. Finally, we control for the energetic

potential of counties as measured by local access to coal. While being tightly linked to the

early development of specific energy-intensive activities such as iron smelting and metallurgy,
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the local availability of coal serves more broadly to characterize counties according to how much

their energy base could support an expansion of production.

Besides production, we control for the access to high-quality patent inventors. Doing so

helps to keep our empirical implementation aligned with the theoretical model on which esti-

mation is based. Specifically, the term bnl in equation (1) defines a role for the sheer scale of

local interactions among inventors, while being silent about any effect related to the quality of

such interactions. In this sense, controlling for the spatial distribution of high-quality inventors

tends to remove from the estimate of ∂q/∂ log n the potentially confounding effect of patent

quality. While facilitating the interpretation of our estimates according to the theoretical model

in Section 3, this strategy can also serve to assess the specific influence of breakthrough innova-

tions in shaping the spatial distribution of inventive activities. In principle, such an influence

could materialize in different and possibly complementary ways. On the one hand, if knowl-

edge spillovers were to have a role, superstars might contribute more valuable knowledge to the

common local pool. On the other hand, the occurrence of a technological breakthrough may

leave a legacy to its place of invention by fostering an upgrade in the skills and competences of

the local labor force. For instance, Meisenzahl and Mokyr (2012) point to the importance of

“tweakers”and “implementers” in favoring innovation during the industrial revolution. More

broadly, then, the location of high-quality inventors is likely to closely reflect the spatial dis-

tribution of upper-tail human capital, which Mokyr (2016, 2018) regards as a key driver of

innovation during the industrial revolution.

Finally, the distance from London controls for the transportation costs that inventors had

to endure in order to carry out a patent application at the only office available in the country.

Generally, these costs could be driven both by the sheer duration of travel to London and by

the need to cover the same route multiple times, given that the application procedure normally

lasted several months. For example, in reporting Samuel Taylor’s diary details from when he

was attending his patent petition, Bottomley (2014b, p. 44) notices how “it took Taylor five

days to travel from Manchester to London on horseback” and “five months [. . . ] until the

patent was eventually sealed in February 1723”.

5.1.1 Results by sub-period

With these caveats, the results of our sub-period estimations are reported in Tables 3–4 and

can be summarized as follows.

First, the Multinomial model outperforms the Polya up to the mid-18th century, and then

the reverse becomes true. More precisely, Tables 3–4 show that the AICc values associated to

the Multinomial model are lower than their Polya counterpart for the sub-period 1700–1750,

while Polya AICc values fall below Multinomial ones from the mid-18th century onward. Hence,

localized externalities became too strong to go statistically unnoticed once the industrial revo-

lution entered in its core phase. So, if “after about 1760 a wave of gadgets swept over England”

(Ashton, 1955, p. 42), this seems to have co-occurred with the emergence of a qualitatively

“new” determinant of inventor location. In this sense, the new era of sustained innovation

and growth that characterized the industrial revolution appears to be tightly linked with a
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Table 3: Marginal elasticities by sub-period with the Multinomial model.

Driver 1700–1750 1751–1775 1776–1800 1801–1825 1826–1850

Localized externalities – – – – –

Pre-determined Covariates

Population 1.30e+00∗∗ 7.06e−01∗∗ 9.72e−01∗∗ 9.43e−01∗∗ 1.16e+00∗∗

Manufacturing dummy 3.39e−01∗∗ 1.14e−01 2.64e−01 7.06e−01∗ 9.26e−01∗∗

City concentration (HHI) 1.61e−01∗ 2.20e−01∗ 1.39e−01∗ 9.18e−02∗∗ 5.80e−02∗

Access to coal 3.12e−01∗ 3.82e−01∗∗ −7.59e−02 −1.07e−01 4.32e−02

Access to high-quality inventors −1.49e−01 1.32e−01 3.42e−01∗∗ 1.96e−01 7.51e−02

Distance from London −7.58e−01∗∗ −8.00e−01∗∗ −3.59e−01 −2.61e−01 −3.29e−01

AICc 156.64 325.20 523.42 810.74 1669.25

McFadden adj. pseudo-R2 0.85 0.87 0.91 0.93 0.95

Number of counties 85 85 85 85 85

Spatial auto-correlation of standardized residuals

Moran’s I 0.06 −0.03 0.04 −0.01 −0.12

(p-value) (0.15) (0.58) (0.22) (0.52) (0.95)

Geary’s C 0.92 1.02 0.96 1.10 1.19

(p-value) (0.24) (0.62) (0.34) (0.81) (0.96)

Note: Marginal elasticities are computed with equation (13) and their statistical significance is assessed by
bootstrap resampling. The symbol ∗∗ indicates a 99% confidence level, while ∗ indicates a 95% confidence
level. Spatial auto-correlation statistics are computed using the queen neighborhood criterion to define
spatial weights and the related p-value is computed via Monte Carlo permutations.

structural change in the underlying geography of inventive activities.

Second, the size of local aggregate production as captured by county population size remains

the primary component of intrinsic attractiveness throughout the whole time period 1700–1850.

In particular, the magnitude of the marginal elasticity associated to population size generally

exceeds those of other control variables according to both Multinomial and Polya estimates in

Tables 3–4. Nonetheless, once localized externalities are accounted for with the Polya model,

the resulting pull of population on the location of inventive activities is found to weaken over

time according to the estimates reported in Table 4. A similar pattern emerges also for the other

descriptors of aggregate production. Conversely, localized externalities grow stronger over the

same period of time, which suggests an increasing relevance for spatially-bounded interactions

among inventors.

Third, high-quality inventors turn out to have a punctual impact on the attractiveness

of their county of residence. In particular, the marginal elasticity estimate associated to the

local availability of high-quality inventors does not reach the 95% confidence threshold for

most sub-periods under scrutiny, according to both the Multinomial and Polya estimates in

Tables 3–4. The only clear exception to this rule is represented by sub-period 1776–1800. All

else being equal, during these final years of the 18th century inventors were more likely to

site in counties that had previously hosted high-quality inventors. With respect to this result,

one should notice that some of the most famous inventors of the Industrial Revolution such as

James Watt, John Wilkinson, James Hargraves, and Richard Arkwright indeed obtained their
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Table 4: Marginal elasticities by sub-period with the Polya model.

Driver 1700–1750 1751–1775 1776–1800 1801–1825 1826–1850

Localized externalities 1.60e−05∗∗ 7.19e−01∗∗ 8.09e−01∗∗ 8.97e−01∗∗ 9.60e−01∗∗

Pre-determined Covariates

Population 1.30e+00∗∗ 2.23e−01∗∗ 1.49e−01∗∗ 8.95e−02∗∗ 2.98e−02∗∗

Manufacturing dummy 3.39e−01∗∗ 2.07e−02 4.05e−02 6.37e−02∗ 1.75e−02∗∗

City concentration (HHI) 1.61e−01∗ 4.88e−02∗ 3.54e−02∗∗ 9.04e−03∗ 1.77e−03

Access to coal 3.12e−01∗ 1.23e−01∗∗ 7.49e−03 3.83e−03 6.99e−03

Access to high-quality inventors −1.49e−01 4.96e−02∗ 6.19e−02∗∗ 1.97e−02 2.58e−02

Distance from London −7.58e−01∗∗ −2.24e−01∗∗ −7.95e−02 −4.07e−02∗∗ −7.16e−04

AICc 158.64 258.11 379.57 464.49 642.19

McFadden adj. pseudo-R2 0.85 0.90 0.93 0.96 0.98

Number of counties 85 85 85 85 85

Spatial auto-correlation of standardized residuals

Moran’s I 0.06 −0.02 0.03 −0.01 −0.10

(p-value) (0.13) (0.54) (0.24) (0.44) (0.96)

Geary’s C 0.92 1.04 1.01 1.10 1.05

(p-value) (0.21) (0.65) (0.56) (0.80) (0.69)

Note: Marginal elasticities are computed with equations (11) and (12) and their statistical significance is
assessed by bootstrap resampling. The symbol ∗∗ indicates a 99% confidence level, while ∗ indicates a 95%
confidence level. Spatial auto-correlation statistics are computed using the queen neighborhood criterion
to define spatial weights and the related p-value is computed via Monte Carlo permutations.

key patents in the “golden years” between 1769 and 1774, so that their impact is detected in

our estimates precisely for sub-period 1776–1800. Hence, these superstar inventors have likely

played some role in shaping the emerging geography of innovative activities during the British

industrial revolution.

Fourth, Tables 3-4 show that the distance from London gradually became less of an imped-

iment for a county to host patent inventors. Again, both the Multinomial and Polya models

detect an overall decline in the magnitude of this effect. While suggesting a generic decrease in

transportation costs, this result could be linked more specifically to the development of patent

agency starting from the 1770s, which implied that “inventors were no longer required to travel

to London to petition for the patent” (Bottomley, 2014b, p. 59).

Finally, Tables 3-4 report also some basic statistics of global spatial auto-correlation for the

residuals of each estimation. These statistics serve to gauge the presence of spatial structure

in the model errors. If residuals were to display global spatial auto-correlation, the estimated

model would likely suffer from the omission of some spatially lagged terms; otherwise, in-

teractions among neighboring spatial units should not be as concerning. For the sub-period

estimations in Tables 3-4, residuals do not appear to have a clear spatial structure. Specifically,

the null hypothesis Moran’s I = 0 is never rejected for any level of statistical significance above

87%, thus suggesting that residuals are randomly distributed in space. Similarly, also the null

hypothesis Geary’s C = 1 is never rejected for any level of statistical significance above 80%,

pointing again to the fact that neighboring residuals do not tend to be systematically simi-
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Figure 9: Employment in engines, textiles, and other manufacturing industries, 1841.

lar nor dissimilar. In both cases, the lowest p-value is obtained for Multinomial estimates in

sub-period 1700–1750. As a remark, p-values for Moran’s I and Geary’s C are here computed

by Monte Carlo permutations, so as to avoid a priori hypotheses on their distribution. Fur-

thermore, the values of I and C in Tables 3-4 are obtained using a queen contiguity criterion

to determine spatial weights; however, qualitatively similar results obtain when using other

contiguity criteria or distance-based weights.

5.2 Industry-level estimations between 1842–1850

The wave of innovation and productivity growth underlying the British industrial revolution has

been alternatively interpreted as an economy-wide phenomenon or as succession of industry-

specific shocks (see Crafts, 1985 and McCloskey, 2010 for rather opposing views). At any rate,

the mechanization of textiles and the diffusion of steam engines are largely regarded as the two

main processes that concretely made for the first wave of industrialization in Great Britain.

Unsurprisingly, then, patents in textiles and engines are by far the most frequent in our data

set (see Figure 4). Given these considerations, it becomes especially relevant to assess the

determinants of localization for patent inventors in these two key industries.

Moving from aggregate to industry level in the analysis of inventor location requires that

also the spatial distribution of production be controlled for at a finer disaggregation. As de-

scribed in Section 2, this constrains our industry-level analysis to the final phase of British

industrialization, given that employment in engines and textiles cannot be recovered at the

county level before 1841. As a consequence, to avoid simultaneity between the observation to

be explained and the related control variables, our industry-level analysis can only focus on

inventors that obtained a patent between 1842–1850. In turn, the availability of occupational

data allows to characterize the spatial distribution of productive activities more accurately.

Instead of controlling for the spatial distribution of aggregate production as in Section 5.1, here

our specification of g(β,xl) can separately account for various types of industry-level employ-

ment. For instance, when looking at the spatial distribution of engines inventors, we can control

for county-level employment in engines, but also for employment in the other key industry (i.e.

textiles), or for employment in other manufacturing activities. This allows to investigate the
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various types of local relations that inventors could have with productive activities within and

beyond their own industry of application.

Relatedly, an industry-level assessment of inventor location can help to better characterize

the local interactions among inventors that are responsible for external economies of scale. More

precisely, one can estimate the Polya model at industry level controlling contemporaneously

for the spatial distribution of production and for the location of inventors in other industries.

Therefore, the resulting estimate of ∂q/∂ log n would primarily capture direct interactions ac-

cruing locally among inventors in the same industry. For this reason, here we include in the

specification of g(β,xl) also the access to inventors who obtained a patent outside of the in-

dustry under scrutiny. Given that also these variables need to be pre-determined relative to

the observation of interest, we construct them considering patents that were granted between

1816–1841, so as to maintain a consistent time lag with the specification used in Section 5.1.

5.2.1 Results for engines and textiles between 1842–1850

While further confirming some of the results discussed in the previous sections, moving from ag-

gregate to industry level helps to have further insights on the determinants of inventor location

during the final phase of the British industrial revolution.

In line with the aggregate sub-period estimates discussed in Section 5.1, the industry-level

AICc values reported in Table 5 point to the superiority of the Polya model relative to the

Multinomial during the time period 1842–1850. Indeed, such a conclusion holds even when the

determinants of location for patent inventors are separately estimated for two key industries

such as engines and textiles, rather than in the aggregate. Similarly, the impact of localized

externalities at industry level proves to be sizable relative to other drivers, while also being

comparable in magnitude to its aggregate counterpart in Table 4. In parallel, Table 5 confirms

the close link between the location of inventive and productive activities. Both Multinomial and

Polya estimates indicate that industry employment is the strongest determinant of a county’s

intrinsic attractiveness in the eye of patent inventors. In particular, under the Polya model,

the impact of industry employment on the attractiveness of a county as measured in terms its

marginal elasticity is in the same order of magnitude as localized externalities.

Notably, the estimates in Table 5 suggest that the spatial distribution of inventors at in-

dustry level is predominantly affected by within-industry determinants. On the one hand, the

marginal elasticities associated to the location of employment in the other key industry or in

other manufacturing activities remain systematically below the 95% confidence threshold, re-

gardless of the particular model taken in consideration. We have also run some alternative

estimations in which “Other manufacturing employment” was further fragmented, so as to

possibly detect the role of more specific sectors such as metallurgy, precision instruments, or

scientific professionals. However, none of these alternative specifications delivered qualitatively

different results. On the other hand, also the marginal elasticity associated to the location of

non high-quality inventors in other industries remains systematically below the 95% confidence

threshold, irrespective of the model at stake. In parallel, we find some industry-specific role for

high-quality inventors in textiles. Relatedly, also the effect of localized externalities captured
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Table 5: Marginal elasticities at industry level, 1842–1850.

Driver
Multinomial Polya

Engines Textiles Engines Textiles

Localized externalities – – 6.24e−01∗∗ 7.57e−01∗∗

Covariates in 1841

Industry employment 6.76e−01∗∗ 6.85e−01∗∗ 2.21e−01∗∗ 1.81e−01∗∗

Employment in other key industry −1.23e−02 2.25e−01 7.15e−03 9.67e−02

Other manufacturing employment 1.86e−01 4.52e−01 1.16e−01 −3.09e−02

City concentration (HHI) 2.48e−03 6.05e−02 −4.20e−03 2.18e−02

Access to coal −2.37e−01 1.76e−01 −9.19e−02 4.72e−02

Access to industry high-quality inventors 2.18e−01 3.80e−01∗ 9.77e−02 8.43e−02∗∗

Access to other high-quality inventors 4.31e−01 −1.24e−01 1.65e−01 −1.84e−02

Access to other non high-quality inventors 3.17e−01 −5.43e−01 9.32e−02 −7.68e−02

Distance from London 2.08e−01 −7.95e−01 8.19e−02 −1.80e−01

AICc 260.96 306.27 236.20 230.58

McFadden adj. pseudo-R2 0.89 0.89 0.90 0.92

Number of counties 85 85 85 85

Spatial auto-correlation of standardized residuals

Moran’s I 0.03 −0.03 −0.05 −0.07

(p-value) (0.25) (0.57) (0.76) (0.84)

Geary’s C 1.07 1.04 1.10 1.15

(p-value) (0.72) (0.64) (0.80) (0.88)

Note: Marginal elasticities are computed with equations (11), (12), and (13) and their statistical
significance is assessed by bootstrap resampling. The symbol ∗∗ indicates a 99% confidence level,
while ∗ indicates a 95% confidence level. Spatial auto-correlation statistics are computed using
the queen neighborhood criterion to define spatial weights and the related p-value is computed via
Monte Carlo permutations.

by the Polya estimates in Table 5 should be understood as having a clear within-industry con-

notation. That is, the controls in use imply that the estimates of ∂q/∂ log n reflect primarily

the effect of local interactions among inventors operating within the same technological base.

Finally, the residuals for each of the estimations in Table 5 do not appear to be spatially

auto-correlated at any meaningful level of statistical significance. Hence, our industry-level

estimates do not seem to be worryingly affected by the omission of spatial lags. Again, the

values of I and C in Table 5 are computed with a queen contiguity criterion to determine spatial

weights, but other contiguity criteria or distance-based weights lead to the same conclusions

about the spatial auto-correlation of residuals.

6 Conclusion

This paper has provided a quantitative assessment of the determinants of location for patent

inventors during the British industrial revolution. As expected, the location of inventors turns

out to be closely intertwined with the spatial distribution of productive activities throughout

the time period under scrutiny. Starting from the mid-18th century, however, the geography of
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innovation underwent a structural change together with the whole economy. As new machines

and products came to be invented with increasing frequency, the pull of productive activities

lost some grip in driving inventor location. Conversely, another force gained ground. Namely,

local interactions among inventors became key to the siting of inventive activities, ultimately

making the location of inventors strongly interdependent. These localized externalities were

possibly weak enough to go virtually unnoticed in the pre-industrial world, but they ended up

becoming an indispensable ingredient in the new era of innovation and sustained growth.

The present paper has also characterized such externalities in at least two further respects.

First, we systematically controlled for the local access to high-quality inventors, so that the

resulting estimates of localized externalities tend to capture a pure scale effect. Second, we

documented how local interactions among inventors had an industry-specific reach. In this

sense, the spatial distribution of patent inventors during the British industrial revolution seems

to be primarily shaped by “mass interaction” with other technologically similar peers, although

also “select relations” with high-quality inventors had a non negligible role in particular toward

the end of the 18th century. Overall, this evidence is consistent with a dynamic of discovery

that is dense of incremental improvements resulting from trial and error procedures, in a context

where productive knowledge is imperfectly transferable. As long as the details of an innovative

attempt spread in space according to some decay function, inventors may well face an advantage

to co-localize with their peers in order to learn more rapidly from their mistakes and to start

from where the others left off. In this case, the need to learn from others brings inventors

together, and in turn the probability to finally achieve a functioning invention is maximized

where inventors are more numerous. Co-localization would then be a way to appropriate this

type of externality.

Indeed, such narrative resonates well with the historical framework in which our analysis

is centered. On the one hand, and in spite of the high application costs involved, the patents

that were granted in England during the 18th and 19th century were often far from being fully

functioning innovations. In this sense, their prototypical nature lends itself well to be inter-

preted as a step in a broader process of discovery based on trials, errors, and small incremental

improvements. On the other hand, several historical accounts document how—even during the

“Age of Enlightenment”—inventive activities were often based on tacit know-how and empirical

rules of thumb, which are normally regarded as being more spatially sticky relative to codified

information. For instance, Fox (2009) discusses several revealing examples in which detailed

engineering drawings and documentation were insufficient to ensure the installation of machin-

ery. Similarly, Macdonald (1979) shows that the diffusion of innovative agricultural techniques

took place essentially by means of learning from neighbors, despite the growing availability of

published information. Relatedly, MacLeod and Nuvolari (2009) highlight the important role

of apprenticeships networks in transmitting skills within the mechanical engineering industry.

Finally, a number of case studies illustrate how some communities of inventors engaged in de-

liberate forms of knowledge sharing (see Allen, 1983, Berg, 1993, Cookson, 1997, and Nuvolari,

2004). The present paper suggests that these various instances of technological externalities

were the rule rather than the exception, and they had a key role in shaping the new geography

of innovation that came to take form during the British industrial revolution.

29



Appendix A

This section is meant to provide an illustration of estimate behavior under the Polya and Multi-

nomial model, while also giving some insights about the related procedure of model selection. In

particular, we estimate marginal elasticities under the Polya and Multinomial models for three

different toy examples that represent qualitatively distinct and easily recognizable scenarios.

Consider a simplified setup with L = 3 alternatives, a single vector of intrinsic features x =

(1, 2, 3), and some “initial” occupancy vector n0 = (n1,0, n2,0, n3,0) with N0 total agents. Given

that the Polya marginal elasticities (11) and (12) are a function of the total number of agents N ,

we estimate log π(β | x) for transformations of n0 that increase the total number of agents while

preserving their distribution across alternatives. Specifically, we consider transformations of the

type n0 → λn0 with λ ∈ N∗, so that each resulting occupancy vector n = λn0 has N = λN0

agents following the same distribution across alternatives as n0. Figure A1 summarizes the

outcomes of this exercise for three different specifications of the initial occupancy vector n0.

The results shown in Figures A1a–A1b are obtained using n0 = (1, 8, 27) as an initial

occupancy vector, so that in this case nl = λx3l for all l. It follows that the marginal elasticity

∂q/∂ log x as estimated under the Multinomial model is centered around 3 for any value of N ,

precisely because external economies of scale are not supposed to have a role in the Multinomial

case (see Figure A1a). Even when estimating the Polya model, however, the estimates of

∂q/∂ log x are almost perfectly overlapping with their Multinomial counterparts, while the

estimates of ∂q/∂ log n are approximately at 0. This result occurs because xl suffices to account

entirely for nl across all alternatives (via the function nl = x3l ), so that no significant room is

left for localized externalities to have an impact. As further discussed in Section 4.2, this also

induces to select the Multinomial over the Polya model, as shown by the Akaike Information

Criterion corrected by finite sample size (AICc) in Figure A1b.

A qualitatively similar situation occurs if xl entirely accounts for nl across all locations but

via a different function. For instance, the results shown in Figures A1c–A1d are obtained using

n0 = (6, 12, 18) as an initial occupancy vector, so that in this case nl = λ6xl for all l. As a

consequence, the resulting Multinomial estimates of ∂q/∂ log x now come to be centered around

1, and again their Polya counterparts are closely overlapping while ∂q/∂ log n is approximately

at 0. Also in this case, the AIC values reported in Figure A1d indicate that the Multinomial

model is to be selected over the Polya model.

Instead, the results shown in Figures A1e–A1f are based on the initial occupancy vector

n0 = (1, 7, 28), so that in this last case nl cannot be expressed as a common function of xl for all

l. Moreover, n0 can also be regarded as an outcome of the transformation (1, 8, 27)→ (1, 7, 28):

that is, starting from the Multinomial configuration underlying Figures A1a–A1b, an agent

moves from a less populated location to the most populated one. In this sense, localized exter-

nalities might be expected to gain weight, and indeed the results reported in Figures A1e–A1f

confirm such an intuition. For sufficiently large values of N , the estimates of ∂q/∂ log n are now

significantly greater than 0, while the Polya model outperforms the Multinomial according to

their corresponding AICc values. Notably, however, localized externalities are irrelevant as long

as the total number of agents N remains too small for interactions to matter. Moreover, even
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Figure A1: Estimation of a toy example with L = 3 and x = (1, 2, 3).

Left panels: Each dot corresponds to an estimated marginal elasticity obtained with x = (1, 2, 3) and some
occupancy vector n = λn0, where λ ∈ {1, 3, 10, 32, 100, 316, 1000}. Each row of plots is associated to a different
specifications of n0, as indicated in the sub-figure title. For each value of λ, the total number of agents N = λN0

is constant across the various specifications of n0, namely N ∈ {36, 108, 360, 1152, 3600, 11376, 36000}.
Right panels: Each group of bars shows the AICc values associated to the Polya and Multinomial model for the
corresponding occupancy vector n = λn0, given the common intrinsic features x = (1, 2, 3). AICc values are to
be compared only within a single group of bars, so as to select either the Polya or the Multinomial model for a
specific n and x. The model associated to a lower AICc value is to be preferred.

when the estimates of ∂q/∂ log n are non negligible in magnitude and statistically significant,

the procedure of model selection may still favor the Multinomial over the Polya model. For

instance, in In Figures A1e–A1f, we show that ∂q/∂ log n ≈ 0.2 for λ = 32 and N = 1152, yet

the corresponding AICc values lead to select the Multinomial model over the Polya (with an

AICc value of 16.9 and 18.9 respectively).

Among other things, the results illustrated in Figure A1 should also clarify that the link
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between Polya marginal elasticity estimates (11)–(12) and the total number of agents N is

far from being mechanical. Namely, while an economy with more agents may potentially offer

greater scope for localized externalities, having a more numerous economy will not mechanically

increase the estimate of ∂q/∂ log n. In fact, as shown in Figures A1a–A1d, the role of intrin-

sic attractiveness may well be so predominant as to annihilate entirely the effect of localized

externalities even for large values of N . In this sense, the magnitude of the Polya marginal

elasticities in equations (11) and (12) crucially depend on the distribution of agents and fea-

tures across locations, so that the value of N per se is insufficient to reveal anything about the

magnitudes of ∂q/∂ log xh and ∂q/∂ log n under the Polya model.
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