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Abstract. The paper pursues two goals. First, by linking the statistics and
machine learning literatures, we provide new general results on the convergence
of stochastic approximation schemes and inexact Newton methods. Second,
by building on these results, we put forward a new optimization scheme that
we call local approximation inexact Newton method (LAINM). For each itera-
tion of the optimization algorithm, the method proceeds through these steps:
the objective function is computed or approximated in a neighborhood of the
iterate; the value of the function, of its gradient and of its Hessian are ap-

proximated through a polynomial regression; these quantities are then used in

a Newton-like iteration. We extensively discuss the theoretical and the com-
putational aspects of LAINM. The results apply to both deterministic and
stochastic approximation schemes, and are particular effective in the case in
which the objective function to be optimized is highly irregular and/or the
stochastic equicontinuity hypothesis, that is generally assumed in simulation-
based estimation, is violated. Examples are common in dynamic discrete choice
models (DDCM) and complex simulation models characterized by nonlinear-

ities and high levels of heterogeneity. The theory is supported by extensive

Monte Carlo experiments and an application to a binary response model with
serially correlated errors.

1. Introduction

Several topics discussed in social sciences, hard sciences and life sciences are
represented as optimization problems. Increasingly frequently, these maximization
(or, equivalently, minimization) problems relate to highly parametrized, nonlinear
complex functions F (θ) for θ ∈ Θ, where Θ is the parameter space. Most al-
gorithms devised to optimize such a function achieve the goal by constructing a

2020 Mathematics Subject Classification. 62L20, 68W25, 90C53, 68Q17.
Key words and phrases. Optimization, approximation algorithms, stochastic approximation,

methods of quasi-Newton type.
⋆Corresponding author. Sant’Anna School of Advanced Studies, Piazza Martiri della Libertà

33, Pisa (Italy). Email: m.martinoli@santannapisa.it
Mario Martinoli and Fulvio Corsi acknowledge support from the project How good is your
model? Empirical evaluation and validation of quantitative models in economics, PRIN grant
no. 20177FX2A7. We thank participants of the Italian Workshop of Econometrics and Empirical
Economics (IWEEE 2022), the Workshop on Model Evaluation and Causal Search (Pisa 2022),
the meeting of the Network for Statistical and Causal Inference (NESCI 2), the International Con-
gress on Industrial and Applied Mathematics (ICIAM 2023), the Conference of the International
Association for Applied Econometrics (IAAE 2024), the University of Pisa Economics seminars,
and the Insubria Economics seminars for comments.

1



OPTIMIZATION OF COMPLEX OBJECTIVE FUNCTIONS 2

sequence
{
θ(i)
}

in which each value depends on the previous value (or values).

Some of these methods, like the NelderśMead algorithm (Nelder and Mead, 1965),
use no derivatives but approximate the objective function F (θ) through convex
hulls or simplexes. However, optimization is more commonly performed through
derivative-based algorithms, that we can separate in two main groups according to
the number of derivatives that are required. The őrst group originates from the
NewtonśRaphson algorithm that requires the computation of the őrst derivative
(or gradient) and of the second derivative (or Hessian) of the objective function
itself. Other widely used examples are the BroydenśFletcherśGoldfarbśShanno
(BFGS) and BerndtśHallśHallśHausman (BHHH, see Berndt et al., 1974) algo-
rithms that replace the Hessian with different approximations. However, also the
gradient is generally approximated, as one of the building blocks of the implemen-
tation of these algorithms is the use of numerical differentiation methods exploiting
the fact that the difference quotient approaches the derivative when the points en-
tering the quotient are near enough. Therefore, in the literature, some results have
appeared considering inexact Newton methods (INM), i.e. a large class of opti-
mization methods encompassing (most of) the previous algorithms and allowing
for the simultaneous replacement of the gradient and of the Hessian with approxi-
mations (see Nocedal and Wright, 1999, and references therein). The second group
of derivative-based optimization algorithms, often called stochastic approximation
schemes (SAS), requires only an approximation of the gradient and replaces the
Hessian with a deterministic diagonal matrix containing a quantity called step size.
The approximation of the gradient can either be unbiased, as in the original paper
(Robbins and Sutton, 1951), or biased, as more recently considered (Karimi et al.,
2019). It is clear that SAS are a subset of INM, but considering them separately
allows for a more precise analysis of the algorithms.

However, most of these optimization methods break down when the function is
noisy or non-differentiable. In fact, when the function is łroughž or łruggedž, the
optimization algorithm can go back and forth without settling on a value. This is
generally referred to in the literature under the name of łchatteringž. This term is
used in several branches of Applied Mathematics to denote some phenomena that
share the same feature, i.e. an alternating behavior among two or more states.
In production engineering, machining vibrations or chatter are self-excited vibra-
tions between the cutting tool and the workpiece łwhich grow until the tool jumps
out of the cutting zone or breaks because of the exponentially growing dynamic
displacements between the tool and workpiecež (Altintas, 2012, p. 2, see Tobias
and Fishwick, 1958a,b for the őrst explanation of the phenomenon). In qualitative
simulation, chatter or chattering arises when the łbehavior [of some variables] is
unconstrained except by continuityž (Kuipers et al., 1991, p. 345). In optimal con-
trol and dynamic programming, łchattering refers to fast oscillations of the optimal
control switching inőnitely many times over a őnite time intervalž (Caponigro et al.,
2018, p. 2046; see Zelikin and Borisov, 1994, for applications); Artstein (1989) in-
troduces a theory of chattering systems and Wagner (2014) the concept of policy
chattering. In statistics and econometrics, the term is generally used (see McFad-
den, 1989) for the situation in which an optimization algorithm oscillates around
the optimal value.

There are two distinct aspects related to chattering in statistics and economet-
rics. The őrst is a theoretical aspect, linked to the limit of the objective function in
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an optimization problem; the second is a computational problem linked to the type
of optimization routine that is used, whether it is derivative-free or derivative-based.
Let us start from the second problem. Suppose to consider a derivative-based algo-
rithm. Since, based on the theoretical problem, the function is rugged and nowhere
differentiable, the derivatives do not exist. However, as numerical derivatives are
generally calculated using the representation of the derivative as a limit of the dif-
ference quotient, the algorithms use őnite derivatives whose value is random and
determined by the roughness of the function at the point. It is not clear how this
should converge. Now, suppose to use derivative-free algorithms. In this case, we
can imagine that the algorithm converges to the global minimum of the objective
function seen in the previous theoretical point. But here the theoretical aspect
kicks in: the asymptotic distribution of this theoretical limit is expected to depend
dramatically on chattering. This theoretical problem persists even in the absence
of computational issues.

In this paper, we consider the issue of őnding the zero of an objective function

θ 7→ F (θ) on the basis of a noisy version of this function, say θ 7→ F̂ (θ). We give
four main contributions to the literature.

First, we provide new general őndings that do not depend on a particular choice
of the approximations of the gradient and the Hessian. We consider separate results

for INM and SAS. In particular, when F̂ (θ) is a deterministic approximation of
F (θ), we characterize the rate of convergence to the target value θ⋆ and, when

F̂ (θ) involves a stochastic element, we bound the escape probability, that is the

probability that the sequence
{
θ(i)
}

gets out of a neighborhood of θ⋆ in less than

n steps. Then, we compute an upper bound on the probability that θ(i) from SAS
never visits a region where the gradient is near to zero as a function of the number
of steps. These results have, to the best of our knowledge, never been proved before
and, as the study of the convergence properties of these algorithms is still a hot
topic, this is, in our view, a substantial contribution to the literature.

Second, we propose a class of algorithms in which the őrst one or two derivatives

of F (θ) are replaced by those of a locally approximating function F̃ (θ). We will
call our algorithm local approximation inexact Newton method (LAINM). In the
following, we illustrate the method by applying it to both INM and SAS. We choose

P points Pi

(
θ(i)
)
= {θ1, . . . ,θP } in a neighborhood of θ(i), and we estimate the

values F̂ (θ) for θ ∈ Pi

(
θ(i)
)
. Then, we őt a regression F̃ (θ) on the values assumed

by F̂ (θ) in θ ∈ Pi

(
θ(i)
)

and we use the estimated coefficients to calculate its őrst

and second derivatives (i.e. only the őrst derivative for SAS and both the őrst and
second derivatives for INM). We then use these approximated derivatives in the
optimization routine (see Section 3.3 for more details). As we claim generality for

our procedure, in the paper we also consider the case in which F̃ (θ) is estimated
by a more general polynomial of degree D. It is worth noting that, with respect
to the classical implementation of the NewtonśRaphson algorithm with numerical
derivatives, the technique only requires one further step, i.e. the estimation of a

local regression and applies also to non-differentiable approximations F̂ (θ) of the
function F (θ).

Third, we also produce some new results on the least squares approximation of
a function and of its derivatives in a point θ0 and in a neighborhood of θ0 on the
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basis of the approximated values of the function in a set of points. In particular, we

give some bounds on the approximation of the function F̃ (θ) and its derivatives.
These results are of independent interest and can be adapted to different situations.

Fourth, we draw together the previous results and we characterize the determin-
istic rate of convergence and the escape probability of LAINM. These results show
that the properties of the algorithm depend on some key quantities: the size of

the neighborhood Pi

(
θ(i)
)
, the degree D of the polynomial F̃ (θ), the size of the

error F̂ (θ) − F (θ) for θ ∈ Pi

(
θ(i)
)
, and, for the SAS version, the step size. If

these quantities are modiőed during the iterations of the optimization routine, one
can get convergence to the optimum of F (θ). We give some results ensuring that
this is the case. Moreover, we discuss several aspects connected with the practical
implementation of the algorithm.

Despite the results of the paper, and the particular algorithm proposed, apply
rather generally, a motivating example is the situation in which the approximation

F̂ (θ) is obtained through simulations, as in the method of simulated moments
(MSM, see, e.g., McFadden, 1989; Pakes and Pollard, 1989), simulated maximum
likelihood (see, e.g., Lee, 1992, 1995) and indirect inference (Gouriéroux et al.,
1993; Smith Jr., 1993). When dealing with simulation-based estimation methods,

the use of the derivatives of the approximation F̂ (θ) in an optimization algorithm

can be complicated by the fact that the dependence of F̂ (θ) on θ may not be
smooth enough. The reason is that optimization algorithms usually rely on some

continuity properties of the mapping θ 7→ F̂ (θ).
The condition that is generally used to enforce a sufficient degree of continuity

is stochastic equicontinuity (see, e.g., McFadden, 1989, Pakes and Pollard, 1989
and Newey and McFadden, 1994, pp. 2136-2137). This often boils down to the
requirement that a simulated process can be expressed in terms of innovations
that are drawn once and for all at the beginning of the algorithm and kept constant
throughout its execution. It is generally expressed saying that the innovations of the
model are recycled for different values of θ. This removes the problem of chattering
that was őrst outlined by McFadden (1989, p. 999). In his contribution, the author
speciőes that ła simulator must avoid ‘chatter’ as θ varies; this will generally require
that the Monte Carlo random numbers used to construct f (θ) not be redrawn when
θ is changedž. This concept was then extended by Gouriéroux and Monfort (1996,
p. 16). The authors pointed out that łit is necessary to keep these basic drawings
[i.e. the innovations] őxed when θ changes, in order to have good numerical and
statistical properties of the estimators based on these simulationsž. This was also
stressed, among others, by Hall et al. (2012, p. 505) and Kristensen and Shin
(2012, p. 78) in more recent contributions. Stochastic equicontinuity ensures that
the function is not łroughž or łruggedž.

However, this has two drawbacks. First, the recommendations of McFadden
(1989) and Gouriéroux and Monfort (1996) do not hold for some complex mod-
els such as network models and simulation-based models characterized by strong
heterogeneity, in which recycling the drawings is simply not possible. Second, al-

gorithms using recycled innovations only provide the optimum of F̂ (θ), and not of
F (θ), and often require modiőcations of the classical asymptotic results (e.g., an
inŕation of the covariance matrix of the estimators). To overcome these issues, the
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researcher can apply LAINM in order to recover the optimum of F (θ) and apply
the classical asymptotic theory.

The paper is structured as follows. In Section 2 we introduce some notation
and preliminary results. In Section 3 we summarize the convergence results of the
Newton-based optimization algorithms. In particular, in Section 3.1 we expose the
setting of the optimization problem, in Section 3.2 we give a general introduction to
inexact Newton methods, in Section 3.3 we describe LAINM and in Section 3.4 we
outline the differences between LAINM and other optimization, approximation and
estimation methods advanced in the literature. The main theoretical results are
contained in Section 4: in Section 4.1 we produce two general convergence results,
one for INM and one for biased SAS, as explained above; in Section 4.2 we give
some results on the least squares approximation of a function in a point θ0 and in a
neighborhood of θ0; in Section 4.3 and 4.4, we study the properties of our regression-
based inexact Newton method or LAINM. In Section 5 we treat the computational
aspects of LAINM. Finally, the results of the simulations are exposed in Section
6. In particular, in Section 6.1 we perform an extensive Monte Carlo experiment
in which we estimate the mean of a Gaussian random variable, in the presence of
chattering, by varying some quantities of the algorithm, while in Section 6.2 we
estimate the parameters of a dynamic discrete choice model (DDCM). Section 7
concludes. The proofs of the theoretical results are contained in Section 8.

2. Notation and Preliminary Results

In this section, we expose some notation and some preliminary results that will
be used throughout the paper.

We use small indexed letters, like c1, c2, etc., or C1, C2, etc., for constants that
are deőned inside a theorem but may differ from a theorem to another. We use K1,
K2, etc., for absolute constants that are different from one place to another and do
not appear in the statement of the results but only in the proofs.

We write N for the positive integers, N0 for the non-negative integers and R

for the real numbers. We denote sequences indexed by N or N0 as {an}. When
n → ∞, we use an ≃ bn when an = bn (1 + o (1)), an ≍ bn when bn/C ≤ an ≤ Cbn
for ∞ > C > 0 and any n large enough, an ≪ bn when an = o (bn), an ≲ bn when
an ≤ bn (1 + o (1)).

We use capital bold letters, such as A, to denote matrices and lowercase bold
letters, such as a, to denote vectors. Let ι be a vector of ones, U a square matrix
of ones, I the identity matrix, 0 a matrix or a vector of zeros. The dimensions are
generally clear from the context. If a confusion is possible, the dimension will be
indicated through an index, as in ιN . For a vector a, let ā be the vector containing
the reciprocals of the elements of a. Let dg (a) be a diagonal matrix having a on
its diagonal. Let tr (A) be the trace of A, i.e. the sum of the diagonal elements of
a square matrix A. For a suitable matrix A, A′ is its transpose, A⋆ its conjugate
transpose, A−1 its inverse and A+ its MooreśPenrose pseudoinverse. The element-
wise power of a vector or a matrix is denoted by A⊙b (so that ā = a⊙(−1)), Ab is
the usual power obtained multiplying A by itself b times and A⊗b is the Kronecker
multiplication of b copies of A. The element of A in position (i, j) is denoted as
Aij or [A]ij ; the matrix with generic element aij is denoted [aij ].
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When applied to a vector a, the notation ∥·∥p denotes the vector norm deőned

as ∥a∥p := (
∑

i |ai|
p
)

1
p ; when applied to a matrix A, it denotes the matrix norm

induced by the vector norm as ∥A∥p := supx ̸=0

∥Ax∥p

∥x∥p
.

For a matrix A, λi is the i-th eigenvalue of A and σi is the i-th singular value of
A, i.e. the square root of the i-th non-negative eigenvalue of A⋆A. The condition

number of the matrix is κ (A) := σmax(A)
σmin(A) where σmax (σmin) is the largest (smallest)

singular value of A. If the matrix is normal, κ (A) = |λmax(A)|
|λmin(A)| , where λmax (λmin)

is the largest (smallest) eigenvalue of A by modulus.
The symbol ⊕ denotes the Minkowski sum of sets, i.e. A⊕B := {a+ b : a ∈ A,b ∈ B}.

For a set A, Å denotes the interior of A and A its closure.
If D is the order of a polynomial, PD is the space of polynomials of order D in

x.
Consider a function f deőned on R

n. Given a multi-index ν = (ν1, . . . , νn) ∈ N
n
0 ,

we denote as |ν| the sum ν1 + · · ·+ νn and we deőne the partial derivative

Dνf :=
∂|ν|

∂xν1
1 · · · ∂xνn

n
f.

For lower-order derivatives, we also write

Dif :=
∂f

∂xi

, Dijf :=
∂2f

∂xi∂xj

.

We also use the following simpliőed notation. One overdot, as in ḟ :=
[
Dif

]
,

denotes the gradient, i.e. the vector containing the őrst derivatives of a function
with respect to the elements of its vector argument, two overdots, as in f̈ :=

[
Dijf

]
,

denote the Hessian, i.e. the matrix containing the second derivatives of a function
with respect to the elements of its vector argument.

Let Ω be a compact domain. We deőne the norms

∥f∥Ω := sup
x∈Ω

|f (x)|

and

|f |q := max
|ν|≤q

sup
x∈Ω

|Dνf (x)| .

Let us assume the following property.

R1: There exists a number γ ≥ 1 such that any two points x,y ∈ Ω can be
joined by a rectiőable curve Γ ⊂ Ω with length |Γ| ≤ γ ∥x− y∥2.

A function f : Ω → R is of class Cq in Ω iff functions Dkf (x) and Rk (x;y), with
|k| ≤ q, exist in Ω such that the following Taylor’s formula holds:

Dkf (x) =
∑

|s|≤q−|k|

1

s!
Dk+sf (y) (x− y)

s
+Rk (x;y)

for x,y ∈ Ω. A function f : Ω → R is of class Cq,1 in Ω iff f is of class Cq in Ω and
the partial derivatives Dkf of order q are Lipschitz continuous in Ω. We deőne the
semi-norm |·|q,1 as

(2.1) |f |q,1 := sup

{∣∣Dkf (x1)−Dkf (x2)
∣∣

∥x1 − x2∥2
: x1,x2 ∈ Ω,x1 ̸= x2, |k| = q

}
.
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The following lemma, taken from Lemma 1 in Zuppa (2003), collects results from
Whitney (1934).

Lemma 1. Let Ω satisfy assumption R1 and let f be of class Cq,1 in Ω. Then, for
every x,y ∈ Ω:

|Rk (x;y)| ≤
nq−|k|

(q − |k| − 1)!
γq−|k| ∥x− y∥q−|k|+1

2 |f |q,1

where it is intended that (−1)! = 1.

We also need some naming conventions concerning the convergence properties of
optimization and root-őnding algorithms. These are characterized by the construc-

tion of a series of values θ(i) that should approach θ⋆. The convergence properties
can be summarized as follows (see, e.g., Dembo et al., 1982, p. 403).

Definition 1. If
{
θ(i)
}

is a sequence converging to θ⋆ and ∥·∥ is a norm, we say

that

(1) θ(i) → θ⋆ linearly if there is µ ∈ (0, 1) such that

lim sup
i→∞

∥∥∥θ(i+1) − θ⋆
∥∥∥

∥∥∥θ(i) − θ⋆
∥∥∥

= µ;

(2) θ(i) → θ⋆ superlinearly if

lim sup
i→∞

∥∥∥θ(i+1) − θ⋆
∥∥∥

∥∥∥θ(i) − θ⋆
∥∥∥

= 0;

(3) θ(i) → θ⋆ with (strong) order at least q, with q > 1, if

lim sup
i→∞

∥∥∥θ(i+1) − θ⋆
∥∥∥

∥∥∥θ(i) − θ⋆
∥∥∥
q < +∞;

in particular, if q = 2, the algorithm is said to be quadratically convergent;

(4) θ(i) → θ⋆ with weak order at least q, with q > 1, if

lim sup
i→∞

∥∥∥θ(i) − θ⋆
∥∥∥

1

qi

< 1.

3. Description of the Algorithm

In this section we describe the setting of the optimization problem, together
with a motivating example, and we describe the algorithm. Let us deőne the

(uncomputable) function F (·), the (computable) function F̂ (·) and the function

F̃ (·), which is an approximation of F (·) depending on F̂ (·).
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3.1. Framework. We start by exposing the framework of the optimization problem
and presenting one of the motivating examples.

The objective function to be maximized is deőned as θ 7→ F (θ). In most cases,
the function will be a sum of elements as in M -estimation:

F (θ) :=

n∑

i=1

q (yi,θ) ,

but the method covers also more general cases presented, e.g., in Hess and Seri
(2019, Section 2). More generally, with a small abuse of notation, we can write

F (θ) := f
(
P̂y,θ

)

where P̂y is the empirical probability measure estimating the probability measure
Py based on real data y. However, we do not explicit the dependence of F (·) on
the number of observations, as in this paper there will be no asymptotic or őnite-
sample distributional theory. The function F (·) may be computable or not, but its

gradient Ḟ (·) and Hessian F̈ (·) are supposed to be difficult to compute. Let F̂ (·)
denote a function that is computable and may or may not coincide with F (·). On

the basis of F̂ (·), an approximation F̃ (·) of F (·) is computed.
The motivating example is slightly more involved. Indeed, suppose that the

objective function can be written as

F (θ) := f
(
P̂y,Pz(θ)

)
,

where Pz(θ) is the probability measure of z (θ). Unfortunately, Pz(θ) cannot be com-

puted but can be approximated through P̂z(θ), the empirical probability measure
of a sample extracted from Pz(θ). This is the objective function generally used in
simulated minimum-distance techniques such as the method of simulated moments
(see, e.g., McFadden, 1989; Pakes and Pollard, 1989; McFadden and Ruud, 1994).
The use of the approximation

F̂ (θ) := f
(
P̂y, P̂z(θ)

)

in optimization algorithms is complicated by the fact that, while both optimization
algorithms and proofs of consistency usually rely on some continuity properties of

the mapping θ 7→ f
(
P̂y, P̂z(θ)

)
, this dependence may not be smooth enough. The

right degree of smoothness can often be achieved by recycling the innovations as
explained in Section 1. In the present case, however, we choose a different route:

on the basis of the values of F̂ (·), we compute an approximation F̃ (·) of F (·) that

is smoother than F̂ (·).
3.2. Inexact Newton Algorithms. Suppose that we want to identify θ⋆ such
that

Ḟ (θ⋆) ≡ 0

where Ḟ (·) : RK → R
K . Let us start from a point θ(0) and use the recurrence

equation

F̈
(
θ(i)
)(

θ(i+1) − θ(i)
)
= −Ḟ

(
θ(i)
)

or

θ(i+1) = θ(i) −
[
F̈
(
θ(i)
)]−1

Ḟ
(
θ(i)
)
.
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This algorithm is called NewtonśRaphson method and is known to be quadratically
convergent.

It is sometimes possible to approximate the method by using an inexact Newton
method (INM) deőned by

(3.1) θ(i+1) = θ(i) −
[
¨̃
F
(
θ(i)
)]−1 ˙̃

F
(
θ(i)
)

where the functions
˙̃
F (·) and

¨̃
F (·) replace Ḟ (·) and F̈ (·). We can also write this

as

¨̃
F
(
θ(i)
)(

θ(i+1) − θ(i)
)
= − ˙̃

F
(
θ(i)
)
,

F̈
(
θ(i)
)(

θ(i+1) − θ(i)
)
= −Ḟ

(
θ(i)
)
+ r(i),(3.2)

where

r(i) = Ḟ
(
θ(i)
)
− F̈

(
θ(i)
) [

¨̃
F
(
θ(i)
)]−1 ˙̃

F
(
θ(i)
)
.

A special case concerns stochastic approximation schemes (SAS). In this case the

inverse (approximate) Hessian at step i,
[
¨̃
F
(
θ(i)
)]−1

, is replaced in (3.1) by the

step size γi+1:

(3.3) θ(i+1) = θ(i) − γi+1
˙̃
F
(
θ(i)
)
.

In Dembo et al. (1982), it is shown that the performance of the inexact Newton

method in (3.1) depends on the ratio
∥r(i)∥

∥Ḟ(θ(i))∥ and in particular on the fact that

∥∥r(i)
∥∥

∥∥∥Ḟ
(
θ(i)
)∥∥∥

≤ ηi

for ηi ≥ 0, where {ηi} is called a forcing sequence and controls the level of accuracy
of the algorithm.

In Ypma (1984), it is shown that one can consider instead
∥∥∥∥
[
F̈
(
θ(i)
)]−1

r(i)
∥∥∥∥

∥∥∥∥
[
F̈
(
θ(i)
)]−1

Ḟ
(
θ(i)
)∥∥∥∥

≤ νi

for νi ≥ 0, where {νi} plays the same role of {ηi} above. Morini (1999) generalizes

the previous treatments to the case of preconditioning, in which
[
F̈
(
θ(i)
)]−1

is

replaced by a generic matrix P(i).
The previous results hold under so-called residual control-type conditions, i.e.

conditions based on the control of the residual r(i). However, in the following we

will provide direct conditions in terms of the distance
∥∥∥θ(i) − θ⋆

∥∥∥.

3.3. Approximating Algorithm. In this section we describe the simplest ver-
sions of the proposed algorithm, using linear or quadratic regression functions. In
the rest of the paper we will also cover the case in which the linear or quadratic
functions are replaced by more general polynomials of degree D.
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For stochastic approximation schemes, since SAS do not need the computation
of the Hessian matrix, the algorithm simpliőes as follows:

(1) for any i ≥ 0, we select P points Pi

(
θ(i)
)
= {θ1, . . . ,θP } in a neighborhood

of θ(i);

(2) we compute F̂ (θ) for θ ∈ Pi

(
θ(i)
)
;

(3) we estimate a linear function through the regression:

F̂ (θ) = β1 + β′
2θ + ε

for θ ∈ Pi

(
θ(i)
)
;

(4) we deőne F̃ (θ) = β̂1 + β̂
′
2θ and

˙̃
F (θ) = β̂

′
2, and we replace

˙̃
F (θ) in (3.3).

For inexact Newton methods, we have:

(1) for any i ≥ 0, we select P points Pi

(
θ(i)
)
= {θ1, . . . ,θP } in a neighborhood

of θ(i);

(2) we compute F̂ (θ) for θ ∈ Pi

(
θ(i)
)
;

(3) we estimate a quadratic function through the regression:

F̂ (θ) = β1 + β′
2θ + β′

3D
+
K (θ ⊗ θ) + ε

for θ ∈ Pi

(
θ(i)
)
, where D+

K is the MooreśPenrose inverse of the duplication

matrix (see Magnus and Neudecker, 2019, p. 56);

(4) we deőne F̃ (θ) = β̂1+β̂
′
2θ+β̂

′
3D

+
K (θ ⊗ θ),

˙̃
F (θ) = β̂

′
2+(θ ⊗ IK + IK ⊗ θ)

′
D

+,′
K β̂3

and
¨̃
F (θ) = 2D+,′

K β̂3, and we replace them in (3.1).

3.4. Relation with Other Approximation Algorithms. In this section we
investigate the relation between the proposed algorithm and other optimization,
approximation and estimation methods advanced in the literature.

The area of research that is nearest to our algorithm is the one concerning
derivative-free optimization (see, e.g., Conn and Toint, 1996; Conn et al., 1997; the
latter contains, in Section 2, a history of the method), i.e. optimization methods
in which derivatives are not known or computable. A subgroup of these algorithms
forms what are called trust-region methods. Our method shares with these ones the
fact of identifying a region, that they call trust region and whose radius decreases
when the algorithm progresses, containing a set of points that are used to produce
an approximation to the objective function. Three crucial differences between our
method and these ones are that (i) they do not try to approximate the derivatives
but only the function, hence the name of derivative-free methods, (ii) the pointset in
the trust region recycles points from the previous steps, and (iii) the approximation
to the objective function is usually obtained through interpolation.

The approximation step of the algorithm has a relation with spectral (see Boyd,
2001) and pseudospectral (see Fornberg and Sloan, 1994) methods for the computa-
tion of derivatives and the solution of partial differential equations. The rationale of
the methods is to approximate the function as a sum of smooth basis functions such
that the computation of the derivatives of the function can be easily performed.
There are some important differences: (i) these methods are generally intended to
produce a global approximation to the function, while our method yields a local
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one; (ii) these methods approximate unknown functions and their derivatives that
are then replaced into a partial differential equation, without any direct involve-
ment of data; (iii) the smooth basis functions are generally more complex than
plain polynomials. However, the two methods share the idea of approximating a
function with a sum of basis functions and using this approximation to compute
approximate derivatives. In our case, the choice of the basis function is justiőed by

the fact that we scale differently the points of the pointset Pi

(
θ(i)
)

as far as the

algorithm progresses.
It also has some contacts with techniques like local polynomial regression (see

Fan and Gijbels, 1996) or moving least squares (see, e.g., Lancaster and Salkauskas,
1981). In these techniques, one observes a set of couples (yi,xi) for i = 1, . . . , n,
composed of a response yi ∈ R and explanatory variables xi ∈ R

k. For any point
x ∈ R

k, one can estimate the corresponding expected value of y by weighting the
observations (yi,xi) according to the distance between x and xi. Our technique
differs from these ones because our points are not őxed or predetermined before
the estimation is performed, there is no weighting of the observations and we put

a particular emphasis on the size of the neighborhood of the pointset Pi

(
θ(i)
)
.

Another related technique is the generalized őnite difference method (see Jensen,
1972; Benito et al., 2001). In this method, a function is locally approximated
through its Taylor expansion and the derivatives are estimated, together with the
value of the function, by interpolation or weighted least squares estimation using
observations on an irregular grid. The aim of this method is the approximation
of the derivatives of a function for the solution of partial differential equations, as
for spectral and pseudospectral methods, and not the overall approximation of a
surface, as for moving least squares. However, the method shares with moving least
squares the ability to accommodate irregularly spaced observations. This method
is rather similar to our local approximation technique, despite the use is radically
different.

Finally, it is worth mentioning the contribution by Forneron (2023). In this
work, the author develops a new GaussśNewton algorithm combining non-smooth
moments with smoothed Jacobian estimates. A grid-search step is also added to
each iteration to reach global convergence. Our method differs from this as we
do not use a grid-search approach, rather we use a set of points to approximate
the objective function whose radius reduces as the algorithm progresses. Moreover,
our approach is more general as we do not directly focus on estimation of moment
condition models.

4. Theoretical Results

In this section we will devise conditions on the proposed algorithm under which{
θ(i)
}

converges to θ⋆ and we will provide results on the convergence rates. We will

őrst consider, in Section 4.1, some general results on optimization algorithms that

do not depend on the speciőc choice of
˙̃
F (·) and

¨̃
F (·) outlined in Section 3.3 and

may be of independent interest. They generalize some results in the optimization
and machine learning literatures. In Section 4.2 we compute upper bounds on the

approximation error of F̃ (·), ˙̃
F (·) and

¨̃
F (·). In Sections 4.3 and 4.4 we then give
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some results on the algorithm described in Section 3.3 in conjunction with the
results of Section 4.1.

4.1. Optimization Results. We őrst characterize the properties of the function
F (·) in four assumptions.

Opt: The function F : θ 7→ F (θ) is deőned on a compact and connected set
Θ ⊂ R

K and the parameter space contains an open neighborhood of a value
θ⋆ such that Ḟ (θ⋆) = 0.

Lip-1: The function F : θ 7→ F (θ) is of class C1 on Θ ⊂ R
K and

∥∥∥Ḟ (θ1)− Ḟ (θ2)
∥∥∥
2
≤

L1 ∥θ1 − θ2∥2 for θ1,θ2 ∈ Θ̊.

Lip-2: The function F : θ 7→ F (θ) is of class C2 on Θ ⊂ R
K and

∥∥∥F̈ (θ1)− F̈ (θ2)
∥∥∥
2
≤

L2 ∥θ1 − θ2∥2 for θ1,θ2 ∈ Θ̊.

Hess: minθ∈Θ λmin

[
F̈ (θ)

]
≥ m > 0.

Remark 1. Assumption Opt deőnes the target value θ⋆ as a solution of the őrst-
order conditions of the optimization problem. Assumptions Lip-1 and Lip-2 require
the function to be differentiable, respectively with Lipschitz gradient and Hessian.
Assumption Hess concerns the smallest eigenvalue of the Hessian. It is equivalent
to the requirement that the function is strongly convex (see Bertsekas et al., 2003,
p. 72).

Let
{
θ(i)
}

be a sequence in Θ ⊂ R
K . Whenever the algorithm is stochastic, we need

an assumption quantifying the effect of replacing the őrst derivative with its approx-

imated value. Let Fi = σ
{
θ(i),θ(i−1), . . . , F̃

(
θ(i−1)

)
, F̃
(
θ(i−2)

)
, . . .

˙̃
F
(
θ(i−1)

)
, . . .

}

be the σ-algebra containing events known prior to step i, including the value of θ(i)

and of all the derivatives that are needed for the algorithm to run. The collection
of these σ-algebras for i ≥ 1 constitutes a őltration.

MaV:

∥∥∥E
[
˙̃
F
(
θ(i)
)
|Fi

]
− Ḟ

(
θ(i)
)∥∥∥

2
≤ bi, E

[∥∥∥ ˙̃F
(
θ(i)
)
− Ḟ

(
θ(i)
)∥∥∥

2

2
|Fi

]
≤

σi.

Remark 2. We note that
∥∥∥E
[
˙̃
F
(
θ(i)
)
|Fi

]
− Ḟ

(
θ(i)
)∥∥∥

2
≤ E

[∥∥∥ ˙̃F
(
θ(i)
)
− Ḟ

(
θ(i)
)∥∥∥

2
|Fi

]

≤
(
E

[∥∥∥ ˙̃F
(
θ(i)
)
− Ḟ

(
θ(i)
)∥∥∥

2

2
|Fi

]) 1
2

,

so that one could always take bi ≤ σ
1
2
i . The inequality becomes an equality in the

deterministic case.

We now provide two sets of results. First, we study the general inexact Newton

algorithm in (3.1). We characterize the behavior of
∥∥∥θ(i+1) − θ⋆

∥∥∥
2

as a function

of
∥∥∥θ(i) − θ⋆

∥∥∥
2

and we compute a rate of convergence for deterministic algorithms.

Moreover, supposing that the algorithm is stochastic, we study the escape proba-
bility of the algorithm, i.e. the probability that it gets out of the ball of radius ∆
centered in θ⋆ in less than n steps. Second, as the previous results do not work well
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for stochastic approximation schemes, we give analogous results for the particular
case in (3.3).

4.1.1. Inexact Newton Method. The őrst set of results characterizes the behavior of∥∥∥θ(i+1) − θ⋆
∥∥∥
2

in terms of
∥∥∥θ(i) − θ⋆

∥∥∥
2
. It provides an upper bound for determin-

istic algorithms (or an almost sure upper bound for stochastic algorithms). We do
not produce a residual control-type condition (see Section 3.2), rather we directly

express the result in terms of the relation between
∥∥∥θ(i+1) − θ⋆

∥∥∥
2

and
∥∥∥θ(i) − θ⋆

∥∥∥
2
.

We will need the deőnitions

δ
(i)
1 :=

∥∥∥ ˙̃F
(
θ(i)
)
− Ḟ

(
θ(i)
)∥∥∥

2
,

δ
(i)
2 :=

∥∥∥ ¨̃F
(
θ(i)
)
− F̈

(
θ(i)
)∥∥∥

2
.

Theorem 1. Under Opt and Lip-2, provided δ
(i)
2 < λmin

(
F̈
(
θ(i)
))

,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤ 1

λmin

(
F̈
(
θ(i)
))

− δ
(i)
2



δ

(i)
1 + δ

(i)
2

∥∥∥F̈ (θ⋆)
∥∥∥
2

λmin

(
F̈
(
θ(i)
))
∥∥∥θ(i) − θ⋆

∥∥∥
2

+


3

2
− δ

(i)
2

λmin

(
F̈
(
θ(i)
))


L2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2



 .

Remark 3. (i) Using the őrst inequality in Lemma 3 instead of the second one, one

gets a similar inequality for
∥∥∥θ(i+1) − θ⋆

∥∥∥
2
:

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤ 1

λmin

(
F̈
(
θ(i)
))

− δ
(i)
2



δ

(i)
1 + δ

(i)
2

L1

λmin

(
F̈
(
θ(i)
))
∥∥∥θ(i) − θ⋆

∥∥∥
2

+


1− δ

(i)
2

λmin

(
F̈
(
θ(i)
))


 3L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2



 .

(ii) When δ
(i)
1 ≡ 0 and δ

(i)
2 ≡ 0, we recover the quadratic convergence properties of

the NewtonśRaphson method. Indeed, in that case,
∥∥∥θ(i+1) − θ⋆

∥∥∥
2
≤ 3L2

2λmin

(
F̈
(
θ(i)
))
∥∥∥θ(i) − θ⋆

∥∥∥
2

2
.

In order to retain also for the INM the quadratic convergence of the Newtonś

Raphson method, we need to have δ
(i)
1 = O

(∥∥∥θ(i) − θ⋆
∥∥∥
2

2

)
and δ

(i)
2 = O

(∥∥∥θ(i) − θ⋆
∥∥∥
2

)
.

Provided δ
(i)
1 = o (1), δ

(i)
2 = o (1) and

∥∥∥θ(i) − θ⋆
∥∥∥
2
= o (1), convergence is guaran-

teed to be linear if

(4.1) lim sup
i→∞

δ
(i)
1∥∥∥θ(i) − θ⋆

∥∥∥
2

< λmin

(
F̈ (θ⋆)

)
.
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This shows that there is a difference between δ
(i)
1 and δ

(i)
2 as far as their impact on

convergence rates is concerned.
(iii) This result can be used to study the impact of numerical differentiation in

optimization algorithms, given δ
(i)
1 and δ

(i)
2 are interpreted as the errors arising in

numerical differentiation of the őrst and of the second derivative. Let us suppose
to use higher-order őnite differences of order Q ≥ 1 and step size ε. From Hong

et al. (2015, p. 251), δ
(i)
1 = O

(
ε2Q
)

and δ
(i)
2 = O

(
ε2Q−1

)
. Therefore,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
= O

(
ε2Q + ε2Q−1

∥∥∥θ(i) − θ⋆
∥∥∥
2
+
∥∥∥θ(i) − θ⋆

∥∥∥
2

2

)
.

The case with Q = 1 corresponds to the usual difference quotient. Note that this
conőrms the statement that łone needs to adjust the step size as a function of the

sample sizež in (Hong et al., 2015, p. 250). Indeed, provided
∥∥∥θ(0) − θ⋆

∥∥∥
2
≤ ∆ and

ε is small enough, lim supi→∞

∥∥∥θ(i) − θ⋆
∥∥∥
2
= O

(
ε2Q
)
. If the optimizer of F (·) is

near to the target value of the parameter, e.g., many observations are available, the
error O

(
ε2Q
)

can turn out to be signiőcant.
(iv) Using the bound, we can investigate what happens in a Newton algorithm in

which the Hessian is regularized. In this case, we have
˙̃
F
(
θ(i)
)
= Ḟ

(
θ(i)
)

and

¨̃
F
(
θ(i)
)
= F̈

(
θ(i)
)
+ λiIK . We then have

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤ 1

λmin

(
F̈
(
θ(i)
))

− λi

·



λi

∥∥∥F̈ (θ⋆)
∥∥∥
2

λmin

(
F̈
(
θ(i)
))
∥∥∥θ(i) − θ⋆

∥∥∥
2
+

3L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2



 .

The algorithm retains its quadratic convergence if λi = O
(∥∥∥θ(i) − θ⋆

∥∥∥
2

)
.

(v) The result can be used to obtain inequalities for the score. Indeed, under Lip-1,
from the second inequality in Lemma 2,

∥∥∥Ḟ
(
θ(i+1)

)∥∥∥
2
≤ L1

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
.

Corollary 1. Under Opt and Lip-2, provided δ
(i)
2 < λmin

(
F̈ (θ⋆)

)
−L2

∥∥∥θ(i) − θ⋆
∥∥∥
2
,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤ 1

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2
− δ

(i)
2

·



δ

(i)
1 + δ

(i)
2

L1

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2

∥∥∥θ(i) − θ⋆
∥∥∥
2

+


1− δ

(i)
2

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2


 3L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2



 .
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Under Opt, Lip-2 and Hess, provided δ
(i)
2 < m,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤ δ

(i)
1

m− δ
(i)
2

+
δ
(i)
2 L1

m
(
m− δ

(i)
2

)
∥∥∥θ(i) − θ⋆

∥∥∥
2
+

3L2

2m

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
.

Remark 4. This corollary starts from the bound in Remark 3. Using the bound
in Theorem 1 instead, one can obtain two different bounds. One is derived from

the őrst one replacing L1 with
∥∥∥F̈ (θ⋆)

∥∥∥
2

and 3
2

(
1− δ

(i)
2

λmin(F̈ (θ⋆))−L2∥θ(i)−θ⋆∥
2

)

with

(
3
2 − δ

(i)
2

λmin(F̈ (θ⋆))−L2∥θ(i)−θ⋆∥
2

)
. The other is obtained from the second one

replacing L1 with
∥∥∥F̈ (θ⋆)

∥∥∥
2

and 3
2m with

3m−2δ
(i)
2

2m
(

m−δ
(i)
2

) .

The following result for INM shows what happens when θ(0) is in a neighborhood

of θ⋆, i.e. when
∥∥∥θ(0) − θ⋆

∥∥∥
2
≤ ∆, a situation in line with Dembo et al. (1982,

Theorem 2.3).

Theorem 2. (i) Under Opt, Lip-2 and Hess, suppose that, for any i ≥ 0, there
are constants 1 > c1 > 0, c2 ≥ 0, c3 > 0, ∆ > 0, ξ ≥ 0 and δ > 0 such that

∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆,

δ
(i)
1 + δ

(i)
2

(
1 +

M

m

)
∆ ≤

(
m− 3L2

2
∆

)
∆,

δ
(i)
2 < m,

1

m− δ
(i)
2

(
δ
(i)
2 M

m
+

3L2

2
∆

)
≤ c1

(
1 + c2 (i+ 1)

−ξ
)
,

δ
(i)
1

m− δ
(i)
2

≤ c3 (i+ 1)
−δ

(1 + o (1)) ,

where M = min
{∥∥∥F̈ (θ⋆)

∥∥∥
2
, L1

}
. Then, we have

∥∥∥θ(n+1) − θ⋆
∥∥∥
2
≲

c3n
−δ

c1 |ln c1|
.

(ii) Under Opt, Lip-2 and Hess, suppose that, for any i ≥ 0, there are constants
1 > c1 > 0, c2 ≥ 0, ∆ > 0 and ξ ≥ 0 such that

∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆,

δ
(i)
1 ≡ 0,

δ
(i)
2 ≤ m− 3L2

2 ∆

1 + M
m

,

1

m− δ
(i)
2

(
δ
(i)
2 M

m
+

3L2

2
∆

)
≤ c1

(
1 + c2 (i+ 1)

−ξ
)
,
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where M = min
{∥∥∥F̈ (θ⋆)

∥∥∥
2
, L1

}
. We have

∥∥∥θ(n+1) − θ⋆
∥∥∥
2
≲

{
∆ec2ζ(ξ)cn+1

1 exp
{

c2
1−ξ

n1−ξ
}
, ξ > 0, ξ ̸= 1,

∆ec2γ(0)cn+1
1 nc2 , ξ = 1.

Remark 5. The previous results are especially suitable in order to study the prop-

erties of deterministic algorithms. In this context, it is important to note that δ
(i)
1

and δ
(i)
2 play different roles. This is evident from Theorem 2. While δ

(i)
1 must

converge to 0, δ
(i)
2 is not compelled to. In particular, when δ

(i)
1 ̸= 0 and δ

(i)
2 = o (1),

one could take c1, c2 and c3 such that c1 = 3L2

2m ∆ and

δ
(i)
1 ≤ mc3 (i+ 1)

−δ
(1 + o (1)) ,

δ
(i)
2 ≤ m

1 +
(

2M+3L2∆
3L2∆c2

)
(i+ 1)

ξ
≲

3mL2∆c2
2M + 3L2∆

(i+ 1)
−ξ

,

δ
(i)
1 + δ

(i)
2

(
1 +

M

m

)
∆ ≤

(
m− 3L2

2
∆

)
∆.

The case δ
(i)
1 ̸= 0 and δ

(i)
2 ̸= o (1) is mainly associated with stochastic approximation

schemes (see (3.3)). In order to simplify, let us take δ
(i)
2 ≡ δ2 < m. We can then

take c1 = 1
m−δ2

(
δ2M
m

+ 3L2∆
2

)
, c2 = 0 and

δ
(i)
1 ≤

(
m− 3L2

2
∆− δ2

(
1 +

M

m

))
∆,

δ
(i)
1 ≤ c3 (m− δ2) (i+ 1)

−δ
(1 + o (1)) .

However, we will show in Section 4.1.2 that better results can be obtained with a
direct approach.

In the next result, we suppose that the approximation algorithm is stochastic.
The following theorem characterizes an analysis of the escape probability of the
algorithm. In particular, if we deőne B := θ⋆ ⊕∆B, the ball of radius ∆ centered

in θ⋆, it studies the probability that θ(i) gets out of B in the steps between 1 and

n+ 1, i.e. P

{
max1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}
.

Theorem 3. Under Opt, Lip-2 and Hess, provided
∥∥∥θ(0) − θ⋆

∥∥∥
2
≤ ∆ < 2(1−ε)m

3L2

for 0 < ε < 1, we have

P

{
max

1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}

≤
2
∑n

i=0 E

(
δ
(i)
1

)2

∆2
(
(1− ε)m− 3L2

2 ∆
)2

+

[
2ε2M2 +

(
(1− ε)m− 3L2

2 ∆
)2

ε2m2
(
(1− ε)m− 3L2

2 ∆
)2

]
n∑

i=0

E

(
δ
(i)
2

)2
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where M > 0 is a constant such that
∥∥∥F̈ (θ⋆)

∥∥∥
2
≤ M . Moreover, for small enough

∑n
i=0 E

(
δ
(i)
1

)2
= O (1) and

∑n
i=0 E

(
δ
(i)
2

)2
= O (1),

max
1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
= OP



(

n∑

i=0

E

(
δ
(i)
1

)2
) 1

2


 .

Remark 6. It is clear that the probability P

{
max1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}
is

positive and non-vanishing in almost all cases of interest. The reason is that, if the
algorithm approximating the derivatives is stochastic, it cannot be ruled out that

it gives rise to extreme values of the derivatives that lead θ(i) astray. However, the
bound reproduces several stylized facts whose comprehension may help in the design
of the algorithm. First, when ∆ ↓ 0 while all other quantities are őxed, the bound
blows up, as expected, because the probability of getting out of the ball is larger
for smaller values of ∆. Second, for őxed or decreasing ∆, the bound converges

to 0 if
∑n

i=0 E

(
δ
(i)
1

)2
= o

(
∆2
)

and
∑n

i=0 E

(
δ
(i)
2

)2
= o (1). This conőrms the

different roles played by δ
(i)
1 and δ

(i)
2 (see Remark 5). Third, the bound increases

with M and decreases with m, i.e. it increases with the condition number of the
matrix F̈ (θ⋆). It is well known that the larger is the condition number the more
eccentric are the level curves of the objective function, a condition associated with
tenuous identiőcation in the econometric literature (see Keane, 1992) and with slow
convergence rates of gradient-based optimization algorithms (see, e.g., Alger, 2019,
Section 3.1). The convergence rate of the NewtonśRaphson algorithm does not
depend on the condition number of the Hessian because it is affinely invariant. The
presence of both m and M in the bound is due to the fact that this covers both the
case in which the Hessian is correctly approximated and the optimization method
is affinely invariant and the case in which it is not. This is witnessed by the fact

that, if δ
(i)
2 ≡ 0, the bound only depends on m. The fact that the bound increases

with L2 conőrms that the difficulty of the optimization problem plays a role in
the escape probability. Fourth, the bound increases in n and it is necessary that

E

(
δ
(i)
1

)2
↓ 0 and E

(
δ
(i)
2

)2
↓ 0 rapidly enough for it to converge. In order to have

∑∞
i=0 E

(
δ
(i)
1

)2
= O (1) and

∑∞
i=0 E

(
δ
(i)
2

)2
= O (1), we need E

(
δ
(i)
1

)2
= o

(
i−1
)

and E

(
δ
(i)
2

)2
= o

(
i−1
)
. At last, when E

(
δ
(i)
1

)2
and E

(
δ
(i)
2

)2
decrease for a certain

i, the bound decreases too.

4.1.2. Stochastic Approximation Schemes. The previous results are not well suited
to study the algorithm in (3.3). This section gives different, specialized results for
this kind of algorithm. The őrst one is the analog of Theorem 1 and Corollary 1.

Theorem 4. Under Opt and Lip-2, if γi+1λmin

(
F̈ (θ⋆)

)
< 1,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤
(
1− γi+1λmin

(
F̈ (θ⋆)

))∥∥∥θ(i) − θ⋆
∥∥∥
2
+γi+1

L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
+γi+1δ

(i)
1 .

The second result parallels Theorem 2.
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Theorem 5. Suppose that Opt and Lip-2 hold and L2

2 ∆ < λmin

(
F̈ (θ⋆)

)
.

(i) Suppose that, for any i ≥ 0, there are constants ∆ > 0, ξ > 1, γ > 0, δ > 0,
c1 > 0, c2 ≥ 0 and c3 ≥ 0, such that

∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆,

γi+1λmin

(
F̈ (θ⋆)

)
< 1,

δ
(i)
1 ≤

(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)
∆,

∣∣∣γi+1 − c1 (i+ 1)
−γ
∣∣∣ ≤ c2 (i+ 1)

−ξ
,

δ
(i)
1 ≤ c3 (i+ 1)

−δ
(1 + o (1)) .

If γ < 1,
∥∥∥θ(n+1) − θ⋆

∥∥∥
2
≲

c3e
2(λmin(F̈ (θ⋆))−L2

2 ∆)c2ζ(ξ)n−δ

λmin

(
F̈ (θ⋆)

)
− L2

2 ∆
.

If γ = 1,

∥∥∥θ(n+1) − θ⋆
∥∥∥
2
≲





c1c3e
2(λmin(F̈(θ⋆))−

L2
2

∆)c2ζ(ξ)

(λmin(F̈ (θ⋆))−L2
2 ∆)c1−δ

n−δ,
(
λmin

(
F̈ (θ⋆)

)
− L2

2 ∆
)
c1 > δ,

c1c3e
2(λmin(F̈ (θ⋆))−L2

2 ∆)c2ζ(ξ)n−δ lnn,
(
λmin

(
F̈ (θ⋆)

)
− L2

2 ∆
)
c1 = δ,

Cn−(λmin(F̈ (θ⋆))−L2
2 ∆)c1

(
λmin

(
F̈ (θ⋆)

)
− L2

2 ∆
)
c1 < δ,

where

C ≤ c1c3e
2(λmin(F̈ (θ⋆))−L2

2 ∆)c2ζ(ξ)
∞∑

k=0

(
λmin

(
F̈ (θ⋆)

)
− L2

2 ∆
)k (

2c1+c2
2

)k

k!

· ζ
(
1 + δ + k −

(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)
c1

)

+∆exp

{(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)(
c2ζ (ξ)− c1γ(0)

)}
.

If γ > 1, there is no guarantee of convergence.
(ii) Suppose that, for any i ≥ 0, there are constants ∆ > 0, ξ > 1, γ > 0, δ > 0,
c1 > 0 and c2 ≥ 0, such that

∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆,

γi+1λmin

(
F̈ (θ⋆)

)
< 1,

∣∣∣γi+1 − c1 (i+ 1)
−γ
∣∣∣ ≤ c2 (i+ 1)

−ξ
,

δ
(i)
1 ≡ 0.

For γ < 1,

∥∥∥θ(n+1) − θ⋆
∥∥∥
2
≲ exp

{(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)(
c2ζ (ξ)− c1ζ (γ)−

c1
1− γ

n1−γ

)}
,
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for γ = 1,
∥∥∥θ(n+1) − θ⋆

∥∥∥
2
≲ ∆exp

{(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)(
c2ζ (ξ)− c1γ(0)

)}
n−(λmin(F̈ (θ⋆))−L2

2 ∆)c1

and, for γ > 1, there is no guarantee of convergence.

Remark 7. In the most relevant case, i.e. the one with δ
(i)
1 ̸= 0 and γ < 1, the

rate of convergence only depends on the rate of decrease of δ
(i)
1 , in the sense that∥∥∥θ(n+1) − θ⋆

∥∥∥
2
= O

(
δ
(n)
1

)
. If γ < 1, the rate is therefore independent of the value

of γ.

When the algorithm is stochastic, the following corollary provides a result on
the escape probability analogous to Theorem 3.

Corollary 2. Under Opt and Lip-2, we have

P

{
max

1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}
≤

∑n
i=0 E

(
δ
(i)
1

)2

∆2
[
λmin

(
F̈ (θ⋆)

)
− L2

2 ∆
]2

provided γi+1 < λ−1
min

(
F̈ (θ⋆)

)
for any i and ∆ <

2λmin(F̈ (θ⋆))
L2

. Moreover,

max
1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
= OP



(

n∑

i=0

E

(
δ
(i)
1

)2
) 1

2


 .

Remark 8. The bound on P

{
max1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}
does not depend on

the learning sequence {γi}. This implies that

sup
{γi:γi+1<λ−1

min(F̈ (θ⋆))}
P

{
max

1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}
≤

∑n
i=0 E

(
δ
(i)
1

)2

∆2
[
λmin

(
F̈ (θ⋆)

)
− L2

2 ∆
]2 .

The result sounds surprising, but it should be remarked that, once it is ascertained
that the exponent γ of the learning sequence is smaller than 1, also the convergence
rate of Theorem 5 does not feature γ.

The next theorem is inspired by some results in Ghadimi and Lan (2013); Karimi
et al. (2019).

Theorem 6. Under Opt, Lip-1 and MaV, suppose that maxθ∈Θ

∥∥∥Ḟ (θ)
∥∥∥
2
≤ c1 <

∞ and 1− γi+1L1 ≥ c2 > 0. Moreover, let θ(0) be fixed and F (θ⋆) > −∞. Then,
the following results hold:
(i) We have

min
0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
= OP

((
1 +

∑n
i=0 γi+1bi +

∑n
i=0 γ

2
i+1σi∑n

i=0 γi+1

) 1
2

)
.

(ii) We have

1

n

n∑

i=0

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
= OP





1

n

(
n∑

i=0

γ−1
i+1

) 1
2
(
1 +

n∑

i=0

γi+1bi +

n∑

i=0

γ2
i+1σi

) 1
2



 .
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(iii) If also Hess holds, the previous results hold respectively with min0≤i≤n

∥∥∥θ(i) − θ⋆
∥∥∥
2

and 1
n

∑n
i=0

∥∥∥θ(i) − θ⋆
∥∥∥
2

replacing min0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
and 1

n

∑n
i=0

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
.

Remark 9. (i) The deterministic case can be recovered taking bi = δ
(i)
1 and σi =(

δ
(i)
1

)2
. Following the proof of the theorem, if γi+1 ∼ i−γ and δ

(i)
1 ∼ i−δ, one gets

these convergence rates:

min
0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
=





O (1) , γ > 1,

O
(
ln−

1
2 n
)
, γ = 1,

O
(
n− δ

2

)
, γ < 1, γ + δ < 1,

O
(
n− δ

2 ln
1
2 n
)
, γ < 1, γ + δ = 1,

O
(
n

γ−1
2

)
, γ < 1, γ + δ > 1,

and

1

n

n∑

i=0

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
=





O
(
n

γ−1
2

)
, γ > 1,

O (1) , γ = 1,

O
(
n− δ

2

)
, γ < 1, γ + δ < 1,

O
(
n− δ

2 ln
1
2 n
)
, γ < 1, γ + δ = 1,

O
(
n

γ−1
2

)
, γ < 1, γ + δ > 1.

(ii) In the stochastic case, we note that

E

∥∥∥E
[
˙̃
F
(
θ(i)
)
|Fi

]
− Ḟ

(
θ(i)
)∥∥∥

2
≤ E

∥∥∥ ˙̃F
(
θ(i)
)
− Ḟ

(
θ(i)
)∥∥∥

2
≤ Eδ

(i)
1 ,

EE

(∥∥∥ ˙̃F
(
θ(i)
)
− F

(
θ(i)
)∥∥∥

2

2
|Fi

)
= E

(
δ
(i)
1

)2
.

(iii) The őrst result states that the probability that the optimization algorithm
never visits a region where the score is near to zero tends to decrease with the
number of steps of the algorithm, i.e.

P

{∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
≥ ε, 0 ≤ i ≤ n

}
= O

(
E
1 +

∑n
i=0 γi+1bi +

∑n
i=0 γ

2
i+1σi

ε2
∑n

i=0 γi+1

)
.

If the step sizes are deterministic, we can write

P

{∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
≥ ε, 0 ≤ i ≤ n

}
= O



1 +

∑n
i=0 γi+1Eδ

(i)
1 +

∑n
i=0 γ

2
i+1E

(
δ
(i)
1

)2

ε2
∑n

i=0 γi+1


 .
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(iv) From Remark 2, it is clear that, if bi ≍ i−β and σ ≍ i−σ, one can always take
β ≥ σ

2 . In the extreme case in which bi ≡ 0,

min
0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
=





OP (1), γ > 1,

OP

(
ln−

1
2 n
)
, γ = 1,

OP

(
n

γ−1
2

)
, 1−σ

2 < γ < 1,

OP

(
n

γ−1
2 ln

1
2 n
)
, γ = 1−σ

2 ,

OP

(
n− γ+σ

2

)
, γ < 1−σ

2 .

In the other extreme case, in which β = σ
2 ,

min
0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
=





OP (1), γ > 1,

OP

(
ln−

1
2 n
)
, γ = 1,

OP

(
n

γ−1
2

)
, 1− σ

2 < γ < 1,

OP

(
n

γ−1
2 ln

1
2 n
)
, γ = 1− σ

2 ,

OP

(
n−σ

4

)
, γ < 1− σ

2 .

(v) Most optimization methods have an objective function of the form:

F (θ) :=
1

N

N∑

k=1

Fk (θ)

where each Fk (·) is identically distributed. The gradient descent (GD) algorithm
is deőned as

θ(i+1) = θ(i) − γi+1Ḟ
(
θ(i)
)
= θ(i) − γi+1

1

N

N∑

k=1

Ḟk

(
θ(i)
)
,

but it is sometimes replaced by the stochastic gradient descent (SGD) algorithm

θ(i+1) = θ(i) − γi+1
˙̃
F
(
θ(i)
)
= θ(i) − γi+1ḞK

(
θ(i)
)
,

where K is randomly uniformly drawn from {1, 2, . . . , N}. For the GD algorithm,
it is clear that bi ≡ 0 and σi ≡ 0, and

min
0≤i≤n

∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ min

0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
=





OP (1) , γ > 1,

OP

(
ln−

1
2 n
)
, γ = 1,

OP

(
n

γ−1
2

)
, γ < 1,

and

1

n

n∑

i=0

∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ 1

n

n∑

i=0

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
= OP

(
n

γ−1
2

)
.
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For the SGD algorithm, bi ≡ 0 and σi is O (1). Therefore,

min
0≤i≤n

∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ min

0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
=





OP (1) , γ > 1,

OP

(
ln−

1
2 n
)
, γ = 1,

OP

(
n

γ−1
2

)
, 1

2 < γ < 1,

OP

(
n− 1

4 ln
1
2 n
)
, γ = 1

2 ,

OP

(
n− γ

2

)
, 0 < γ < 1

2 ,

and

1

n

n∑

i=0

∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ 1

n

n∑

i=0

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
=





OP

(
n

γ−1
2

)
, γ > 1

2 ,

OP

(
n− 1

4 ln
1
2 n
)
, γ = 1

2 ,

OP

(
n− γ

2

)
, 0 < γ < 1

2 .

The following result gives a convergence rate for the stochastic case.

Theorem 7. Under Opt, Lip-1, MaV, Hess, suppose that

∆+∆γ2
i+1L

2
1 + γi+1 (1 + γi+1L1) bi > 2γi+1∆m,
∣∣∣γi+1 − c1 (i+ 1)

−γ
∣∣∣ ≤ c2 (i+ 1)

−ξ
,

∣∣∣bi − c3 (i+ 1)
−β
∣∣∣ ≤ c4 (i+ 1)

−ζ
,

σi ≤ c5 (i+ 1)
−σ

(1 + o (1))

for i ≥ 0, with β ≥ 0, ζ ≥ 0, σ ≥ 0, 1 < ξ and 1 < γ + ζ. Then, the following rates
of convergence hold:

• If 1 > γ > 0,
∥∥∥θ(i+1) − θ⋆

∥∥∥
2
= OP

(
i−

(γ+σ)∧β

2

)
.

• If γ = 1,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
=





OP

(
i−

(σ+1)∧β

2

)
, 2mc1 > (σ + 1) ∧ β,

OP

(
i−mc1 ln

1
2 i
)
, 2mc1 = (σ + 1) ∧ β,

OP (i
−mc1) , 2mc1 < (σ + 1) ∧ β.

• If γ > 1, then
∥∥∥θ(i+1) − θ⋆

∥∥∥
2
= OP (1) and the algorithm is not guaranteed

to converge.

Remark 10. Let us consider again the GD and SGD algorithms. For GD, we can
take β = σ = ∞. Therefore, for γ > 1 the rate of convergence is OP (1), for γ = 1 it
is OP (i

−mc1) and for 1 > γ > 0 it is faster than polynomial. In particular, following
the proof, we get

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
= OP

(
exp

{
− mc1
1− γ

i1−γ +O
(
i1−2γ

)})
.
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Figure 4.1. Exponent f (γ) of n as a function of γ for
∥

∥

∥
θ
(n)

− θ
⋆
∥

∥

∥

2
=

OP

(

nf(γ)
)

(solid line) from Theorem 7, min0≤i≤n

∥

∥

∥
θ
(i)

− θ
⋆
∥

∥

∥

2
=

OP

(

nf(γ)
)

(dashed line) from Theorem 6, and max0≤i≤n

∥

∥

∥
θ
(i)

− θ
⋆
∥

∥

∥

2
=

OP

(

nf(γ)
)

(dotted line) from Corollary 2; the empty points represent

the presence of logarithmic terms or the coexistence of different conver-

gence rates not depending on γ.

For SGD, we can take β = ∞ and σ = 0. Then,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
=





OP (1) , γ > 1,

OP

(
i−

1
2

)
, γ = 1, 2mc1 > 1,

OP

(
i−

1
2 ln

1
2 i
)
, γ = 1, 2mc1 = 1,

OP (i
−mc1) , γ = 1, 2mc1 < 1,

OP

(
i−

γ
2

)
, 1 > γ > 0.

We can thus represent the convergence rates of SGD as in Figure 4.1. It is apparent

that the convergence rate of
∥∥∥θ(n) − θ⋆

∥∥∥
2

is faster for larger γ < 1. The discrepancy

between the rates of
∥∥∥θ(n) − θ⋆

∥∥∥
2

and min0≤i≤n

∥∥∥θ(i) − θ⋆
∥∥∥
2
, and the discontinuity

in the rate of min0≤i≤n

∥∥∥θ(i) − θ⋆
∥∥∥
2

are probably artifacts of the method of proof.

4.2. Local Approximation by Least Squares. In this section we characterize
some results on the least squares approximation of a function in a point θ0 and in
a neighborhood of θ0, on the basis of the approximate values of the function in a
set of points.

Consider a point θ0 ∈ Θ ⊂ R
K . Let P (θ0) := {θ1, . . . ,θP } be a set of P points.

In most cases of interest, θ0 will be quite near to P (θ0) but this is not necessary.
Moreover, in some cases θ0 will belong to P (θ0). Let ρ := maxj ∥θj − θ0∥2 be the
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radius of the smallest closed ball centered in θ0 and containing P (θ0). This means
that P (θ0) ⊂ θ0 ⊕ ρB. We suppose that the points in P (θ0) are a dilated version
of a set of points P0 (θ0) := {θ0,1, . . . ,θ0,P } with ρ0 := maxj ∥θ0,j − θ0∥2, i.e.

θj := θ0 + h (θ0,j − θ0)

where h = ρ
ρ0

, in most cases of interest, will be supposed to converge to 0. We

deőne also ρ̃ := minj ∥θj − θ0∥2; this is 0 if θ0 ∈ P (θ0). Next, we suppose without
loss of generality that the point θ0 is in the origin, so that all points are replaced
by θ 7→ θ − θ0.

The function F (θj) is contaminated by an error εj , i.e. one observes the value

F̂ (θj) = F (θj) + εj instead of F (θj). In this section we keep the treatment quite
general and we do not specify a source for εj . We then provide an approximation
to the function F (·). For a generic θ ∈ ρB, we build the vector of regressors xD (θ)
containing all the monomials of elements of θ up to order D. As usual, the order of
multiplication in the monomials does not matter, so that the number of monomials
in K variables exactly of order d is

(
d+K−1

d

)
and up to order D is

(
D+K
D

)
. We

then take, as approximating function, a polynomial of order D in the elements of
θ, β′xD (θ).

Example 1. When using a őrst-order polynomial, we can write

β1 + β′
2θ = β′x1 (θ)

where β =
[
β1,β

′
2

]′
and x1 (θ) =

[
1,θ′]′. For a second-order polynomial, we can

write

β1 + β′
2θ + β′

3D
+
K (θ ⊗ θ) = β′x2 (θ)

where D+
K was deőned in Section 3.2, β =

[
β1,β

′
2,β

′
3

]′
and x2 (θ) =

[
1,θ′,

(
D+

K (θ ⊗ θ)
)′]′

.

Remark 11. In principle, one could substitute the least squares approximation with
other methods, e.g., the least absolute shrinkage and selection operator (Lasso).

Let y be the vector whose generic j-th element is F̂ (θj). For each j, we build
the vector of regressors xD (θj) from θj . Let X be the matrix of regressors obtained
stacking the rows x′

D (θj). Let X0 be the same matrix for the point set P0 (θ0).
The ordinary least squares (OLS) estimator of β is

β̂ = (X′X)
−1

X′y.

For a generic θ, we deőne the OLS predictor as

F̃ (θ) = x′
D (θ) β̂ = x′

D (θ) (X′X)
−1

X′y.

For the statement of the results, let ε be the vector whose j-th element is εj =

F̂ (θj)− F (θj). We note that, despite we do not explicit it, ε may depend on the
set of points P (θ0) in which the function is computed.

We will need an assumption concerning the function F .

Fun-d: The function F : θ 7→ F (θ) is of class Cd,1 on a compact set Θ ⊂ R
K .

The parameter space contains an open neighborhood of a value θ⋆ such
that Ḟ (θ⋆) = 0.

Assumption Fun-d requires the function to be differentiable up to order d with
Lipschitz derivative. In this paper, we will mainly use Fun-1 and Fun-2 but some
results are stated in more general form.
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We present four different results: the őrst one concerns the quality of the ap-
proximation of the function in a single point, the second one deals with the ap-
proximation of the function and its derivatives in a neighborhood of a point, the
third one regards the gradient and the Hessian, and the last one provides upper
bounds for the bias and the variance of the approximation when the error affecting
the function is stochastic.

Theorem 8. Suppose Fun-d holds. If θ0 ∈ P (θ0),

∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ ≤ P

1
2

KD

(D − 1)!
ρD+1 |F |D,1 + ρ−D P− 1

2 ρD0 ∥ε∥2√
λmin

(
1
P
X′

0X0

) .

If θ0 /∈ P (θ0),

∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ ≤ P

1
2

KD

(D − 1)!
ρD+1 |F |D,1 + ρ̃ |F |0,1

+ ρ−D

{
ρ̃

(
1− ρ̃2D

1− ρ̃2

) 1
2

∥F∥P(θ0)
+ P− 1

2 ∥ε∥2

}
ρD0√

λmin

(
1
P
X′

0X0

) .

Remark 12. (i) When P (θ0) ≡ P0 (θ0) and ρ = ρ0, we have

∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ ≤ P

1
2

KD

(D − 1)!
ρD+1 |F |D,1 + ρ̃ |F |0,1

+

{
ρ̃

(
1− ρ̃2D

1− ρ̃2

) 1
2

∥F∥P(θ0)
+ P− 1

2 ∥ε∥2

}
1√

λmin

(
1
P
X′

0X0

) .

(ii) When θ0 /∈ P (θ0) and ρ̃ is small,

∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ ≲ P

1
2

KD

(D − 1)!
ρD+1 |F |D,1 + ρ−D P− 1

2 ρD0 ∥ε∥2√
λmin

(
1
P
X′

0X0

)

+ ρ̃



|F |0,1 + ρ−D

ρD0 ∥F∥P(θ0)√
λmin

(
1
P
X′

0X0

)





and, as expected, the bound is only slightly larger than the one for θ0 ∈ P (θ0).
(iii) Considering only the most important asymptotic parameters, for ρ ↓ 0 and
ρ̃ ↓ 0, we get

∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ = O

(
ρD+1 + ρ̃+ ρ−D (ρ̃+ ∥ε∥2)

)
.

It is clear that ρ̃ ≤ ρ, but the choice of a θ0 not belonging to P (θ0) may affect
negatively the rate of convergence to 0. Indeed, if ρ̃ = 0,

∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ = O

(
ρD+1 + ρ−D ∥ε∥2

)

while, if ρ̃ and ρ converge to zero at the same rate,
∣∣∣F̃ (θ0)− F (θ0)

∣∣∣ = O
(
ρ−D+1 + ρ−D ∥ε∥2

)
.
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Now we turn to the uniform approximation in a neighborhood of θ0. Deőne the
constant

CD (P0) := sup
p∈PD

∥p (θ)∥ρ0B

∥p (θ)∥P0(0)

.

Calvi and Levenberg (2008, p. 85) discuss its meaning and its relation with other
properties of the polynomials. Other properties are collected in Bos et al. (2011b,a).
The constant does not depend on the position of θ0, but only on the conőguration
of points P0 (0) and on its radius ρ0, and the degree of the polynomial D. The
existence of a őnite CD (P0) is equivalent to the fact that P0 (0) is a PD-determining
class for ρ0B, i.e. the fact that any polynomial of degree D is zero on P0 (0) implies
that it is zero on ρ0B.

Theorem 9. Suppose Fun-D holds and let θ0 be a point in Θ. Then, for S ≤ D,

max
|k|=S

∥∥∥DkF̃ (θ)−DkF (θ)
∥∥∥
θ0⊕ρB

≤ ρD0 ρ−D
P− 1

2S!

√∑D
d=S

(
d
S

)2
ρ2(d−S)

√
λmin

(
1
P
X′

0X0

) max
θ∈θ0⊕ρB

∥ε∥2

+




(
2 + CD (P0)

(
1 + P

1
2

))
(D!)

2
KS

((D − S)!)
2
(D − 1)!

+
1

(D − S − 1)!


KD−SρD−S+1 |F |D,1

where it is intended that (−1)! = 1.

Remark 13. (i) By restricting our attention to the most important asymptotic
parameters, i.e. ρ and maxθ∈θ0⊕ρB ∥ε∥2, we get

max
|k|=S

∥∥∥DkF̃ (θ)−DkF (θ)
∥∥∥
θ0⊕ρB

= O

(
ρD−S+1 + ρ−D max

θ∈θ0⊕ρB
∥ε∥2

)
.

Note that this implies, as expected, a worse rate of convergence for higher deriva-
tives. If we suppose that all other parameters are őxed, we need ρ ↓ 0, ρ−D maxθ∈θ0⊕ρB ∥ε∥2 ↓
0 in order to have convergence to 0. Indeed, when ρ ↓ 0 and S ≤ D,

∑D
d=S

(
d
S

)2
ρ2(d−S) =

1 + o (1).
(ii) For S = 0, we get

∥∥∥F̃ (θ)− F (θ)
∥∥∥
θ0⊕ρB

≤

(
3 + CD (P0)

(
1 + P

1
2

))
KD

(D − 1)!
ρD+1 |F |D,1

+ ρ−D P− 1
2 ρD0√

λmin

(
1
P
X′

0X0

)

√
1− ρ2(D+1)

1− ρ2
max

θ∈θ0⊕ρB
∥ε∥2 .

This compares favorably with the bound of Theorem 8 for θ0 ∈ P (θ0),

∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ ≤ P

1
2

KD

(D − 1)!
ρD+1 |F |D,1 + ρ−D P− 1

2 ρD0√
λmin

(
1
P
X′

0X0

) ∥ε∥2
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that gives a bound for the approximation in a single point. The two main sources

of disagreement between the two formulas are the terms 3 + CD (P0)
(
1 + P

1
2

)

and
√

1−ρ2(D+1)

1−ρ2 in the őrst formula that are replaced by P
1
2 and 1 in the second

formula. The term
√

1−ρ2(D+1)

1−ρ2 takes into account the size of the neighborhood:

indeed, it converges to 1 when ρ ↓ 0 and diverges as ρD when ρ → ∞. The term

3 + CD (P0)
(
1 + P

1
2

)
is more difficult to characterize and compare to P

1
2 . Calvi

and Levenberg (2008, Section 3.1) discuss the case in which CD (P0) is bounded
from above and, as a result, the two terms have the same asymptotic behavior in
P . Other results are contained in Bos et al. (2011b,a), where several examples of
meshes with slowly increasing values of CD (P0) are proposed. However, note that
P is rarely an asymptotic parameter in what follows.
(iii) Given the relevance of the approximation of the őrst derivative in Theorem 1, it

may be interesting to choose ρ in such a way to minimize max|k|=1 supθ∈ρB

∣∣∣DkF̃ (θ)−DkF (θ)
∣∣∣.

This means that ρ⋆ ∼ maxθ∈θ0⊕ρB ∥ε∥
1

2D
2 and, if maxθ∈θ0⊕ρB ∥ε∥2 ↓ 0,

max
|k|=1

∥∥∥DkF̃ (θ)−DkF (θ)
∥∥∥
θ0⊕ρB

= O

(
max

θ∈θ0⊕ρB
∥ε∥

1
2
2

)
.

The second derivative has a worse convergence rate, namely

max
|k|=2

∥∥∥DkF̃ (θ)−DkF (θ)
∥∥∥
θ0⊕ρB

= O

(
max

θ∈θ0⊕ρB
∥ε∥

D−1
2D

2

)
.

Under Lip-1 and Lip-2, similar results hold for the gradient and the Hessian.

In the following,
[
DiF̃ (θ)−DiF (θ)

]
denotes the gradient of F̃ (θ) − F (θ) and

[
DijF̃ (θ)−DijF (θ)

]
the Hessian of the same function. The advantage of these

results is that they are less affected by the curse of dimensionality in K, the number
of parameters.

Corollary 3. Let θ0 be a point in Θ. Then, under Lip-1, for S = D = 1,

sup
θ∈θ0⊕ρB

∥∥∥
[
DiF̃ (θ)−DiF (θ)

]∥∥∥
2
≤ρ0K

1
2 maxθ∈θ0⊕ρB ∥ε∥2

P
1
2 ρ
√
λmin

(
1
P
X′

0X0

)

+
1

2

(
4 + C1 (P0)

(
1 + P

1
2

))
L1ρ.

Under Lip-2, for S = 1 and D = 2,

sup
θ∈θ0⊕ρB

∥∥∥
[
DiF̃ (θ)−DiF (θ)

]∥∥∥
2
≤ρ20K

1
2

√
1 + 4ρ2 maxθ∈θ0⊕ρB ∥ε∥2

P
1
2 ρ2
√
λmin

(
1
P
X′

0X0

)

+
1

6

(
11 + 4C2 (P0)

(
1 + P

1
2

))
L2ρ

2

and, for S = D = 2,

sup
θ∈θ0⊕ρB

∥∥∥
[
DijF̃ (θ)−DijF (θ)

]∥∥∥
2
≤2ρ20Kmaxθ∈θ0⊕ρB ∥ε∥2
P

1
2 ρ2
√
λmin

(
1
P
X′

0X0

)

+
1

3

(
3 + 4K

1
2 + 2K

1
2C2 (P0)

(
1 + P

1
2

))
L2ρ.
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At last, we provide a version of Theorem 9 for the mean and the variance of the
approximation error, when this is stochastic.

Theorem 10. Let θ0 be a point in Θ. Then, under Fun-D, for S ≤ D,

max
|k|=S

∥∥∥EDkF̃ (θ)−DkF (θ)
∥∥∥
θ0⊕ρB

≤ ρ−D
P− 1

2 ρD0 S!

√∑D
d=S

(
d
S

)2
ρ2(d−S)

√
λmin

(
1
P
X′

0X0

) max
θ∈θ0⊕ρB

∥Eε∥2

+




(
2 + CD (P0)

(
1 + P

1
2

))
(D!)

2
KS

((D − S)!)
2
(D − 1)!

+
1

(D − S − 1)!


KD−SρD−S+1 |F |D,1

where it is intended that (−1)! = 1, and

max
|k|=S

∥∥∥∥E
∣∣∣DkF̃ (θ)−DkF (θ)− E

(
DkF̃ (θ)−DkF (θ)

)∣∣∣
2
∥∥∥∥
θ0⊕ρB

≤ ρ−2D P−1ρ2D0 (S!)
2

λmin

(
1
P
X′

0X0

)
(

D∑

d=S

(
d

S

)2

ρ2(d−S)

)
max

θ∈θ0⊕ρB
E ∥ε− Eε∥22 .

4.3. Results Specific to the Approximating Algorithm. In this section we
apply the previous results to our algorithm. In particular, we will replace the generic

point θ0 ∈ Θ with a point of the sequence
{
θ(i)
}

. Moreover, we will suppose that

all the expectations are conditional on the σ-algebra Fi. As the process
{
θ(i)
}

is

Markov, any expectation at step i depends only on the previous point θ(i−1) in the
sequence.

We need two assumptions quantifying the effect of replacing the true probability

Pz(·) with an approximated version P̂z(·) (see Section 3.1 for their speciőcation).
The őrst one is a deterministic bound, the second one concerns the stochastic case.

AUB: The element F̂ (θ)− F (θ) is such that, for a sequence {aN},

max
θj∈Pi(θ(i))

∣∣∣F̂ (θ)− F (θ)
∣∣∣ ≤ aN , P-as.

MaV2: max
θj∈Pi(θ(i))

∣∣∣E
(
F̂ (θj) |Fi

)
− F (θj)

∣∣∣ ≤ Bi, max
θj∈Pi(θ(i)) E

((
F̂ (θj)− F (θj)

)2
|Fi

)
≤

Σi.

Remark 14. (i) The bounds in Assumption MaV2 could be replaced with uncondi-

tional bounds like maxθ∈Θ

∣∣∣EF̂ (θ)− F (θ)
∣∣∣ ≤ Bi and maxθ∈Θ E

(
F̂ (θ)− F (θ)

)2
≤

Σi. The dependence on i of the bounds comes from the fact that the function F (θ)

is estimated by F̂ (θ) on the basis of a number of simulated observations depending
on the step i.
(ii) The bounds in Assumptions AUB and MaV2 can generally be obtained using

the functional differentiability of f
(
P̂y, ·

)
. A short explanation can be useful. Let

ϕ be a function of a probability measure, deőned in a neighborhood of P. Deőne

also the empirical process Gn :=
√
n
(
P̂n − P

)
based on n observations. Then an
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informal reasoning, that can be made rigorous along the lines of van der Vaart
(1998, Chapter 20), leads to the development

ϕ
(
P̂n

)
− ϕ (P) =

1√
n
ϕ′
P
(Gn) +

1

2n
ϕ′′
P
(Gn) + . . .

where ϕ
(n)
P

are functional derivatives of order n, and the function ϕ′
P
(·) is generally

linear. Now, this implies that

E

[
ϕ
(
P̂n

)
− ϕ (P)

]
≃
{

1
2nEϕ

′′
P
(Gn) , EP̂n = P,

1√
n
ϕ′
P
(EGn) , EP̂n ̸= P,

and

V

(
ϕ
(
P̂n

)
− ϕ (P)

)
≃ 1

n
V (ϕ′

P
(Gn)) .

These results can be used to characterize Bi and Σi using the identiőcations

ϕ
(
P̂z(θj)

)
= F̂ (θj) = f

(
P̂y, P̂z(θj)

)
,

ϕ
(
Pz(θj)

)
= F (θj) = f

(
P̂y,Pz(θj)

)
.

Moreover, under suitable assumptions, a functional Law of the Iterated Logarithm
yields

lim sup
N→∞

√
n

ln lnn

∣∣∣ϕ
(
P̂n

)
− ϕ (P)

∣∣∣ = lim sup
N→∞

√
n

ln lnn

∣∣∣ϕ′
P

(
P̂n − P

)∣∣∣ ≤ c, P-as.

As a result, in most cases,

Bi = O
(
N− 1

2

)
,

Σi = O
(
N−1

)
,

aN =

√
N

ln lnN
.

The following corollary provides formulas for the quantities involved in some of the
previous convergence results.

Corollary 4. Under AUB and Fun-D,

δ
(i)
1 ≤ ρ−D

i

ρD0 K
1
2

√∑D
d=1 d

2ρ
2(d−1)
i√

λmin

(
1
P
X′

0X0

) aN

+ ρDi



D2K

(
2 + CD (P0)

(
1 + P

1
2

))

D − 1
+ 1


 KD− 1

2 |F |D,1

(D − 2)!
,

δ
(i)
2 ≤ ρ−D

i

2ρD0 K

√∑D
d=2

(
d
2

)2
ρ
2(d−2)
i√

λmin

(
1
P
X′

0X0

) aN

+ ρD−1
i



D2 (D − 1)K2

(
2 + CD (P0)

(
1 + P

1
2

))

D − 2
+ 1


 KD−1 |F |D,1

(D − 3)!
.
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Under MaV2 and Fun-D,

E

(
δ
(i)
1

)2
≤



ρ−D

i

K
1
2 ρD0

√∑D
d=1 d

2ρ
2(d−1)
i√

λmin

(
1
P
X′

0X0

)
(
Σ

1
2
i +Bi

)

+ρDi



D2K

(
2 + CD (P0)

(
1 + P

1
2

))

(D − 1)!
+

1

(D − 2)!


KD− 1

2 |F |D,1





2

,

E

(
δ
(i)
2

)2
≤



2ρ−D

i

KρD0

√∑D
d=2

(
d
2

)2
ρ
2(d−2)
i√

λmin

(
1
P
X′

0X0

)
(
Σ

1
2
i +Bi

)

+ρD−1
i



D2 (D − 1)K2

(
2 + CD (P0)

(
1 + P

1
2

))

(D − 2)!
+

1

(D − 3)!


KD−1 |F |D,1





2

and

bi = ρ−D
i

K
1
2 ρD0

√∑D
d=1 d

2ρ
2(d−1)
i√

λmin

(
1
P
X′

0X0

) Bi

+ ρDi



D2K

(
2 + CD (P0)

(
1 + P

1
2

))

(D − 1)!
+

1

(D − 2)!


KD− 1

2 |F |D,1 ,

σi =



ρ−D

i

K
1
2 ρD0

√∑D
d=1 d

2ρ
2(d−1)
i√

λmin

(
1
P
X′

0X0

)
(
Σ

1
2
i +Bi

)

+ρDi



D2K

(
2 + CD (P0)

(
1 + P

1
2

))

(D − 1)!
+

1

(D − 2)!


KD− 1

2 |F |D,1





2

.

Remark 15. From the previous formulas, for D = 1,

(
E

(
δ
(i)
1

)2) 1
2

≤
K

1
2 ρ0

(
Σ

1
2
i +Bi

)

ρi

√
λmin

(
1
P
X′

0X0

) + ρi

[
K
(
2 + C1 (P0)

(
1 + P

1
2

))
+ 1
]
K

1
2 |F |1,1 ,

bi =
K

1
2 ρ0Bi

ρi

√
λmin

(
1
P
X′

0X0

) + ρi

[
K
(
2 + C1 (P0)

(
1 + P

1
2

))
+ 1
]
K

1
2 |F |1,1 ,

σ
1
2
i =

K
1
2 ρ0

(
Σ

1
2
i +Bi

)

ρi

√
λmin

(
1
P
X′

0X0

) + ρi

[
K
(
2 + C1 (P0)

(
1 + P

1
2

))
+ 1
]
K

1
2 |F |D,1 ,

and, for D = 2,

(
E

(
δ
(i)
1

)2) 1
2

≤
K

1
2 ρ20
√

1 + 4ρ2i

(
Σ

1
2
i +Bi

)

ρ2i

√
λmin

(
1
P
X′

0X0

)
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+ ρ2i

[
4K

(
2 + C2 (P0)

(
1 + P

1
2

))
+ 1
]
K

3
2 |F |2,1 ,

(
E

(
δ
(i)
2

)2) 1
2

≤
2Kρ20

(
Σ

1
2
i +Bi

)

ρ2i

√
λmin

(
1
P
X′

0X0

)

+ ρi

[
4K2

(
2 + C2 (P0)

(
1 + P

1
2

))
+ 1
]
K |F |2,1 ,

bi =
K

1
2 ρD0

√
1 + 4ρ2iBi

ρ2i

√
λmin

(
1
P
X′

0X0

)

+ ρ2i

[
4K

(
2 + C2 (P0)

(
1 + P

1
2

))
+ 1
]
K

3
2 |F |2,1 ,

σ
1
2
i =

K
1
2 ρ20
√

1 + 4ρ2i

(
Σ

1
2
i +Bi

)

ρ2i

√
λmin

(
1
P
X′

0X0

)

+ ρ2i

[
4K

(
2 + C2 (P0)

(
1 + P

1
2

))
+ 1
]
K

3
2 |F |2,1 .

Slightly better formulas for D ∈ {1, 2} can be obtained using Corollary 3.

The next two results give deterministic convergence rates for the INM and SAS
algorithms.

Theorem 11. For the Inexact Newton Method, under Opt, Fun-D, Hess and
AUB, suppose that, for any i ≥ 0, there exist C1 > 0, C2 > 0, m

2K|F |2,1
> ∆ > 0,

ρ > 0 and α > 0, such that ∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆,

δ
(i)
1 + δ

(i)
2

(
1 +

M

m

)
∆ ≤

(
m− 3L2

2
∆

)
∆,

ρi ≤ C1 (i+ 1)
−ρ

aN ≤ C2 (i+ 1)
−α

where M = min
{∥∥∥F̈ (θ⋆)

∥∥∥
2
,
√
K |F |1,1

}
. We have

∥∥∥θ(n+1) − θ⋆
∥∥∥
2
= O

(
n−(α−Dρ)∧(Dρ)

)
.

Theorem 12. For the Stochastic Approximation Scheme, suppose that Assump-

tions Opt, Fun-D and AUB hold and K∆ |F |2,1 < λmin

(
F̈ (θ⋆)

)
. Moreover, for

any i ≥ 0, there are constants ∆ > 0, 1 > γ > 0, ξ > 1, ρ > 0, α > 0, C1 > 0,
C2 > 0, C3 > 0 and C4 > 0, such that∥∥∥θ(0) − θ⋆

∥∥∥
2
≤ ∆,

γi+1λmin

(
F̈ (θ⋆)

)
< 1,

∣∣∣γi+1 − C1 (i+ 1)
−γ
∣∣∣ ≤ C2 (i+ 1)

−ξ
.

ρi ≤ C3 (i+ 1)
−ρ

,

aN ≤ C4 (i+ 1)
−α

,
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Table 1. Escape probabilities for INM with D = 2 and SAS with D = 1

and D = 2.

Method Rate
Conditions for

Fastest rate
Conditions for

convergence fastest rate

INM with D = 2
∑n

i=0 i
−(ν−4ρ)∧(2ρ) 1

2
< ρ < ν−1

4

∑n
i=0 i

− ν
3 =

∑n
i=0 i

−2ρ ν = 6ρ

SAS with D = 1
∑n

i=0 i
−(ν−2ρ)∧(2ρ) 1

2
< ρ < ν−1

2

∑n
i=0 i

− ν
2 =

∑n
i=0 i

−2ρ ν = 4ρ

SAS with D = 2
∑n

i=0 i
−(ν−4ρ)∧(4ρ) 1

4
< ρ < ν−1

4

∑n
i=0 i

− ν
2 =

∑n
i=0 i

−4ρ ν = 8ρ

δ
(i)
1 ≤

(
λmin

(
F̈ (θ⋆)

)
−K∆ |F |2,1

)
∆.

Then, ∥∥∥θ(n+1) − θ⋆
∥∥∥
2
= O

(
n−(α−Dρ)∧(Dρ)

)
.

Remark 16. Theorems 11 and 12 can be used to study the convergence of Gaussian
quadrature, which is known to converge exponentially fast (see, e.g., Trefethen,
2008).

The following results provide upper bounds on the escape probabilities of INM
and SAS algorithms, and a convergence rate for the SAS algorithm.

Theorem 13. Suppose that ρi ↓ 0 and B2
i = O (Σi). Then, the escape probability

can be characterized as follows:

• For the Inexact Newton Method, under Opt, Fun-D and Hess, provided∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆ < 2(1−ε)m

3K|F |2,1
for 0 < ε < 1, we have

P

{
max

1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}
≤ C

n∑

i=0

(
ρ−2D
i Σi + ρ2D−2

i

)

where the constant C depends upon ∆, ε, m, M , λmin

(
1
P
X′

0X0

)
, K, P , D,

ρ0, CD (P0), |F |2,1 and |F |D,1.
• For the Stochastic Approximation Scheme, under Opt and Fun-D, provided

γi+1 < λ−1
min

(
F̈ (θ⋆)

)
for any i and ∆ <

2λmin(F̈ (θ⋆))
K|F |2,1

, we have

P

{
max

1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}
≤ C

n∑

i=0

(
ρ−2D
i Σi + ρ2Di

)

where the constant C depends upon ∆, λmin

(
F̈ (θ⋆)

)
, λmin

(
1
P
X′

0X0

)
, K,

P , D, ρ0, CD (P0), |F |2,1 and |F |D,1.

Remark 17. Suppose that Ni ≍ iν , ρi ≍ i−ρ and Σi ≍ N−1
i . Then, we get the

results in Table 1: łRatež denotes the general rate, łConditions for convergencež
denotes the conditions under which the escape probability does not diverge, łFastest
ratež is the fastest possible rate, obtained balancing the two terms, and łConditions
for fastest ratež denotes the conditions under which the fastest rate is achieved.

Theorem 14. For the Stochastic Approximation Scheme, under Opt, Fun-D,

MaV2, Hess, suppose that Ni ≍ iν , ρi ≍ i−ρ, Bi ≍ N
− 1

2
i and Σi ≍ N−1

i . If
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∆ :=
∥∥∥θ(0) − θ⋆

∥∥∥
2
, suppose that

∆+∆γ2
i+1K |F |21,1 + γi+1

(
1 + γi+1

√
K |F |1,1

)
bi > 2γi+1∆m,

∣∣∣γi+1 − c1 (i+ 1)
−γ
∣∣∣ ≤ c2 (i+ 1)

−ξ
,

for i ≥ 0, with 1 < ξ. If ν > 2Dρ, γ + ν
2 > 1 +Dρ, and γ +Dρ > 1,

∥∥∥θ(n+1) − θ⋆
∥∥∥
2
=





OP

(
n−( ν

4−
Dρ
2 )∧(Dρ

2 )
)
, 1 > γ > 0,

OP

(
n−( ν

4−
Dρ
2 )∧(Dρ

2 )
)
, γ = 1, 2mc1 >

(
ν
2 −Dρ

)
∧ (Dρ) ,

OP

(
n−mc1 ln

1
2 n
)
, γ = 1, 2mc1 =

(
ν
2 −Dρ

)
∧ (Dρ) ,

OP (n
−mc1) , γ = 1, 2mc1 <

(
ν
2 −Dρ

)
∧ (Dρ) ,

OP (1) , γ > 1.

Remark 18. For 0 < γ < 1, the role of ρ in the convergence rate is ambiguous.

Note that this is far from unexpected, as neighborhoods Pi

(
θ(i)
)

that shrink too

rapidly or not rapidly enough may both lead to problems of convergence. Let us
take, for simplicity, the case D = 1. We őrst note that the results only hold for

1 − γ < ρ < ν
2 + γ − 1. The exponent of n−1 in OP

(
n−( ν

4−
ρ
2 )∧

ρ
2

)
is
(
ν
4 − ρ

2

)
∧ ρ

2 .

It is increasing in ν, thus suggesting that convergence is faster when Ni increases
more steeply, but its behavior in ρ is not monotonic. It is increasing in ρ for ρ < ν

4
and decreasing for ρ > ν

4 . This implies that both small and large values of ρ may
lead to slower convergence rates.

4.4. Computation of the Hessian matrix at the optimal point. The algo-
rithm of Section 4.2 can be used to calculate an estimate of the Hessian at the
optimal point θ⋆. This may be useful both for INM and, especially, for SAS. The
result is a simple consequence of Theorem 9.

Theorem 15. Under Opt and Fun-D, for D ≥ 2,
∥∥∥ ¨̃F (θ⋆)− F̈ (θ⋆)

∥∥∥
F

≤ ρ−D
ρD0 P− 1

2

√∑D
d=2 d

2 (d− 1)
2
ρ2(d−2)

√
λmin

(
1
P
X′

0X0

) max
θ∈θ⋆⊕ρB

∥ε∥2

+ ρD−1




(
2 + CD (P0)

(
1 + P

1
2

))
D2 (D − 1)K2

(D − 2)!
+

1

(D − 3)!


KD−2 |F |D,1

where it is intended that (−1)! = 1.

Remark 19. If there is no error in the computation of the objective function, ε ≡ 0

and ∥∥∥ ¨̃F (θ⋆)− F̈ (θ⋆)
∥∥∥
F

≤ ρD−1




(
2 + CD (P0)

(
1 + P

1
2

))
D2 (D − 1)K2

(D − 2)!
+

1

(D − 3)!


KD−2 |F |D,1 .
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If D = 2, then
∥∥∥ ¨̃F (θ⋆)− F̈ (θ⋆)

∥∥∥
F
≤ ρ

[
4K2

(
2 + C2 (P0)

(
1 + P

1
2

))
+ 1
]
|F |2,1 .

5. Computational Aspects

Now we turn to the computational aspects of the algorithm.

5.1. Computation of the Design Matrix. We recall the deőnitions we intro-

duced in Section 4.2. Pi

(
θ(i)
)
= {θ1, . . . ,θP } is a set of P points in a neighborhood

of θ(i). Let ρ := max
θj∈Pi(θ(i))

∥∥∥θj − θ(i)
∥∥∥
2

be the radius of the smallest closed ball

centered in θ(i) and containing Pi

(
θ(i)
)
. Each point θj ∈ Pi

(
θ(i)
)

corresponds

to a vector xD (θj).

Example 2. As an example, if K = 1 and D = 2, θj = θj and x2 (θj) =
(
1, θj , θ

2
j

)′
.

We consider estimation of the regression

F̂ (θj) = β′xD (θj) + εj

where xD (θj) is the vector based on θj .
First of all, we remark that the result of the regression is invariant with respect to

translations, i.e. the predictor does not change if we estimate the regression in which

the data are őrst centered in θ(i). We adopt the transformation θj → θj − θ(i), we

build xD

(
θj − θ(i)

)
on the basis of θj − θ(i) and we estimate the regression as

F̂ (θj) = β̃
′
xD

(
θj − θ(i)

)
+ εj .

The two regressions are observationally equivalent, provided the set of polynomials
that are used is downward closed (see Migliorati, 2015), a condition that is always
veriőed in our examples. For this reason, in the following we will always suppose

that the points have been recentered in θ(i) and we will write, with a slight abuse

of notation, xD (θj) for xD

(
θj − θ(i)

)
. This has another advantage, as it makes

easier to compute the derivatives.

Example 3. If K = 1 and D = 2, xD

(
θj − θ(i)

)
=
(
1, θj − θ(i),

(
θj − θ(i)

)2)′
.

A second problem is the fact that the design matrix tends to a singular matrix.
The design matrix X is obtained by stacking the generic vectors xD (θj) for j =
1, . . . , P , i.e.

X =




x′
D (θ1)

x′
D (θ2)

...
x′
D (θP )


 .

The point θ(i) is associated to a vector xD

(
θ(i)
)
= e1, but also the other points in

Pi

(
θ(i)
)

are associated to vectors that converge towards e1. We must őnd a way

to make the distance between the vectors xD (θj) and xD (θk), for 1 ≤ j ̸= k ≤ P ,
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more salient. As above, we suppose that Pi

(
θ(i)
)

is a dilated copy of the pointset

P0

(
θ(i)
)
:= {θ0,1, . . . ,θ0,P } with ρ0 := maxj

∥∥∥θ0,j − θ(i)
∥∥∥
2
. Therefore,

Pi

(
θ(i)
)
=

{
θ(i) +

ρ

ρ0

(
θ0,j − θ(i)

)
: θ0,j ∈ P0

(
θ(i)
)}

=

{
ρ

ρ0
θ0,j : θ0,j ∈ P0

(
θ(i)
)}

where the latter equality comes from the fact that we suppose that θ(i) ≡ 0. Let

us deőne h := ρ
ρ0

. This means that xD (θj) for θj ∈ Pi

(
θ(i)
)

can be written as

xD (θj) = xD (hθ0,j) = xD (θ0,j)⊙ h

where h is the vector containing the powers of h according to the following rule:
the k-th element of h has the same order of the k-th element of xD (θ0,j).

Example 4. If K = 1 and D = 2, h =
(
1, h, h2

)′
. Therefore:

xD (θj) =

(
1, θj − θ(i),

(
θj − θ(i)

)2)′
=

(
1, h

(
θ0,j − θ(i)

)
, h2
(
θ0,j − θ(i)

)2)′
= xD (θ0,j)⊙h.

If we deőne the design matrix X0 by stacking the generic vectors xD (θ0,j) for
j = 1, . . . , P , we have

X = X0dg (h) = X0 ⊙ (ιNh′) =




x′
D (θ0,1)⊙ h′

x′
D (θ0,2)⊙ h′

...
x′
D (θ0,P )⊙ h′


 .

The OLS estimator is β̂ = (X′X)
−1

X′y. Therefore,

β̂ = (X′X)
−1

X′y

= (dg (h)X′
0X0dg (h))

−1
dg (h)X′y

= dg
(
h
)
(X′

0X0)
−1

dg
(
h
)
dg (h)X′

0y

= dg
(
h
)
(X′

0X0)
−1

X′
0y

where h is the elementwise reciprocal of h.
It is worth noting that:

• if the points are kept in the same relative position with respect to θ(i) when

i changes, the design matrix X0, as well as the term (X′
0X0)

−1
X′

0, can be
computed once and for all and stored for future uses;

• the OLS estimator can be computed by multiplying the diagonal matrix

dg
(
h
)
, the pre-computed (X′

0X0)
−1

X′
0, and the vector y of the function

evaluated in the points Pi

(
θ(i)
)
= {θ1, . . . ,θP }.

5.2. Computation of the Hessian Matrix. We stated in Section 3.3 that we can

estimate the Hessian through the quantity
¨̃
F (θ). This is true only if the matrix is

positive (semi)deőnite. If this is not the case, the solution is to compute a positive

deőnite (or semideőnite) matrix that is near to
¨̃
F (θ). We start remarking that it
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is not possible to compute the nearest positive deőnite (pd) matrix as the set of pd
matrices is not closed (we will be back to this later). Therefore, we will compute
the nearest positive semideőnite (psd) matrix. This clearly depends on the concept
of łdistancež between two matrices. When the distance is computed through the
Frobenius norm, there is a unique nearest positive semideőnite matrix, for which
an algorithm has been given in Higham (1988). When the distance is given by the
spectral norm, there are several nearest matrices; an algorithm for computing one
of them has been provided in Halmos (1972) and discussed in Higham (1988). The
following proposition summarizes the relevant results taken from Halmos (1972)
and Higham (1988).

Proposition 1. Let UΛU′, with U′U = I and diagonal Λ = diag (λ1, λ2, . . . ), be

the spectral decomposition of
¨̃
F (θ). Then the nearest psd matrix in the Frobenius

norm is defined by UΛ+U
′, where Λ+ is the diagonal matrix in which negative

elements of Λ are replaced by 0. The Frobenius distance between the two matrices
is ∥∥∥ ¨̃F (θ)−UΛ+U

′
∥∥∥
F
=

√ ∑

j:λj<0

λ2
j .

The matrix UΛ+U
′ is also a nearest psd matrix in the spectral norm (despite not

the only one) and it has distance
∥∥∥ ¨̃F (θ)−UΛ+U

′
∥∥∥
2
= max

{
0,−min

j
λj

}
.

Remark 20. (i) The two distances appearing in the statement of the proposition

can be used to check for the adequacy of the matrix
¨̃
F (θ) as an approximation

of the Hessian. If this distance is too large it may be a good idea to increase the
number of simulations or move the points.
(ii) In case the matrix UΛ+U

′ is psd, its inverse has to be replaced by the Mooreś

Penrose inverse that is given by (UΛ+U
′)† = UΛ

†
+U

′.

If a pd matrix is required, a solution is to regularize the matrix UΛ+U
′. In this

case, one may replace Λ+ with Λ+ + λI for a small λ > 0:

¨̃
F (θ) = UΛ+U

′ + λI = U (Λ+ + λI)U′.

In this case the őnal Hessian matrix is a linear combination of (a modiőcation
of) the Hessian matrix from the algorithm outlined in Section 3.3 and a diagonal
matrix. The limiting case in which only the diagonal part is retained corresponds
to the Stochastic Approximation Scheme case covered in Section 4.1.2.

5.3. Computational Complexity. It seems very difficult to compare on the same
ground our method and the classical optimization algorithms based on numerical
differentiation. Indeed, our algorithm is designed for noisy cases where the perfor-
mances of the latter are expected to be bad.

However, we can still compute the number of function evaluations required by
the two methods. The NewtonśRaphson algorithm requires the computation of K
őrst derivatives, K second non-mixed derivatives and K (K − 1) /2 second mixed
derivatives. Let us őrst consider the case of centered-difference approximations
(see Eberly, 2020) and compute the number of evaluations necessary for numerical
differentiation of order Q. For the őrst derivatives, we use 2Q evaluations, 4Q2 for
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the second mixed derivatives and 2Q+1 for the second non-mixed derivatives. The
őnal value is

K + 4KQ+ 2K (K − 1)Q2.

Using the simplest possible value, i.e. Q = 1, the number of evaluations is:

1 + 2K + 2K2.

The number of evaluations can be reduced by exploiting different numerical differ-
entiation formulas and using the fact that some functions appear more than once
in the formulas for the őrst two derivatives (see Monahan, 2011, pp. 200-203). In

this way, the leading term can be reduced to K2 or even K2

2 . On the other hand,
our method requires P evaluations. The polynomial of degree D in K variables

is obtained as the sum of (K+D)!
K!D! monomials, therefore P ≥ (K+D)!

K!D! . If we only

use D = 2, P ≥ (K+2)(K+1)
2 . Therefore, our method competes favorably with the

classical method as far as the number of evaluations is concerned.
As to the accuracy, we can see what happens when our method is applied to

non-noisy data by taking aN ≡ 0 in Assumption AUB. In this case, Theorem 9

yields δ
(i)
1 = O

(
ρD
)

and δ
(i)
2 = O

(
ρD−1

)
. On the other hand, classical numerical

differentiation yields δ
(i)
1 = O

(
ε2Q
)

and δ
(i)
2 = O

(
ε2Q−1

)
.

As to the computational complexity of our method, we consider the case D = 2
and we adopt the real-number model of computation. We can reason as follows:1

(1) populating the matrix X0 requires O
(
PK2

)
evaluations;

(2) computing X′
0X0 requires O

(
PK4

)
operations;

(3) the inversion of X′
0X0 requires O

(
K6
)

operations;

(4) multiplying (X′
0X0)

−1
and X′

0 requires O
(
PK4

)
operations;

(5) populating y requires O (Pξ) operations, where ξ is the computational com-
plexity of each function evaluation;

(6) the multiplication of (X′
0X0)

−1
X′

0, y and dg
(
h
)

requires O
(
PK2

)
opera-

tions;

(7) populating the putative Hessian matrix 2D+,′
K β̂3, computing its eigende-

composition and inverting the Hessian matrix
¨̃
F
(
θ(i)
)

requires O
(
K3
)

operations;

(8) the other steps, like computing
˙̃
F
(
θ(i)
)

and updating θ(i+1) = θ(i) −
[
¨̃
F
(
θ(i)
)]−1 ˙̃

F
(
θ(i)
)
, require fewer operations than the others.

Steps 1-4 can be performed just once. The other steps have to be repeated for

I iterations. Taking into account that P ≥ (K+2)(K+1)
2 , the őnal computational

complexity is

O
(
P
[
K4 + I

(
ξ +K2

)])
.

6. Applications

In this section we provide some applications of our techniques to different frame-
works, in order to verify the őnite-sample properties of LAINM. First, we estimate

1For multiplication and inversion of matrices we adopt the computational complexity of the
classical algorithms; see Seri (2022, p. 6) for more details.
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the mean µ of a Gaussian random variable when stochastic equicontinuity is vio-
lated. Then, we estimate the parameters of a dynamic discrete choice model. The
optimization procedure follows the algorithm described in Section 3.3.

6.1. Monte Carlo Experiment. The őrst example concerns the estimation of
the mean µ of a Gaussian random variable with known variance. Although this is
a trivial case, it allows to investigate in detail the properties of our algorithm. In
the next lines, we describe the Monte Carlo experiment:

(1) we simulate a sample of S independent random variables distributed as

N (0, 1), say {y1, . . . , yS}, and we compute its empirical mean 1
S

∑S
ℓ=1 yℓ

(i.e. the target value θ⋆);

(2) for i ∈ {0, 1, . . . , n}, we select P points in a neighborhood of θ(i) = µ(i),
say Pi

(
µ(i)
)
= {µ1, . . . , µP };

(a) for each point µj ∈ Pi

(
µ(i)
)
;

(i) we simulate a sample of N (more correctly Ni) independent ran-
dom variables {z1 (µj) , . . . , zN (µj)} of the following data gen-
erating process zk (µj) = µj + σεk, where εk ∼ N (0, 1) and
σ ≡ 1;

(ii) we compute the empirical mean 1
N

∑N
k=1 zk (µj) and the objec-

tive function of the Method of Simulated Moments F̂ (µj) =(
1
S

∑S
ℓ=1 yℓ − 1

N

∑N
k=1 zk (µj)

)2
;

(b) we build the regression design matrix and we compute the OLS esti-

mator β̂ as explained in Section 5;

(c) using β̂, we calculate F̃
(
µ(i)
)
, the őrst derivative

˙̃
F
(
µ(i)
)

and the

Hessian
¨̃
F
(
µ(i)
)
;

(d) we substitute
˙̃
F
(
µ(i)
)

and
¨̃
F
(
µ(i)
)

in the optimization routine and we

compute µ(i+1);
(3) we repeat n times step 2.

For our purposes, we vary the sample size of the benchmark data S, the sample
size of the simulated data Ni, the mesh of the grid ρi, the step sizeγi used in
the stochastic approximation scheme and the number of iterations n, and we őx
the other quantities. The values taken by these quantities are the following: S =
{10, 100, 1000, 10000}, Ni = 10 × iν for ν = {1/4, 3/8, 1/2, 5/8, 3/4}, ρi = i−ρ with
ρ = {0.1, 0.5, 0.9}, γi = i−γ for γ = {0.4, . . . , 1.5} taken on an equispaced grid of
cardinality 23, and n = {10, 20, 40, 80, 160, 320, 640}. To test the validity of our

procedure, we use as starting value θ(0) = 50, which is very far from the target
value. We replicate the experiment R = 50, 000 times, and we compute the sample
mean squared error (MSE) of the estimator of µ across Monte Carlo runs.

The results of the Monte Carlo experiment for different combinations of ν, ρ, γ,
n and S, are depicted in Figure 6.1, Figure 6.2, Figure 6.3 and Figure 6.4.

We can state some considerations based on the outcomes of the simulation study.
The őrst comment concerns the impact of the number of steps n of the algorithm on
the MSE; the second regards the role of Ni and ρi; the third concerns the behavior
of the exponent of the step size, i.e. γ.

First of all, let us consider the role of the number of steps n of the algorithm.
In most cases, the MSE approaches the CramérśRao Lower Bound (CRLB) as
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n=10

n=20

n=40

n=80

n=160

n=320

n=640

MSE

ρ=0.1

0.171

0.292

0.5

0.171

0.292

0.5

0.171

0.292

0.5

0.171

0.292

0.5

0.171

0.292

0.5

0.171

0.292

0.5

0.4 0.6 0.8 1.0 1.2 1.4

0.171

0.292

0.5

γ

ρ=0.5

0.4 0.6 0.8 1.0 1.2 1.4

ρ=0.9

0.4 0.6 0.8 1.0 1.2 1.4

Figure 6.1. Behavior of the MSE of the estimator of µ for S = 10, Ni =

10 × i
1
4 (solid line), Ni = 10 × i

3
8 (dashed line), Ni = 10 × i

1
2 (dotted line),

Ni = 10× i
5
8 (dot-dashed line), Ni = 10× i

3
4 (long-dashed line), and different

combinations of ρi = i−ρ, γi = i−γ and n, with respect to its Cramér—Rao

Lower Bound (grey horizontal line).

n → ∞. Theorem 14 predicts that convergence is not guaranteed for γ > 1, γ ≤
1−
(
ν
2 − ρ

)
∨ρ, and for ν > 2ρ. The őgures are coherent with this fact: convergence

seems to fail for large ρ especially for small γ, when the second condition boils down
to γ ≤ 1− ρ and is veriőed. For small S, a fairly low number of iterations n can be
sufficient to reach a value of the MSE near the CRLB. However, this is partly an
artifact of the logarithmic ordinate axis.

Second, the dependence of the MSE on Ni is monotonic. Indeed, when Ni grows
faster or, equivalently, ν is larger, the MSE approaches monotonically from above
the CRLB. This is at odds with the dependence of the MSE on ρi and on the
number of steps n of the algorithm. Indeed, for ρi = i−0.1 and ρi = i−0.5, the
MSE is monotonically decreasing in n. However, this behavior breaks down for
ρi = i−0.9: (i) for larger ν, the MSE decreases as n increases; (ii) for smaller ν, an
increasing n may lead to a higher MSE, especially for small values of γ. Otherwise
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Figure 6.2. Behavior of the MSE of the estimator of µ for S = 100, Ni =

10 × i
1
4 (solid line), Ni = 10 × i

3
8 (dashed line), Ni = 10 × i

1
2 (dotted line),

Ni = 10× i
5
8 (dot-dashed line), Ni = 10× i

3
4 (long-dashed line), and different

combinations of ρi = i−ρ, γi = i−γ and n, with respect to its Cramér–Rao

Lower Bound (grey horizontal line).

stated, for small n, say n < 80, the optimization routine acts as in the case of
ρi = i−0.1 and ρi = i−0.5, while, for n ≥ 80, the effect of Ni is predominant, as the
optimization scheme seems to reach the CRLB only when Ni grows fast enough.
This is in line with the results in Table 1 and in Theorem 14: őrst, from Table
1 the escape probability for SAS with D = 1 diverges when ρ is large and ν is
small, i.e. when ρi decreases slowly (as in ρi = i−0.9) and Ni diverges slowly (as

in Ni = 10× i
1
4 ); second, the convergence rate in Theorem 14 is OP

(
n−( ν

4−
ρ
2 )∧

ρ
2

)
,

it worsens when ρ is large and ν is small and no convergence is guaranteed when
ν > 2ρ. In this case, a larger n has a negative effect on the convergence rate.

Third, for γ = 1, Theorem 14 predicts a discontinuity in the behavior of the MSE,
as for γ > 1 the algorithm is not guaranteed to converge. However, the simulation
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Figure 6.3. Behavior of the MSE of the estimator of µ for S = 1000,

Ni = 10 × i
1
4 (solid line), Ni = 10 × i

3
8 (dashed line), Ni = 10 × i

1
2 (dotted

line), Ni = 10 × i
5
8 (dot-dashed line), Ni = 10 × i

3
4 (long-dashed line), and

different combinations of ρi = i−ρ, γi = i−γ and n, with respect to its Cramér–

Rao Lower Bound (grey horizontal line).

experiment tells a more nuanced story. The discontinuity seems to depend on n. In
particular, as n increases the algorithm converges also for values of γ larger than 1.

Given all the above, we can claim that the Monte Carlo experiment seems to
conőrm the theoretical results.

6.2. Estimation of the parameters of a dynamic discrete choice model.

In this section we exploit our technique to estimate the parameters of a dynamic
discrete choice model through indirect inference.

6.2.1. General framework. Let us consider a panel data model with two indexes, i
for the individual and t for the time period. We follow the structure presented by
Bruins et al. (2018); Chaudhuri et al. (2018); Frazier et al. (2019), among others,
in which the authors provide estimation methods for dynamic categorical models
through indirect inference. In each period t, an individual i makes a choice from a
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Figure 6.4. Behavior of the MSE of the estimator of µ for S = 10000,

Ni = 10 × i
1
4 (solid line), Ni = 10 × i

3
8 (dashed line), Ni = 10 × i

1
2 (dotted

line), Ni = 10 × i
5
8 (dot-dashed line), Ni = 10 × i

3
4 (long-dashed line), and

different combinations of ρi = i−ρ, γi = i−γ and n, with respect to its Cramér–

Rao Lower Bound (grey horizontal line).

set of J discrete alternatives in such a way that its utility is maximized, i.e. yitj = 1
if individual i chooses alternative j in period t and yitj = 0 otherwise:

yitj = 1

{
zitj ≥ max

k ̸=j
zitk

}
,

where 1 {·} is the indicator function and zitj ∈ Z ⊂ R are the latent utilities. To
avoid confusion, we deőne zit := (zit1, . . . , zit,J−1) and yit := (yit1, . . . , yit,J−1).

Note that we take zitJ ≡ 0 and yitJ = 1−∑J−1
j=1 yitj .

The data have the following structure:

(6.1)
{
(xit, yitj) ∈ R

dx × R, i = 1, . . . , N, t = 1, . . . , T, j = 1, . . . , J
}
,
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where xit is a dx-vector of exogenous variables, observed by the econometrician,
with support X ⊂ R

dx . The (latent) utilities follow a stochastic process of the form

zit = f (xit,yi,t−1, . . . ,yi,t−ℓ,uit;θ) ,

where f (·;θ) : Rdx+ℓ(J−1)+J−1 → R
J−1, uit := (uit1, . . . , uit,J−1) are latent errors

with support U ⊂ R
J−1, θ ∈ Θ ⊂ R

K is the vector of structural parameters and K
is the dimension of the parameter space. The function f (·;θ) enters in the objective
function through a functional that is not easily computable, but the researcher can
simulate the innovations uit. The unobserved errors are modeled according to the
following Markov process:

uit = g (ui,t−1, εit;θ) ,

where ui,t−1 is the vector of latent errors in t − 1 with support U and εit is a
sequence of (unobserved) i.i.d. random vectors with cumulative distribution Fε (·)
that is independent of θ.

6.2.2. Illustrative example: a two-alternative DDCM. For our purposes, we consider
a probit model with serially correlated errors and the data structure of (6.1). The
panel data model can be thus rewritten as

(6.2)
{
(xit, yit) ∈ R

dx × {0, 1} , i = 1, . . . , N, t = 1, . . . , T
}
.

We consider a model in which the individual must choose between two different
alternatives, hence J = 2. The errors {uit, i = 1, . . . , N, t = 1, . . . , T} are gener-
ated according to a őrst-order autoregressive process (AR(1)) uit = bui,t−1 + εit,
with ui0 = 0, where the innovations {εit, i = 1, . . . , N, t = 1, . . . , T} are indepen-
dent standard normal random variables, i.e. εit ∼ N (0, 1). The latent utilities are
deőned according to the equation zit = rxit + uit, and the choice of the individual
i at time t is deőned as

yit = 1 {rxit + uit > 0} .
The structural parameters to be estimated are θ = (r, b). For our purposes, we
assume that the model is correctly speciőed, which means that the choices yit are
generated by the structural model for a given true value θ0.

To exploit indirect inference estimation, we start by simulating the latent errors
εit used to construct ui,t−1; we denote the simulated latent errors as εsit, where
s = 1, . . . , S is the total number of simulations (i.e. Monte Carlo runs). Now,
given xit and a vector of structural parameters θ, we can generate S sets of path
simulated choices ysit (θ). The simulated structural model can be őnally stated as
follows:

zsit (θ) =f
(
xit, y

s
i,t−1 (θ) , . . . , y

s
i,t−ℓ (θ) , u

s
it (θ) ;θ

)
,(6.3)

us
it (θ) =g

(
us
i,t−1 (θ) , ε

s
it;θ

)
.(6.4)

We use as auxiliary model the linear probability model (see Bruins et al., 2018,
p. 194), both on benchmark and simulated data, and we maximize their likelihood
function. Let β ∈ B ⊂ R

B , with B ≥ K, be the vector of parameters of the auxiliary

model, β̂ be the estimator for the benchmark data and β̃
s
(θ) be the estimator for

the simulated data, both estimated through OLS. Finally, the indirect inference
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estimator is the following:

(6.5) θ̂ = argmin
θ∈Θ

(
β̂ − 1

S

S∑

s=1

β̃
s
(θ)

)′

W

(
β̂ − 1

S

S∑

s=1

β̃
s
(θ)

)
,

where W is a suitable positive-deőnite matrix.

6.2.3. Study of the Convergence of LAINM. To verify the convergence properties

of LAINM, we estimate r and b using three different starting points, i.e. θ(0)
a ,

θ
(0)
b and θ(0)

c , and varying some quantities of the algorithm. We consider N =
500 individuals and T = 5 time periods, which means that the sample size of
the benchmark data is M = 2500. We let the sample size of the simulated data
increase with the number of iterations n = {1000, 10000}, so that Ni = 2 × iν

with i = 1, . . . , n and ν = {1/8, 3/4}. ρi = i−ρ, where ρ is allowed to take three
different values, i.e. ρ = {0.1, 0.5, 0.9}. Finally, the step size is γi = i−γ with

γ = {0.6, 1, 1.4}. The results of estimation, for θ(0)
a = (0.8, 2) (red trajectory),

θ
(0)
b = (0.1, 0.1) (blue trajectory) and θ(0)

c = (2, 0.1) (black trajectory) are reported
in Figure 6.5. The upper left graph of Figure 6.5 shows the behavior of the algorithm
with n = 10, 000, ρ = 0.1, ν = 1/8 and γ = 0.6, the upper right őgure depicts the
trajectories of LAINM with n = 10, 000, ρ = 0.5, ν = 1/8 and γ = 1, the bottom
left plot reports the behavior of LAINM with n = 10, 000, ρ = 0.9, ν = 1/8 and
γ = 1.4, while the bottom right graph shows the path with n = 1, 000, ρ = 0.1,
ν = 3/4 and γ = 0.6. The level curves are displayed just for illustrative purposes
and are based on the average of őve replications.

Let us comment the outcomes in Figure 6.5. First, for n = 10, 000, ρ = 0.1,
ν = 1/8 and γ = 0.6 (upper left), the algorithm converges toward the target values

θ⋆ = (r⋆, b⋆), with r⋆ = 1 and b⋆ = 0.4, for θ(0)
a , θ

(0)
b and θ(0)

c . Second, for
n = 10, 000, ρ = 0.5, ν = 1/8 and γ = 1 (upper right) the optimization routine
is more volatile and the convergence is worse than in the őrst case. This can be
attributed to the fact that, for small ν, the escape probability for SAS with D = 1
diverges when ρ increases (see Table 1). Third, for n = 10, 000, ρ = 0.9, ν = 1/8 and
γ = 1.4 (bottom left), our optimization scheme does not work well in estimating
the parameters of the DDCM. This is in line with the result of Theorem 14 as,
on the one hand, the algorithm should diverge for γ > 1 and, on the other hand,

the rate of convergence OP

(
n−( ν

4−
ρ
2 )∧

ρ
2

)
worsens when ρ is large and ν is small.

Fourth, for n = 1, 000, ρ = 0.1, ν = 3/4 and γ = 0.6 (bottom right), only 1, 000
iterations are needed to reach convergence, although the optimization procedure is
slower than the other cases as Ni grows faster and its effect is predominant.

The evidence of the estimation exercise allows us to conclude that, once the
right values of the quantities of the algorithm have been identiőed, the behavior
of LAINM is independent of the initial conditions. In fact, LAINM still converges
irrespectively of the starting point(s).

7. Conclusions

In this paper, we provide some new, general results of interest for the statistical,
econometric and the machine learning literature.

In the őrst part of the paper, we study some conditions under which the sequence

of values produced by an optimization algorithm,
{
θ(i)
}

, converges to the optimum
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Figure 6.5. Convergence of LAINM for θ
(0)
a = (0.8, 2) (red trajec-

tory), θ
(0)
b = (0.1, 0.1) (blue trajectory) and θ

(0)
c = (2, 0.1) (black tra-

jectory).

of the function, θ⋆. These assumptions do not depend on the speciőc choice of the
approximated gradient and Hessian and are of general interest as they expand some
results in the optimization and machine learning literature. The main results of this
part of the paper concern the analysis of the algorithms as a function of the number
of steps: (i) rigorous results on the convergence rates of INM and SAS; (ii) upper
bounds on the escape probabilities of INM and SAS; (iii) upper bounds on the
probability that SAS does not visit a region where the score is near to zero. These
results can be applied also in the study of the impact of numerical differentiation
in optimization algorithms.

Subsequently, we propose a special version of the inexact Newton method (see
Dembo et al., 1982), i.e. LAINM, which has been devised to estimate complex and
intractable objective functions (e.g., discontinuous, non-differentiable, non-convex
criterion function), even when the (stochastic) equicontinuity hypothesis is violated.

We start by selecting P points Pi

(
θ(i)
)
= {θ1, . . . ,θP } in a neighborhood of θ(i),
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we compute the values F̂ (θ) for θ ∈ Pi

(
θ(i)
)
, and we estimate through a regression

a locally approximating function F̃ (·) based on these points. We distinguish two

cases: (i) when dealing with SAS, we estimate F̃ (·) using a linear regression; (ii)
when dealing with INM, we exploit a quadratic regression for the estimation of

F̃ (·). Once F̃ (θ) has been estimated, we calculate its őrst and second derivatives
(i.e. only the őrst derivative for SAS and both the őrst and second derivative for
INM) and we substitute them in the optimization routine to őnd θ⋆.

After discussing the general construction of the optimization algorithms, we show
their asymptotic properties by providing some upper bounds on the approximation

error of F̃ (·), ˙̃
F (·) and

¨̃
F (·). Combining the bounds on the (approximated) objec-

tive function and its derivatives with the generic results on INM and SAS, we prove
several convergence results. We stress that, provided some quantities characterizing

the algorithm are chosen judiciously, the limit of the sequence
{
θ(i)
}

is the mini-

mum of F (·) and is independent of F̂ (·), at odds with what happens with classical
simulation-based estimation algorithms. The computational aspects of LAINM are
also treated. LAINM is őnally used in an extensive MC experiment and in an ap-
plication concerning the estimation of the parameters of a dynamic discrete choice
model through indirect inference. The outcomes of the MC experiments and of the
application conőrm the theoretical results.
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8. Proofs

In this section we use the deőnition η(i) :=
˙̃
F
(
θ(i)
)
− Ḟ

(
θ(i)
)
.

8.1. Preliminary Lemmas. We will need some preliminary lemmas. The őrst
concerns some properties of the derivatives of F , the second provides a bound on

the size of the vector r(i) := Ḟ
(
θ(i)
)
− F̈

(
θ(i)
) [

¨̃
F
(
θ(i)
)]−1 ˙̃

F
(
θ(i)
)
, the third

yields a solution to the recursive inequality xn+1 ≤ an + bnxn, the fourth, őfth and
sixth provide bounds for generalized harmonic numbers and related sequences, the
seventh majorizes a sum with an integral, the eighth gives an asymptotic expression
for a series, the ninth characterizes the behavior of λmin (X

′X) when the points in

Pi

(
θ(i)
)

shrink towards θ(i), and the last provides upper bounds on the norm of

vectors of monomials.

Lemma 2. Under Lip-1, we have
∣∣∣F (θ1)− F (θ2)− (θ1 − θ2)

′
Ḟ (θ1)

∣∣∣ ≤ L1

2
∥θ1 − θ2∥22 ,

∥∥∥Ḟ (θ)
∥∥∥
2
≤ L1 ∥θ − θ⋆∥2 .

Under Lip-2, the following inequalities hold:
∥∥∥Ḟ (θ1)− Ḟ (θ2)− F̈ (θ1) (θ1 − θ2)

∥∥∥
2
≤ L2

2
∥θ1 − θ2∥22 ,

∥∥∥Ḟ (θ)
∥∥∥
2
≤
∥∥∥F̈ (θ⋆)

∥∥∥
2
∥θ − θ⋆∥2 +

L2

2
∥θ − θ⋆∥22 ,

∣∣∣λmin

(
F̈ (θ)

)
− λmin

(
F̈ (θ⋆)

)∣∣∣ ≤ L2 ∥θ − θ⋆∥2
and ∣∣∣∣∣F (θ2)− F (θ1)− (θ2 − θ1)

′
Ḟ (θ1)−

(θ2 − θ1)
′
F̈ (θ1) (θ2 − θ1)

2

∣∣∣∣∣

≤ L2

6
∥θ2 − θ1∥32 .

Proof. We start from the őrst inequality. First of all, we deőne g (t) :=
F (θ1 + t (θ2 − θ1)) for t ∈ [0, 1]. Then, from the differentiability of F , we have

g (1) = g (0) + g′ (0) +

∫ 1

0

(g′ (t)− g′ (0)) dt

or

F (θ2) = F (θ1)+(θ2 − θ1)
′
Ḟ (θ1)+

∫ 1

0

(θ2 − θ1)
′
(
Ḟ (θ1 + t (θ2 − θ1))− Ḟ (θ1)

)
dt.

From Lip-1, this can be written as
∣∣∣F (θ2)− F (θ1)− (θ2 − θ1)

′
Ḟ (θ1)

∣∣∣

≤ ∥θ2 − θ1∥2
∫ 1

0

∥∥∥Ḟ (θ1 + t (θ2 − θ1))− Ḟ (θ1)
∥∥∥
2
dt

≤ L1 ∥θ2 − θ1∥22
∫ 1

0

tdt =
L1

2
∥θ2 − θ1∥22 .
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The second one is trivially true from Lip-1.
In what follows, we suppose that Lip-2 holds true.
The third inequality can be proved along the lines of the őrst one, deőning

g (t) := λ′Ḟ (θ1 + t (θ2 − θ1)) for t ∈ [0, 1] and λ ∈ R
K\ {0}.

For the fourth inequality, we write

Ḟ (θ) = F̈ (θ⋆) (θ − θ⋆) +
{
Ḟ (θ)− Ḟ (θ⋆)− F̈ (θ⋆) (θ − θ⋆)

}
,

∥∥∥Ḟ (θ)
∥∥∥
2
≤
∥∥∥F̈ (θ⋆)

∥∥∥
2
∥θ − θ⋆∥2 +

∥∥∥Ḟ (θ)− Ḟ (θ⋆)− F̈ (θ⋆) (θ − θ⋆)
∥∥∥
2
.(8.1)

Using the third inequality, we get the őnal result.
For the őfth inequality, a consequence of CourantśFischer theorem is that, for

Hermitian A and B, |λmin (A)− λmin (B)| ≤ ∥A−B∥2. Therefore,
∣∣∣λmin

(
F̈ (θ⋆)

)
− λmin

(
F̈ (θ)

)∣∣∣ ≤
∥∥∥F̈ (θ)− F̈ (θ⋆)

∥∥∥
2
.

Combining this with Lip-2, we get the result.
At last, as above, we deőne g (t) := F (θ1 + t (θ2 − θ1)) for t ∈ [0, 1]. Then, the

őrst-order Taylor expansion with integral remainder yields

g (t) = g (0) + g′ (0) t+

∫ t

0

g′′ (s) (t− s) ds

= g (0) + g′ (0) t+

∫ t

0

g′′ (t− u)udu,

g (1) = g (0) + g′ (0) +
g′′ (0)

2
+

∫ 1

0

[g′′ (1− u)− g′′ (0)]udu.

From this and Lip-2, one gets
∣∣∣∣∣F (θ2)− F (θ1)− (θ2 − θ1)

′
Ḟ (θ1)−

(θ2 − θ1)
′
F̈ (θ1) (θ2 − θ1)

2

∣∣∣∣∣

≤ ∥θ2 − θ1∥22
∫ 1

0

∥∥∥F̈ (θ1 + (1− u) (θ2 − θ1))− F̈ (θ1)
∥∥∥
2
udu

≤ L2 ∥θ2 − θ1∥32
∫ 1

0

(1− u)udu =
L2

6
∥θ2 − θ1∥32 .

QED

Lemma 3. Under Lip-1, if λmin

(
F̈
(
θ(i)
))

> δ
(i)
2 , we have

∥∥∥r(i)
∥∥∥
2
≤

δ
(i)
1 λmin

(
F̈
(
θ(i)
))

+ δ
(i)
2 L1

∥∥∥θ(i) − θ⋆
∥∥∥
2

λmin

(
F̈
(
θ(i)
))

− δ
(i)
2

and

∥∥∥r(i)
∥∥∥
2
≤

δ
(i)
1 λmin

(
F̈
(
θ(i)
))

+ δ
(i)
2

(∥∥∥F̈ (θ⋆)
∥∥∥
2

∥∥∥θ(i) − θ⋆
∥∥∥
2
+ L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2

)

λmin

(
F̈
(
θ(i)
))

− δ
(i)
2

.
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Under Lip-2, if λmin

(
F̈ (θ⋆)

)
> K |F |2,1

∥∥∥θ(i) − θ⋆
∥∥∥
2
+ δ

(i)
2 , we have

∥∥∥r(i)
∥∥∥
2
≤ δ

(i)
1

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2
− δ

(i)
2

+ δ
(i)
2

L1

∥∥∥θ(i) − θ⋆
∥∥∥
2

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2
− δ

(i)
2

and

∥∥∥r(i)
∥∥∥
2
≤ δ

(i)
1

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2
− δ

(i)
2

+ δ
(i)
2

∥∥∥F̈ (θ⋆)
∥∥∥
2

∥∥∥θ(i) − θ⋆
∥∥∥
2
+ L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2
− δ

(i)
2

.

Proof. We write
∥∥∥r(i)

∥∥∥
2
=

∥∥∥∥Ḟ
(
θ(i)
)
− F̈

(
θ(i)
) [

¨̃F
(
θ(i)
)]−1 ˙̃F

(
θ(i)
)∥∥∥∥

2

≤ δ
(i)
1 +

∥∥∥∥
˙̃
F
(
θ(i)
)
− F̈

(
θ(i)
) [

¨̃
F
(
θ(i)
)]−1 ˙̃

F
(
θ(i)
)∥∥∥∥

2

≤ δ
(i)
1 +

∥∥∥∥IK − F̈
(
θ(i)
) [

¨̃
F
(
θ(i)
)]−1

∥∥∥∥
2

∥∥∥ ˙̃F
(
θ(i)
)∥∥∥

2

≤ δ
(i)
1 + δ

(i)
2

∥∥∥∥
[
¨̃
F
(
θ(i)
)]−1

∥∥∥∥
2

∥∥∥ ˙̃F
(
θ(i)
)∥∥∥

2

≤ δ
(i)
1 +

δ
(i)
2

∥∥∥ ˙̃F
(
θ(i)
)∥∥∥

2

λmin

[
¨̃
F
(
θ(i)
)](8.2)

where we have used the fact that

∥∥∥∥
[
¨̃
F
(
θ(i)
)]−1

∥∥∥∥
2

= λmax

([
¨̃
F
(
θ(i)
)]−1

)
=

λ−1
min

[
¨̃
F
(
θ(i)
)]

.

First, we majorize
∥∥∥ ˙̃F
(
θ(i)
)∥∥∥

2
in (8.2) as

(8.3)
∥∥∥ ˙̃F
(
θ(i)
)∥∥∥

2
≤
∥∥∥ ˙̃F
(
θ(i)
)
− Ḟ

(
θ(i)
)∥∥∥

2
+
∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
= δ

(i)
1 +

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
.

Therefore, from the second and fourth inequalities of Lemma 2, we have
∥∥∥ ˙̃F
(
θ(i)
)∥∥∥

2
≤ δ

(i)
1 + L1

∥∥∥θ(i) − θ⋆
∥∥∥
2

or ∥∥∥ ˙̃F
(
θ(i)
)∥∥∥

2
≤ δ

(i)
1 +

∥∥∥F̈ (θ⋆)
∥∥∥
2

∥∥∥θ(i) − θ⋆
∥∥∥
2
+

L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
.

Second, we deal with λmin

[
¨̃
F
(
θ(i)
)]

in (8.2). From Weyl’s inequality λmin (A+B) ≤

λmin (A) + λmax (B) for Hermitian A and B, taking A =
¨̃
F
(
θ(i)
)

and B =
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F̈
(
θ(i)
)
− ¨̃
F
(
θ(i)
)
, we get

λmin

(
¨̃
F
(
θ(i)
))

≥ λmin

(
F̈
(
θ(i)
))

− λmax

(
F̈
(
θ(i)
)
− ¨̃
F
(
θ(i)
))

≥ λmin

(
F̈
(
θ(i)
))

−
∥∥∥F̈
(
θ(i)
)
− ¨̃

F
(
θ(i)
)∥∥∥

2
= λmin

(
F̈
(
θ(i)
))

− δ
(i)
2 .

Replacing these formulas into (8.2), we get the őrst bounds in the forms

∥∥∥r(i)
∥∥∥
2
≤ δ

(i)
1 +

δ
(i)
2

(
δ
(i)
1 + L1

∥∥∥θ(i) − θ⋆
∥∥∥
2

)

λmin

(
F̈
(
θ(i)
))

− δ
(i)
2

and

∥∥∥r(i)
∥∥∥
2
≤ δ

(i)
1 +

δ
(i)
2

(
δ
(i)
1 +

∥∥∥F̈ (θ⋆)
∥∥∥
2

∥∥∥θ(i) − θ⋆
∥∥∥
2
+ L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2

)

λmin

(
F̈
(
θ(i)
))

− δ
(i)
2

.

This may be sufficient for most applications.

However, in the following we remove the dependence on θ(i) from λmin

(
F̈
(
θ(i)
))

in the denominator. From λmin

(
¨̃
F
(
θ(i)
))

≥ λmin

(
F̈
(
θ(i)
))

−δ
(i)
2 , using the őfth

inequality of Lemma 2:

λmin

(
¨̃
F
(
θ(i)
))

≥ λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2
− δ

(i)
2 .

At last we get the formula of the statement. QED

Lemma 4. Let the sequence {xn}n≥0 be such that

xn+1 ≤ an + bnxn, n ≥ 0,

for two sequences {an}n≥0 and {bn}n≥0. Then

(8.4) xn+1 ≤
n∑

j=0

aj

n∏

k=j+1

bk + x0

n∏

k=0

bk,

where, by convention, empty products are equal to 1.

Remark 21. Recurrences of the form xn+1 = an + bnxn have been considered, with
some modiőcations, by Vervaat (1979); Bougerol and Picard (1992); Rachev and
Samorodnitsky (1995); Babillot et al. (1997) among many others.

Proof. We prove the recurrence by induction. First of all, for n = 0, we have

x1 ≤ a0 + b0x0.

Moreover, if (8.4) holds for n = h− 1, it also holds for n = h. Indeed,

xh+1 ≤ ah + bhxh

≤ ah + bh




h−1∑

j=0

aj

h−1∏

k=j+1

bk + x0

h−1∏

k=0

bk




=

h∑

j=0

aj

h∏

k=j+1

bk + x0

h∏

k=0

bk.
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This proves the claim. QED

Lemma 5. For −1 < α and α ̸= 1,

−α

8
n−1−α ≤

n∑

k=1

k−α − ζ (α)− 1

1− α
n1−α − 1

2
n−α ≤ 0.

For α = 1,

0 ≤
n∑

k=1

k−1 − γ(0) − lnn ≤ 1

n
,

where γ(0) denotes the Euler–Mascheroni constant.

Remark 22. The proof of the őrst inequality is inspired by that in
robjohn (https://math.stackexchange.com/users/13854/robjohn).

Proof. We őrst note (see, e.g., Seri, 2015, Eq. (1)) that
n∑

k=1

k−α = ζ (α) +
1

1− α
n1−α +

1

2
n−α +O

(
n−1−α

)
.

Through integration by parts of a RiemannśStieltjes integral,
n∑

k=1

k−α =

∫ n+

1−
x−αd ⌊x⌋

=

∫ n

1

x−αdx−
∫ n+

1−
x−αd

(
{x} − 1

2

)

=
1

1− α

(
n1−α − 1

)
+

1

2
n−α +

1

2
− α

∫ n

1

x−1−α

(
{x} − 1

2

)
dx.(8.5)

We equate the two expressions and take the limit for n → ∞:

ζ (α) = − 1

1− α
+

1

2
− α

∫ ∞

1

x−1−α

(
{x} − 1

2

)
dx.

Using this formula in (8.5), we get
n∑

k=1

k−α =
1

1− α

(
n1−α − 1

)
+

1

2
n−α +

1

2
− α

∫ n

1

x−1−α

(
{x} − 1

2

)
dx

=
1

1− α

(
n1−α − 1

)
+

1

2
n−α +

1

2
− α

∫ n

1

x−1−α

(
{x} − 1

2

)
dx

+ ζ (α) +
1

1− α
− 1

2
+ α

∫ ∞

1

x−1−α

(
{x} − 1

2

)
dx

= ζ (α) +
1

1− α
n1−α +

1

2
n−α + α

∫ ∞

n

x−1−α

(
{x} − 1

2

)
dx.

The last integral can be written as a telescoping series of integrals:
∫ ∞

n

x−1−α

(
{x} − 1

2

)
dx =

∞∑

k=n

∫ k+1

k

x−1−α

(
{x} − 1

2

)
dx.

We note that∣∣∣∣∣

∫ k+1

k

x−1−α

(
{x} − 1

2

)
dx

∣∣∣∣∣
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=

∣∣∣∣∣

∫ k+1

k

(
x−1−α − (k + 1)

−1−α
+ k−1−α

2

)(
{x} − 1

2

)
dx

∣∣∣∣∣

≤ max
x∈[k,k+1]

∣∣∣∣∣x
−1−α − (k + 1)

−1−α
+ k−1−α

2

∣∣∣∣∣

∫ k+1

k

∣∣∣∣{x} −
1

2

∣∣∣∣ dx

=
k−1−α − (k + 1)

−1−α

8

from which
∣∣∣∣
∫ ∞

n

x−1−α

(
{x} − 1

2

)
dx

∣∣∣∣ ≤
∞∑

k=n

k−1−α − (k + 1)
−1−α

8
=

n−1−α

8
.

This implies that
∣∣∣∣∣

n∑

k=1

k−α − ζ (α)− 1

1− α
n1−α − 1

2
n−α

∣∣∣∣∣ ≤
αn−1−α

8
.

However, we can improve the bound in one direction. Indeed,

∫ k+1

k

x−1−α

(
{x} − 1

2

)
dx

=

∫ 1

0

(x+ k)
−1−α

(
x− 1

2

)
dx

=

∫ 1
2

0

[
(k + 1− x)

−1−α − (x+ k)
−1−α

](1

2
− x

)
dx.

Now, for x ∈
[
0, 1

2

]
, x + k < k + 1 − x and (x+ k)

−1−α
> (k + 1− x)

−1−α
.

Therefore, the integral is negative. At last,

−n−1−α

8
≤
∫ ∞

n

x−1−α

(
{x} − 1

2

)
dx ≤ 0.

From this, the őrst result follows. The inequalities for α = 1 are mentioned, e.g.,
in Jameson (2015, p. 75), where even more accurate bounds are proposed. QED

Lemma 6. Let
∣∣∣γi+1 − c1 (i+ 1)

−γ
∣∣∣ ≤ c2 (i+ 1)

−ξ
for ξ > γ > 0. If γ ̸= 1 and

ξ ̸= 1,

(c1ζ (γ)− c2ζ (ξ)) +
c1

1− γ
i1−γ +

c1
2
i−γ − c1γ

8
i−1−γ − c2

1− ξ
i1−ξ − c2

2
i−ξ

≤
i−1∑

k=0

γk+1 ≤ (c1ζ (γ) + c2ζ (ξ)) +
c1

1− γ
i1−γ +

c1
2
i−γ +

c2
1− ξ

i1−ξ +
c2
2
i−ξ.

If γ = 1,

(
c1γ(0) − c2ζ (ξ)

)
+ c1 ln i−

c2
1− ξ

i1−ξ − c2
2
i−ξ

≤
i−1∑

k=0

γk+1 ≤
(
c1γ(0) + c2ζ (ξ)

)
+ c1 ln i+ c1i

−1 +
c2

1− ξ
i1−ξ +

c2
2
i−ξ.
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Proof. From
∣∣∣γi+1 − c1 (i+ 1)

−γ
∣∣∣ ≤ c2 (i+ 1)

−ξ
, we have

c1 (k + 1)
−γ − c2 (k + 1)

−ξ ≤ γk+1 ≤ c1 (k + 1)
−γ

+ c2 (k + 1)
−ξ

,

c1

i−1∑

k=0

(k + 1)
−γ − c2

i−1∑

k=0

(k + 1)
−ξ ≤

i−1∑

k=0

γk+1 ≤ c1

i−1∑

k=0

(k + 1)
−γ

+ c2

i−1∑

k=0

(k + 1)
−ξ

,

c1

i∑

k=1

k−γ − c2

i∑

k=1

k−ξ ≤
i−1∑

k=0

γk+1 ≤ c1

i∑

k=1

k−γ + c2

i∑

k=1

k−ξ.

Through Lemma 5, the őnal results follow. QED

Lemma 7. Let
∣∣∣γi+1 − c1 (i+ 1)

−γ
∣∣∣ ≤ c2 (i+ 1)

−ξ
for ξ > γ > 0. If γ ̸= 1 and

ξ ̸= 1,

i∑

k=j+1

γk+1 ≤ 2c2ζ (ξ) +
c1

1− γ

[
(i+ 1)

1−γ − (j + 1)
1−γ
]
+

c1
2

[
(i+ 1)

−γ − (j + 1)
−γ
]

+
c2

1− ξ

[
(i+ 1)

1−ξ
+ (j + 1)

1−ξ
]
+

c2
2

[
(i+ 1)

−ξ
+ (j + 1)

−ξ
]
+

c1γ

8
(j + 1)

−1−γ

and
i∑

k=j+1

γk+1 ≥ −2c2ζ (ξ) +
c1

1− γ

[
(i+ 1)

1−γ − (j + 1)
1−γ
]
+

c1
2

[
(i+ 1)

−γ − (j + 1)
−γ
]

− c2
1− ξ

[
(i+ 1)

1−ξ
+ (j + 1)

1−ξ
]
− c2

2

[
(i+ 1)

−ξ
+ (j + 1)

−ξ
]
− c1γ

8
(i+ 1)

−1−γ
.

If γ = 1,

i∑

k=j+1

γk+1 ≤ 2c2ζ (ξ) + c1 ln

(
i+ 1

j + 1

)
+

c2
1− ξ

[
(i+ 1)

1−ξ
+ (j + 1)

1−ξ
]

+
c2
2

[
(i+ 1)

−ξ
+ (j + 1)

−ξ
]
+ c1 (i+ 1)

−1

and
i∑

k=j+1

γk+1 ≥ −2c2ζ (ξ) + c1 ln

(
i+ 1

j + 1

)
− c2

1− ξ

[
(i+ 1)

1−ξ
+ (j + 1)

1−ξ
]

− c2
2

[
(i+ 1)

−ξ
+ (j + 1)

−ξ
]
− c1 (j + 1)

−1
.

Proof. The proof is trivial from
∑i−1

k=j γk+1 =
∑i−1

k=0 γk+1 − ∑j−1
k=0 γk+1 and

Lemma 6. QED

Lemma 8. Let f : R → R and g : R → R be respectively a decreasing and an
increasing function. Then,

b∑

i=a

f (i) g (i) ≤
∫ b

a−1

f (x) g (x+ 1) dx.

Proof. The proof is trivial from
∫ b

a−1

f (x) g (x+ 1) dx =

b∑

i=a

∫ i

i−1

f (x) g (x+ 1) dx ≥
b∑

i=a

f (i) g (i) .



OPTIMIZATION OF COMPLEX OBJECTIVE FUNCTIONS 54

QED

Lemma 9. Define

S :=

i∑

j=0

(j + 1)
−A

exp



k1 (j + 1)

B1 +

J∑

j=2

kj (j + 1)
Bj





where k1 > 0, 1 > B1 > 0, Bj < B1 for j = 2, . . . . , J . Then, as i → ∞,

S ≃
(i+ 1)

1−A−B1 exp
(∑J

j=1 kj (i+ 1)
Bj

)

k1B1
.

Proof. We apply EulerśMaclaurin formula to S to get

S ≃
∫ i

0

(x+ 1)
−A

exp





J∑

j=1

kj (x+ 1)
Bj



 dx

+
1

2



exp




J∑

j=1

kj


+ (i+ 1)

−A
exp





J∑

j=1

kj (i+ 1)
Bj







 .(8.6)

Using the substitution x = z (i+ 1)− 1, the integral can be written as

∫ i

0

(x+ 1)
−A

exp





J∑

j=1

kj (x+ 1)
Bj



 dx

= (i+ 1)
1−A

∫ 1

1
i+1

z−A exp





J∑

j=1

kjz
Bj (i+ 1)

Bj



 dz

= (i+ 1)
1−A

∫ 1

1
2

z−A exp





J∑

j=1

kjz
Bj (i+ 1)

Bj



 dz

+ (i+ 1)
1−A

∫ 1
2

1
i+1

z−A exp





J∑

j=1

kjz
Bj (i+ 1)

Bj



 dz.(8.7)

We start from the őrst integral in (8.7) that, through the substitution t =
2 (1− z), becomes

∫ 1

1
2

z−A exp





J∑

j=1

kjz
Bj (i+ 1)

Bj



 dz

=
1

2

∫ 1

0

(
1− t

2

)−A

exp





J∑

j=1

kj

(
1− t

2

)Bj

(i+ 1)
Bj



 dt

=
exp

(∑J
j=2 kj (i+ 1)

Bj

)

2

∫ 1

0

(
1− t

2

)−A

· exp



k1

(
1− t

2

)B1

(i+ 1)
B1 +

J∑

j=2

kj

[(
1− t

2

)Bj

− 1

]
(i+ 1)

Bj



 dt.
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Now we apply Theorem 2.1 in Olver (1997, p. 326), stated for an integral
∫ k

0
e−xp(t)+r(x,t)q (x, t) dt.

In the notation of Olver, x = (i+ 1)
B1 . As to condition (i) in his theorem, we have

p (t) = −k1

(
1− t

2

)B1

= −k1 +
k1B1t

2
+O

(
t2
)
,

p′ (t) =
k1B1

2

(
1− t

2

)B1−1

=
k1B1

2
+O (t)

from which it is clear that p (0) = −k1, P = k1B1

2 , µ = 1 and µ1 = 2. Now, we pass
to condition (ii). Then,

r (x, t) =

J∑

j=2

kj

[(
1− t

2

)Bj

− 1

]
x

Bj
B1 ,

|r (x, t)| ≤
J∑

j=2

|kj |
∣∣∣∣∣

(
1− t

2

)Bj

− 1

∣∣∣∣∣x
Bj
B1

≤




J∑

j=2

|kj |


max

j

∣∣∣∣∣

(
1− t

2

)Bj

− 1

∣∣∣∣∣x
maxj

Bj
B1 .

We need to majorize this through Rxαtν . We can take α = maxj
Bj

B1
, 0 < ν < 1

and R large enough. At last, for q (x, t) =
(
1− t

2

)−A
, we need

∣∣q (x, t)−Qtλ−1
∣∣ ≤ Q1x

βtλ1−1.

It is clear that λ = 1 and Q = 1, so that
∣∣q (x, t)−Qtλ−1

∣∣ =
∣∣∣1−

(
1− t

2

)−A
∣∣∣.

This must be majorized by Q1x
βtλ1−1 where β = 0. We can take 1 < λ1 < 2 and

Q1 large enough. Then, p (0) = −k1, P = k1B1

2 , µ = 1, µ1 = 2, α = maxj
Bj

B1
,

0 < ν < 1, λ = 1, Q = 1, β = 0, λ1 < 2. The conditions ν ≥ 0, λ > 0, λ1 > 0,
α < 1∧ ν

µ
, β < λ1−λ

µ
in the statement are veriőed by taking ν = 1−ε and λ1 = 2−ε

for suitably small ε. At last, the integral behaves like

Q

µ
Γ

(
λ

µ

)
e−xp(0)

(Px)
λ
µ

=
2ek1(i+1)B1

k1B1 (i+ 1)
B1

and the őrst term in (8.7) as

(i+ 1)
1−A−B1 exp

(∑J
j=1 kj (i+ 1)

Bj

)

k1B1
.

The second integral in (8.7) can be majorized as

(i+ 1)
1−A

∫ 1
2

1
i+1

z−A exp





J∑

j=1

kjz
Bj (i+ 1)

Bj



 dz

≤ (i+ 1)
1−A

max
z∈[ 12 , 1

i+1 ]
exp





J∑

j=1

kjz
Bj (i+ 1)

Bj





∫ 1
2

1
i+1

z−Adz
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= exp





J∑

j=1

(
kj2

−Bj (i+ 1)
Bj

)
∨ kj





2A−1 (i+ 1)
1−A − 1

1−A
.

It is clear that this is of a lower order than the previous one.
At last, from (8.6), we get the őnal result. QED

Lemma 10. Let X (X0) be the matrix associated with the points in P (θ0) (P0 (θ0)).
Then,

λmin (X
′X) ≥ h2Dλmin (X

′
0X0) .

Proof. Let us őx the location of the points θ0,j − θ0 for any j. Let us see what
happens when we multiply each one of these vectors by a constant h. This should
represent what happens when all points in P0 (θ0) shrink towards θ0. When passing
from θ0,j − θ0 to θj − θ0 = h (θ0,j − θ0), the generic vector xD (θ0,j) is multiplied
by a vector containing powers of h from degree 0 to degree D, according to the
degree of the respective element of xD (θ0,j). Calling h the vector containing the
previously described powers of h, we pass from xD (θ0,j) to xD (θj) = xD (θ0,j)⊙h.
When building the design matrix, we have X = X0 ⊙ (ιNh′). From Styan (1973,
p. 221, (2.11)),

X0 ⊙ (ιNh′) = dg (ιN )X0dg (h) = X0dg (h) ,

from which X′X = dg (h)X′
0X0dg (h). Now, from the variational property of

eigenvalues,

λmin (X
′X) = λmin (dg (h)X

′
0X0dg (h)) ≥ λmin

(
dg (h)

2
)
λmin (X

′
0X0) = h2Dλmin (X

′
0X0) .

QED

Lemma 11. Let xD (θ) be the vector containing all monomials of elements of
θ ∈ R

K up to degree D. Then,

max
θ∈ρB

∥xD (θ)∥2 ≤
√

ρ2(D+1) − 1

ρ2 − 1
.

Let Dk denote the element-wise derivative with respect to the multi-index k. Then,

max
|k|=S

max
θ∈ρB

∥∥DkxD (θ)
∥∥
2
≤ S!

√√√√
D∑

d=S

(
d

S

)2

ρ2(d−S).

Proof. In the proof we use the notation xd (θ) for the vector containing all
monomials of degree d of elements of θ. It is clear that x0 (θ) ≡ 1 and x1 (θ) ≡ θ.

Therefore, xD (θ) =
[(
x0 (θ)

)′
,
(
x1 (θ)

)′
, . . . ,

(
xD (θ)

)′]′
.

From this,

∥xD (θ)∥22 =

D∑

d=0

∥∥xd (θ)
∥∥2
2
.

It is clear that xd (θ) is a subvector of the Kronecker product of d copies of θ, so

that
∥∥xd (θ)

∥∥
2
≤
∥∥∥θ⊗d

∥∥∥
2
= ∥θ∥d2. Therefore,

∥∥x0 (θ)
∥∥
2
= 1,

∥∥x1 (θ)
∥∥
2
= ∥θ∥2 ≤ ρ
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and
∥∥xd (θ)

∥∥
2
≤ ∥θ∥d2 ≤ ρd, from which

∥xD (θ)∥22 ≤
D∑

d=0

ρ2d.

Now we turn to the derivatives. It is not difficult to see that the derivative of
xD (θ) with respect to one element of θ, say θ1, is composed of zeros and of the
elements of xD−1 (θ), each one multiplied by a different constant. The zeros do
not contribute to the norm, therefore we remove them. By induction, DkxD (θ)
is composed of zeros and of the elements of xD−|k| (θ) = xD−S (θ), each one with
a different multiplicative constant. Consider a multi-index ℓ and the monomial

θℓ =
∏K

j=1 θ
ℓj
j . Then, Dkθℓ =

∏K
j=1

ℓj !
(ℓj−kj)!

θ
ℓj−kj

j provided ℓj ≥ kj for any j, and

Dkθℓ = 0 if ℓj < kj for some j. For őxed |ℓ| and |k|, the largest leading constant is
obtained when ℓ and k contain only one element different from zero and the indexes

of the two elements coincide. The leading constant is then |ℓ|!
(|ℓ|−|k|)! . We can thus

majorize the constants multiplying the monomials of order |ℓ| − |k| in DkxD (θ)

times |ℓ|!
(|ℓ|−|k|)! . Therefore, the norm of DkxD (θ) can be majorized by the norm of

[ |k|!
(|k| − |k|)!

(
x0 (θ)

)′
,

(|k|+ 1)!

(|k|+ 1− |k|)!
(
x1 (θ)

)′
, . . . ,

D!

(D − |k|)!
(
xD−|k| (θ)

)′]′
.

As a result,

∥∥DkxD (θ)
∥∥2
2
≤

D∑

d=S

d!

(d− S)!

∥∥xd−S (θ)
∥∥2
2
.

The norm of
∥∥xd (θ)

∥∥
2

can be majorized by ρd as above. At last, we get

√
∑D

d=S

(
d!

(d−S)!

)2
ρ2(d−S)

from which the result follows. QED

8.2. Proofs of Optimization Results.

8.2.1. Inexact Newton Methods. Proof of Theorem 1. We note that (3.1) can be
written as in (3.2):

F̈
(
θ(i)
)(

θ(i+1) − θ(i)
)
= −Ḟ

(
θ(i)
)
+ r(i)

with

r(i) = Ḟ
(
θ(i)
)
− F̈

(
θ(i)
) [

¨̃F
(
θ(i)
)]−1 ˙̃F

(
θ(i)
)
.

Using the fact that Ḟ (θ⋆) = 0, this can be written as

θ(i+1) − θ⋆ =
[
F̈
(
θ(i)
)]−1 {

r(i) +
[
F̈
(
θ(i)
)
− F̈ (θ⋆)

] (
θ(i) − θ⋆

)

−
[
Ḟ
(
θ(i)
)
− Ḟ (θ⋆)− F̈ (θ⋆)

(
θ(i) − θ⋆

)]}
.

Taking norms,
∥∥∥θ(i+1) − θ⋆

∥∥∥
2
≤
∥∥∥∥
[
F̈
(
θ(i)
)]−1

∥∥∥∥
2

{∥∥∥r(i)
∥∥∥
2
+
∥∥∥F̈
(
θ(i)
)
− F̈ (θ⋆)

∥∥∥
2

∥∥∥θ(i) − θ⋆
∥∥∥
2

+
∥∥∥Ḟ
(
θ(i)
)
− Ḟ (θ⋆)− F̈ (θ⋆)

(
θ(i) − θ⋆

)∥∥∥
2

}
.(8.8)
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From the third inequality in Lemma 2 and from Lip-2, we respectively get
∥∥∥Ḟ
(
θ(i)
)
− Ḟ (θ⋆)− F̈ (θ⋆)

(
θ(i) − θ⋆

)∥∥∥
2
≤ L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2

and ∥∥∥F̈
(
θ(i)
)
− F̈ (θ⋆)

∥∥∥
2
≤ L2

∥∥∥θ(i) − θ⋆
∥∥∥
2
.

Replacing these inequalities into (8.8) and using the equality

∥∥∥∥
(
F̈
(
θ(i)
))−1

∥∥∥∥
2

=

λmax

((
F̈
(
θ(i)
))−1

)
= λ−1

min

(
F̈
(
θ(i)
))

and the second formula of Lemma 3, we

get the őnal result. QED
Proof of Corollary 1. The őrst formula in the statement can be obtained rewriting

the inequality in Remark 3 (i) as

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤ 1

λmin

(
F̈
(
θ(i)
))



δ

(i)
1


1 +

δ
(i)
2

λmin

(
F̈
(
θ(i)
))

− δ
(i)
2




+δ
(i)
2

L1

λmin

(
F̈
(
θ(i)
))

− δ
(i)
2

∥∥∥θ(i) − θ⋆
∥∥∥
2
+

3L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2





and remarking that, from the őfth inequality of Lemma 2,

λmin

(
F̈ (θ⋆)

)
− L2

∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ λmin

(
F̈
(
θ(i)
))

.

The second formula can be obtained using the fact that, under Hess, λmin

(
F̈
(
θ(i)
))

≥
m (see Bertsekas et al., 2003, p. 72). QED

Proof of Theorem 2. From Theorem 1 and Remark 3 (i), under Lip-2 and Hess,
we can write
(8.9)

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤ 1

m− δ
(i)
2



δ

(i)
1 +

δ
(i)
2

∥∥∥θ(i) − θ⋆
∥∥∥
2

m
M +

3L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2



 ,

where M = min
{∥∥∥F̈ (θ⋆)

∥∥∥
2
, L1

}
. Deőne

a(i) :=
δ
(i)
1

m− δ
(i)
2

,

b(i) :=
δ
(i)
2 M

m
(
m− δ

(i)
2

) +
3L2

2
(
m− δ

(i)
2

)∆

for i ≥ 0. If
∥∥∥θ(0) − θ⋆

∥∥∥
2
≤ ∆,

∥∥∥θ(1) − θ⋆
∥∥∥
2
≤ δ

(0)
1

m− δ
(0)
2

+





δ
(0)
2 M

m
(
m− δ

(0)
2

) +
3L2

2
(
m− δ

(0)
2

)∆




∥∥∥θ(0) − θ⋆

∥∥∥
2

≤ a(0) + b(0)
∥∥∥θ(0) − θ⋆

∥∥∥
2
≤ a(0) + b(0)∆.
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If
∥∥∥θ(1) − θ⋆

∥∥∥
2

is smaller than ∆, we can reiterate the reasoning to get

∥∥∥θ(2) − θ⋆
∥∥∥
2
≤ δ

(1)
1

m− δ
(1)
2

+





δ
(1)
2 M

m
(
m− δ

(1)
2

) +
3L2

2
(
m− δ

(1)
2

)
∥∥∥θ(1) − θ⋆

∥∥∥
2




∥∥∥θ(1) − θ⋆

∥∥∥
2

≤ δ
(1)
1

m− δ
(1)
2

+





δ
(1)
2 M

m
(
m− δ

(1)
2

) +
3L2

2
(
m− δ

(1)
2

)∆




∥∥∥θ(1) − θ⋆

∥∥∥
2

= a(1) + b(1)
∥∥∥θ(1) − θ⋆

∥∥∥
2
.

This happens if
∥∥∥θ(1) − θ⋆

∥∥∥
2
≤ a(0) + b(0)∆ ≤ ∆, i.e. if a(0) ≤

(
1− b(0)

)
∆.

Provided a(i) ≤
(
1− b(i)

)
∆ for any i, the reasoning leads, through Lemma 4, to

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤

i∑

j=0

a(j)
i∏

k=j+1

b(k) +∆

i∏

k=0

b(k).

Note that the requirement a(i) ≤
(
1− b(i)

)
∆ is necessary to replace with ∆ the

occurrence of
∥∥∥θ(i) − θ⋆

∥∥∥
2

in braces in (8.9). If

b(i) ≤ c1

(
1 + c2 (i+ 1)

−ξ
)
,

from Lemma 5, we can write

i∏

k=0

b(k) ≤ ci+1
1 exp

{
i∑

k=0

ln
(
1 + c2 (k + 1)

−ξ
)}

≤ ci+1
1 exp

{
c2

i∑

k=0

(k + 1)
−ξ

}
= ci+1

1 exp

{
c2

i+1∑

k=1

k−ξ

}

=




ci+1
1 exp

{
c2

(
ζ (ξ) + 1

1−ξ
(i+ 1)

1−ξ
+ 1

2 (i+ 1)
−ξ
)}

, ξ > 0, ξ ̸= 1,

ci+1
1 exp

{
c2

(
γ(0) + ln (i+ 1) + 1

i+1

)}
, ξ = 1.

≃
{
ci+1
1 exp

{
c2ζ (ξ) +

c2
1−ξ

i1−ξ
}
, ξ > 0, ξ ̸= 1,

ci+1
1 ic2 exp

{
c2γ(0)

}
, ξ = 1.

(8.10)

Let us suppose that ξ ̸= 1. In the same way, from Lemma 5,

i∏

k=j+1

b(k) ≤ci−j
1 exp





i∑

k=j+1

ln
(
1 + c2 (k + 1)

−ξ
)


 ≤ ci−j

1 exp



c2

i∑

k=j+1

(k + 1)
−ξ





=ci−j
1 exp

{
c2

[
i+1∑

k=1

k−ξ −
j+1∑

k=1

k−ξ

]}

≤ci−j
1 exp

{
c2

1− ξ
(i+ 1)

1−ξ
+

c2
2
(i+ 1)

−ξ − c2
1− ξ

(j + 1)
1−ξ

−c2
2
(j + 1)

−ξ
+

c2ξ

8
(j + 1)

−1−ξ

}
.
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From a(j) =
δ
(j)
1

m−δ
(j)
2

≤ c3 (j + 1)
−δ

(1 + o (1)),

i∑

j=0

a(j)
i∏

k=j+1

b(k) ≲ c3c
i
1 exp

{
c2

1− ξ
(i+ 1)

1−ξ
+

c2
2
(i+ 1)

−ξ

}

·
i∑

j=0

(j + 1)
−δ

exp

{
j |ln c1| −

c2
1− ξ

(j + 1)
1−ξ − c2

2
(j + 1)

−ξ

+
c2ξ

8
(j + 1)

−1−ξ

}
.

Using Lemma 8, we can majorize the sum through an integral:

i∑

j=0

(j + 1)
−δ

exp

{
j |ln c1| −

c2
1− ξ

(j + 1)
1−ξ − c2

2
(j + 1)

−ξ
+

c2ξ

8
(j + 1)

−1−ξ

}

≤
i+1∑

j=1

j−δ exp

{
(j − 1) |ln c1| −

c2
1− ξ

j1−ξ +
c2ξ

8
j−1−ξ

}

=

i+1∑

j=2

j−δ exp

{
(j − 1) |ln c1| −

c2
1− ξ

j1−ξ +
c2ξ

8
j−1−ξ

}
+ exp

{
− c2
1− ξ

+
c2ξ

8

}

≤
∫ i+1

1

x−δ exp

{
x |ln c1| −

c2
1− ξ

x1−ξ +
c2ξ

8
x−1−ξ

}
dx+ exp

{
− c2
1− ξ

+
c2ξ

8

}
.

Through the change of variable x = (i+ 1) z, we can follow the proof of Lemma 9
to get

∫ i+1

1

x−δ exp

{
x |ln c1| −

c2
1− ξ

x1−ξ +
c2ξ

8
x−1−ξ

}
dx

≃ (i+ 1)
1−δ

exp
{
(i+ 1) |ln c1| − c2

1−ξ
(i+ 1)

1−ξ
+ c2ξ

8 (i+ 1)
−1−ξ

}

(i+ 1) |ln c1|

≃
c−i−1
1 (i+ 1)

−δ
exp

{
− c2

1−ξ
(i+ 1)

1−ξ
}

|ln c1|
and
i∑

j=0

a(j)
i∏

k=j+1

b(k) ≲ c3c
i
1 exp

{
c2

1− ξ
(i+ 1)

1−ξ
+

c2
2
(i+ 1)

−ξ

}

·





c−i−1
1 (i+ 1)

−δ
exp

{
− c2

1−ξ
(i+ 1)

1−ξ
}

|ln c1|
+ exp

{
− c2
1− ξ

+
c2ξ

8

}


≃ c3i
−δ

c1 |ln c1|
+O

(
c−i
1 i−δ exp

{
− c2
1− ξ

(i+ 1)
1−ξ

})
.

The other term is of a lower order. If ξ = 1, from Lemma 5,

i∏

k=j+1

b(k) ≤ ci−j
1 exp





i∑

k=j+1

ln
(
1 + c2 (k + 1)

−ξ
)


 ≤ ci−j

1 exp



c2

i∑

k=j+1

(k + 1)
−ξ
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= ci−j
1 exp

{
c2

[
i+1∑

k=1

k−ξ −
j+1∑

k=1

k−ξ

]}

≤ ci−j
1

(
i+ 1

j + 1

)c2

exp

{
c2

i+ 1

}

and, using the same method seen above,

i∑

j=0

a(j)
i∏

k=j+1

b(k) ≲ c3c
i
1 (i+ 1)

c2 exp

{
c2

i+ 1

} i∑

j=0

c−j
1 (j + 1)

−δ−c2

= c3c
i+1
1 (i+ 1)

c2 exp

{
c2

i+ 1

} i+1∑

j=1

c−j
1 j−δ−c2

≤ c3c
i+1
1 (i+ 1)

c2 exp

{
c2

i+ 1

}


i+1∑

j=2

j−δ−c2 exp {j |ln c1|}+ c−1
1





≤ c3c
i+1
1 (i+ 1)

c2 exp

{
c2

i+ 1

}{∫ i+1

1

x−δ−c2 exp {(x+ 1) |ln c1|} dx+ c−1
1

}

= c3c
i
1 (i+ 1)

c2 exp

{
c2

i+ 1

}

·
{
(i+ 1)

1−δ−c2

∫ 1

1
i+1

z−δ−c2 exp {(i+ 1) z |ln c1|} dz + 1

}

≃ c3c
i
1 (i+ 1)

c2 exp

{
c2

i+ 1

}{
(i+ 1)

1−δ−c2 exp {(i+ 1) |ln c1|}
(i+ 1) |ln c1|

+ 1

}

≃ c3i
−δ

c1 |ln c1|
+O

(
ci1i

c2
)
.

At last, if δ
(i)
1 ≡ 0, we have a(i) ≡ 0 and

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤ ∆

∏i
k=0 b

(k). From

(8.10), we have

i∏

k=0

b(k) ≲

{
ec2ζ(ξ)ci+1

1 exp
{

c2
1−ξ

i1−ξ
}
, ξ > 0, ξ ̸= 1,

ec2γ(0)ci+1
1 ic2 , ξ = 1,

and the őnal result follows. QED
Proof of Theorem 3. We can write

P

{
max

1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}

= P

{∥∥∥θ(1) − θ⋆
∥∥∥
2
> ∆,

∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆

}

+ P

{∥∥∥θ(2) − θ⋆
∥∥∥
2
> ∆,

∥∥∥θ(1) − θ⋆
∥∥∥
2
≤ ∆,

∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆

}

+ P

{∥∥∥θ(3) − θ⋆
∥∥∥
2
> ∆,

∥∥∥θ(2) − θ⋆
∥∥∥
2
≤ ∆,

∥∥∥θ(1) − θ⋆
∥∥∥
2
≤ ∆,

∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆

}

+ · · ·+ P

{∥∥∥θ(n+1) − θ⋆
∥∥∥
2
> ∆,

∥∥∥θ(n) − θ⋆
∥∥∥
2
≤ ∆, . . . ,

∥∥∥θ(0) − θ⋆
∥∥∥
2
≤ ∆

}
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=

n∑

i=0

P




{∥∥∥θ(i+1) − θ⋆

∥∥∥
2
> ∆

}
,

i⋂

j=0

{∥∥∥θ(j) − θ⋆
∥∥∥
2
≤ ∆

}




=

n∑

i=0

P




∥∥∥θ(i+1) − θ⋆

∥∥∥
2
> ∆

∣∣∣∣∣∣

i⋂

j=0

{∥∥∥θ(j) − θ⋆
∥∥∥
2
≤ ∆

}


P





i⋂

j=0

{∥∥∥θ(j) − θ⋆
∥∥∥
2
≤ ∆

}




=

n∑

i=0

P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P





i⋂

j=0

{∥∥∥θ(j) − θ⋆
∥∥∥
2
≤ ∆

}




where the last step derives from the fact that the sequence
{
θ(i)
}

is a Markov

process. From (8.9) valid under Assumptions Lip-2 and Hess, using m− δ
(i)
2 ≤ m,

we note that
{∥∥∥θ(i+1) − θ⋆

∥∥∥
2
> ∆

}

⊆
{
δ
(i)
1 m+ δ

(i)
2

∥∥∥θ(i) − θ⋆
∥∥∥
2
M +

3L2m

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
> ∆m

(
m− δ

(i)
2

)}
.

(8.11)

Therefore, for a constant µ > 0,

P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

= P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣m− µ > δ
(i)
2 ,
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

· P
{
m− µ > δ

(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

+ P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣m− µ ≤ δ
(i)
2 ,
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

· P
{
m− µ ≤ δ

(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

≤ P

{
δ
(i)
1 m+ δ

(i)
2

∥∥∥θ(i) − θ⋆
∥∥∥
2
M +

3L2m

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2

> ∆m
(
m− δ

(i)
2

) ∣∣∣m− µ > δ
(i)
2 ,
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

· P
{
m− µ > δ

(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

+ P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣m− µ ≤ δ
(i)
2 ,
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

· P
{
m− µ ≤ δ

(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

≤ P

{
δ
(i)
1 m+ δ

(i)
2 ∆M +

3L2m

2
∆2 > ∆m

(
m− δ

(i)
2

)

∣∣∣m− µ > δ
(i)
2 ,
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

· P
{
m− µ > δ

(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

+ P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣m− µ ≤ δ
(i)
2 ,
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
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· P
{
m− µ ≤ δ

(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

≤ P

{
δ
(i)
1 m+ δ

(i)
2 M∆+

3L2m

2
∆2 > ∆m

(
m− δ

(i)
2

)
,

m− µ > δ
(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

+ P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆,m− µ ≤ δ

(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

≤ P

{
δ
(i)
1 m+ δ

(i)
2 M∆+

3L2m

2
> ∆mµ,

m− µ > δ
(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

+ P

{
m− µ ≤ δ

(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

where the second step derives from (8.11), the third step from the majorization∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ ∆, the őfth step from the minorization m− δ

(i)
2 > µ.

From this inequality and P

{⋂i
j=1

{∥∥∥θ(j) − θ⋆
∥∥∥
2
≤ ∆

}}
≤ P

{∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ ∆

}
,

using Markov’s inequality, we get

P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P





i⋂

j=1

{∥∥∥θ(j) − θ⋆
∥∥∥
2
≤ ∆

}




≤ P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P

{∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ ∆

}

≤ P

{
δ
(i)
1 m+ δ

(i)
2 M∆ > ∆mµ− 3L2m

2
∆2,

m− µ > δ
(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P

{∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ ∆

}

+ P

{
m− µ ≤ δ

(i)
2

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P

{∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ ∆

}

≤ P

{
δ
(i)
1 m+ δ

(i)
2 M∆ > ∆mµ− 3L2m

2
∆2,

m− µ > δ
(i)
2 ,
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

+ P

{
m− µ ≤ δ

(i)
2 ,
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

≤ P

{
δ
(i)
1 m+ δ

(i)
2 M∆ > ∆mµ− 3L2m

2
∆2

}

+ P

{
m− µ ≤ δ

(i)
2

}

≤
E

(
mδ

(i)
1 +M∆δ

(i)
2

)2

m2∆2
(
µ− 3L2

2 ∆
)2 +

E

(
δ
(i)
2

)2

(m− µ)
2 ,

provided m > µ > 3L2

2 ∆.
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If we take µ = (1− ε)m, we get

P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P





i⋂

j=1

{∥∥∥θ(j) − θ⋆
∥∥∥
2
≤ ∆

}




≤
E

(
mδ

(i)
1 +M∆δ

(i)
2

)2

m2∆2
(
(1− ε)m− 3L2

2 ∆
)2 +

E

(
δ
(i)
2

)2

ε2m2
.

We use the inequality (a+ b)
2 ≤ 2

(
a2 + b2

)
to get

P

{
max

1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}

=

n∑

i=0

P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P





i⋂

j=1

{∥∥∥θ(j) − θ⋆
∥∥∥
2
≤ ∆

}




≤
2
∑n

i=0 E

(
δ
(i)
1

)2

∆2
(
(1− ε)m− 3L2

2 ∆
)2 +

[
2ε2M2 +

(
(1− ε)m− 3L2

2 ∆
)2

ε2m2
(
(1− ε)m− 3L2

2 ∆
)2

]
n∑

i=0

E

(
δ
(i)
2

)2
.

As for the conditions, m > µ is automatically veriőed while µ > 3L2

2 ∆ becomes

∆ < 2(1−ε)m
3L2

.

Now, let us denote δ := (1− ε)m− 3L2

2 ∆ with δ > 0. As a result,

P

{
max

1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
> ∆

}
≤ 2

∆2δ2

n∑

i=0

E

(
δ
(i)
1

)2
+

(
2M2

m2δ2
+

1

ε2m2

) n∑

i=0

E

(
δ
(i)
2

)2

≤ K1

(
1

∆2

n∑

i=0

E

(
δ
(i)
1

)2
+

n∑

i=0

E

(
δ
(i)
2

)2
)

for a constant K1 depending on K, m, M , ε and δ. (In particular, one could take

K1 ≥ max
{

2
δ2
, 2M2

m2δ2
+ 1

ε2m2

}
.) Taking ∆ =

(
∑n

i=0 E

(

δ
(i)
1

)2

K2
K1

−
∑

n
i=0 E

(

δ
(i)
2

)2

) 1
2

, we can write

this as

P





max
1≤i≤n+1

∥∥∥θ(i) − θ⋆
∥∥∥
2
>




∑n
i=0 E

(
δ
(i)
1

)2

K2

K1
−∑n

i=0 E

(
δ
(i)
2

)2




1
2





≤ K2.

Now, δ > 0 can be written as

(1− ε)m− 3L2

2
∆ > 0,

(1− ε)
2
m2

[
K2

K1
−

n∑

i=0

E

(
δ
(i)
2

)2
]
>

9L2
2

4

n∑

i=0

E

(
δ
(i)
1

)2

and this is veriőed under the conditions of the theorem. QED
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8.2.2. Stochastic Approximation Schemes. Proof of Theorem 4. From θ(i+1) =

θ(i) − γi+1
˙̃F
(
θ(i)
)
,

θ(i+1) − θ⋆ = θ(i) − θ⋆ − γi+1

{
Ḟ
(
θ(i)
)
+ ˙̃F

(
θ(i)
)
− Ḟ

(
θ(i)
)}

= θ(i) − θ⋆ − γi+1Ḟ
(
θ(i)
)
− γi+1η

(i)

=
(
IK − γi+1F̈ (θ⋆)

)(
θ(i) − θ⋆

)

− γi+1

(
Ḟ
(
θ(i)
)
− Ḟ (θ⋆)− F̈ (θ⋆)

(
θ(i) − θ⋆

))
− γi+1η

(i)

where the third step comes from the rewriting

Ḟ
(
θ(i)
)
= F̈ (θ⋆)

(
θ(i) − θ⋆

)
+
(
Ḟ
(
θ(i)
)
− Ḟ (θ⋆)− F̈ (θ⋆)

(
θ(i) − θ⋆

))

and from the fact that Ḟ (θ⋆) = 0. Now, taking norms,
∥∥∥θ(i+1) − θ⋆

∥∥∥
2
≤
∥∥∥IK − γi+1F̈ (θ⋆)

∥∥∥
2

∥∥∥θ(i) − θ⋆
∥∥∥
2

+ γi+1

∥∥∥Ḟ
(
θ(i)
)
− Ḟ (θ⋆)− F̈ (θ⋆)

(
θ(i) − θ⋆

)∥∥∥
2
+ γi+1δ

(i)
1

≤
∥∥∥IK − γi+1F̈ (θ⋆)

∥∥∥
2

∥∥∥θ(i) − θ⋆
∥∥∥
2
+ γi+1

L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
+ γi+1δ

(i)
1

where the őrst step comes from δ
(i)
1 =

∥∥η(i)
∥∥
2

and the second step comes from the

third inequality of Lemma 2. Provided γi+1λmin

(
F̈ (θ⋆)

)
< 1,

∥∥∥IK − γi+1F̈ (θ⋆)
∥∥∥
2
= 1− γi+1λmin

(
F̈ (θ⋆)

)
.

Therefore,
∥∥∥θ(i+1) − θ⋆

∥∥∥
2
≤
(
1− γi+1λmin

(
F̈ (θ⋆)

))∥∥∥θ(i) − θ⋆
∥∥∥
2
+γi+1

L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
+γi+1δ

(i)
1 .

QED
Proof of Theorem 5. In this case too, as in Theorem 2, we consider what happens

when
∥∥∥θ(0) − θ⋆

∥∥∥
2
≤ ∆. We deőne

a(i) := γi+1δ
(i)
1 ,

b(i) := 1− γi+1

(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)
.

Then, from the result in Theorem 4 and
∥∥∥θ(0) − θ⋆

∥∥∥
2
≤ ∆,

∥∥∥θ(1) − θ⋆
∥∥∥
2
≤
[
1− γ1

(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)]∥∥∥θ(0) − θ⋆
∥∥∥
2
+ γ1δ

(0)
1

= a(0) + b(0)
∥∥∥θ(0) − θ⋆

∥∥∥
2
.

We now reason as in the proof of Corollary 2. If a(i) ≤
(
1− b(i)

)
∆ for any i, we

get, from Lemma 4,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤

i∑

j=0

a(j)
i∏

k=j+1

b(k) +∆

i∏

k=0

b(k).
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We note that

i∏

k=j+1

b(k) = exp





i∑

k=j+1

ln

[
1− γk+1

(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)]


≤ exp



−

(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

) i∑

k=j+1

γk+1



 .

To simplify the computations, we deőne K3 := λmin

(
F̈ (θ⋆)

)
− L2

2 ∆. Then,

(8.12)
∥∥∥θ(i+1) − θ⋆

∥∥∥
2
≤

i∑

j=0

a(j) exp



−K3

i∑

k=j+1

γk+1



+∆exp

{
−K3

i∑

k=0

γk+1

}
.

We note that, in order to obtain convergence to 0 of the second term in the right-

hand side of this inequality, we need
∑i

k=0 γk+1 → ∞ or γ ≤ 1. We consider the
two cases, γ < 1 and γ = 1, separately.

Let us start from the case γ < 1. We őrst consider the term exp
{
−K3

∑i
k=0 γk+1

}

in (8.12). In order to simplify the computations, we write this as

exp

{
−K3

i∑

k=0

γk+1

}
= exp

{
−K3

i−1∑

k=0

γk+1 −K3γi+1

}
.

From the inequality
∣∣∣γk+1 − c1 (k + 1)

−γ
∣∣∣ ≤ c2 (k + 1)

−ξ
, Lemma 6 yields

(c1ζ (γ)− c2ζ (ξ))+
c1

1− γ
i1−γ+

c1
2
i−γ− c1γ

8
i−1−γ− c2

1− ξ
i1−ξ− c2

2
i−ξ ≤

i−1∑

k=0

γk+1.

Therefore,

exp

{
−K3

i∑

k=0

γk+1

}
= exp

{
−K3

i−1∑

k=0

γk+1 −K3γi+1

}

≤ exp

{
−K3c1ζ (γ) +K3c2ζ (ξ)−

K3c1
1− γ

i1−γ − K3c1
2

i−γ +
K3c1γ

8
i−1−γ

+
K3c2
1− ξ

i1−ξ +
K3c2
2

i−ξ −K3c1 (i+ 1)
−γ

+K3c2 (i+ 1)
−ξ

}

= O

(
exp

{
−K3c1
1− γ

i1−γ +
K3c2
1− ξ

i1−ξ

})
(8.13)

where we have used the fact that, from
∣∣∣γi+1 − c1 (i+ 1)

−γ
∣∣∣ ≤ c2 (i+ 1)

−ξ
, c1 (i+ 1)

−γ−
c2 (i+ 1)

−ξ ≤ γi+1. All the summands K3c1
2 i−γ , K3c1γ

8 i−1−γ , K3c2
2 i−ξ, K3c1 (i+ 1)

−γ

and K3c2 (i+ 1)
−ξ

vanish asymptotically, the summand K3c1
1−γ

i1−γ diverges, while

the behavior of K3c2
1−ξ

i1−ξ depends on the value of ξ. If ξ ≥ 1, O
(
exp

{
−K3c1

1−γ
i1−γ + K3c2

1−ξ
i1−ξ

})
=

O
(
exp

{
−K3c1

1−γ
i1−γ

})
while, if ξ < 1, the term K3c2

1−ξ
i1−ξ cannot be neglected.
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Now we consider the őrst term in (8.12). From Lemma 7,

exp



−K3

i∑

k=j+1

γk+1





≤ exp

{
2K3c2ζ (ξ)−

K3c1
1− γ

(i+ 1)
1−γ − K3c1

2
(i+ 1)

−γ

+
K3c1γ

8
(i+ 1)

−1−γ
+

K3c2
1− ξ

(i+ 1)
1−ξ

+
K3c2
2

(i+ 1)
−ξ

}

· exp
{
K3c1
1− γ

(j + 1)
1−γ

+
K3c1
2

(j + 1)
−γ

+
K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}
.

(8.14)

The őrst term in the right-hand side of (8.12) becomes

i∑

j=0

a(j) exp



−K3

i∑

k=j+1

γk+1





≲ exp

{
2K3c2ζ (ξ)−

K3c1
1− γ

(i+ 1)
1−γ − K3c1

2
(i+ 1)

−γ

+
K3c1γ

8
(i+ 1)

−1−γ
+

K3c2
1− ξ

(i+ 1)
1−ξ

+
K3c2
2

(i+ 1)
−ξ

}(8.15)

·
i∑

j=0

a(j) exp

{
K3c1
1− γ

(j + 1)
1−γ

+
K3c1
2

(j + 1)
−γ

+
K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}

≤ exp

{
2K3c2ζ (ξ)−

K3c1
1− γ

(i+ 1)
1−γ

+
K3c1γ

8
(i+ 1)

−1−γ
+

K3c2
1− ξ

(i+ 1)
1−ξ

+
K3c2
2

(i+ 1)
−ξ

}

·
i∑

j=0

a(j) exp

{
K3c1
1− γ

(j + 1)
1−γ

+
K3c1
2

(j + 1)
−γ

+
K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}
(8.16)

where we have used the majorization −K3c1
2 (i+ 1)

−γ ≤ 0. From the inequalities

for γj+1 and δ
(j)
1 ,

a(j) = γj+1δ
(j)
1 ≲ c1c3 (j + 1)

−γ−δ
+ c2c3 (j + 1)

−ξ−δ
.

We express the sum replacing either (j + 1)
−γ−δ

or (j + 1)
−ξ−δ

with a generic

(j + 1)
−ν

. We apply Lemma 9 to get

i∑

j=0

a(j) exp



−K3

i∑

k=j+1

γk+1





≤ exp

{
2K3c2ζ (ξ)−

K3c1
1− γ

(i+ 1)
1−γ

+
K3c1γ

8
(i+ 1)

−1−γ
+

K3c2
1− ξ

(i+ 1)
1−ξ

+
K3c2
2

(i+ 1)
−ξ

}

·
i∑

j=0

a(j) exp

{
K3c1
1− γ

(j + 1)
1−γ

+
K3c1
2

(j + 1)
−γ

+
K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}
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≲ exp

{
2K3c2ζ (ξ)−

K3c1
1− γ

(i+ 1)
1−γ

+
K3c1γ

8
(i+ 1)

−1−γ
+

K3c2
1− ξ

(i+ 1)
1−ξ

+
K3c2
2

(i+ 1)
−ξ

}

· c1c3
(i+ 1)

1−γ−δ−1+γ
exp

{
K3c1
1−γ

(i+ 1)
1−γ

+ K3c1
2 (i+ 1)

−γ
+ K3c2

1−ξ
(i+ 1)

1−ξ
+ K3c2

2 (i+ 1)
−ξ
}

K3c1

≃ c3
K3

(i+ 1)
−δ

exp

{
2K3c2ζ (ξ) +

K3c1
2

(i+ 1)
−γ

+
K3c1γ

8
(i+ 1)

−1−γ

+
2K3c2
1− ξ

(i+ 1)
1−ξ

+K3c2 (i+ 1)
−ξ

}

≃c3i
−δ

K3
exp

{
2K3c2ζ (ξ) +

2K3c2
1− ξ

(i+ 1)
1−ξ

}

where we have used the fact that K3c1γ
8 (i+ 1)

−1−γ
+ K3c2

2 (i+ 1)
−ξ → 0. If ξ > 1,

∑i
j=0 a

(j) exp
{
−K3

∑i
k=j+1 γk+1

}
≲ c3e

2K3c2ζ(ξ)i−δ

K3
. From (8.12),

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≲

c3e
2K3c2ζ(ξ)i−δ

K3
+O

(
exp

{
−K3c1
1− γ

i1−γ +
K3c2
1− ξ

i1−ξ

})
≃ c3e

2K3c2ζ(ξ)i−δ

K3
.

Now we consider the case γ = 1. We start from the second summand in the
right-hand side of (8.12). We recall, from Lemma 6 with γ = 1, that

i∑

k=0

γk+1 ≥ c1γ(0) − c2ζ (ξ) + c1 ln (i+ 1)− c2
1− ξ

(i+ 1)
1−ξ − c2

2
(i+ 1)

−ξ
.

As a result,

exp

{
−K3

i∑

k=0

γk+1

}

≤ exp

{
−K3c1γ(0) +K3c2ζ (ξ)−K3c1 ln (i+ 1) +

K3c2
1− ξ

(i+ 1)
1−ξ

+
K3c2
2

(i+ 1)
−ξ

}

≲ (i+ 1)
−K3c1 exp

{
−K3c1γ(0) +K3c2ζ (ξ)

}(8.17)

where we have used the fact that 1− ξ < 0 and both K3c2
2 (i+ 1)

−ξ
and −K3c2

ξ−1 i1−ξ

vanish asymptotically. The second summand in the right-hand side of (8.12) be-
comes

∆exp

{
−K3

i∑

k=0

γk+1

}
≲ ∆i−K3c1 exp

{
−K3c1γ(0) +K3c2ζ (ξ)

}
.

Now we pass to the őrst summand in the right-hand side of (8.12), i.e.
∑i

j=0 a
(j) exp

{
−K3

∑i
k=j+1 γk+1

}
.

From Lemma 7 with γ = 1,

i∑

k=j+1

γk+1 ≥ −2c2ζ (ξ) + c1 ln

(
i+ 1

j + 1

)
− c2

1− ξ

[
(i+ 1)

1−ξ
+ (j + 1)

1−ξ
]

− c2
2

[
(i+ 1)

−ξ
+ (j + 1)

−ξ
]
− c1 (j + 1)

−1
.
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and

exp



−K3

i∑

k=j+1

γk+1





≤
(
j + 1

i+ 1

)K3c1

exp

{
2K3c2ζ (ξ) +

K3c2
1− ξ

(i+ 1)
1−ξ

+
K3c2
2

(i+ 1)
−ξ

}

· exp
{
K3c1 (j + 1)

−1
+

K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}
.(8.18)

The őrst term in the right-hand side of (8.12) becomes

i∑

j=0

a(j) exp



−K3

i∑

k=j+1

γk+1



 ≲ c1c3

i∑

j=0

(j + 1)
−1−δ

exp



−K3

i∑

k=j+1

γk+1





+ c2c3

i∑

j=0

(j + 1)
−ξ−δ

exp



−K3

i∑

k=j+1

γk+1





where

c1c3

i∑

j=0

(j + 1)
−1−δ

exp



−K3

i∑

k=j+1

γk+1





≲
c1c3

(i+ 1)
K3c1

exp

{
2K3c2ζ (ξ) +

K3c2
1− ξ

(i+ 1)
1−ξ

+
K3c2
2

(i+ 1)
−ξ

}

·
i∑

j=0

(j + 1)
K3c1−1−δ

exp

{
K3c1 (j + 1)

−1
+

K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}

≲
c1c3e

2K3c2ζ(ξ)

(i+ 1)
K3c1

i∑

j=0

(j + 1)
K3c1−1−δ

· exp
{
K3c1 (j + 1)

−1
+

K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}

and we have used the fact that K3c2
1−ξ

(i+ 1)
1−ξ

and K3c2
2 (i+ 1)

−ξ
vanish asymp-

totically. Using the fact that, for small x, ex ≃ 1 +O (x), we have

i∑

j=0

(j + 1)
K3c1−1−δ

exp

{
K3c1 (j + 1)

−1
+

K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}

=
i∑

j=0

(j + 1)
K3c1−1−δ

+O




i∑

j=0

(j + 1)
K3c1−δ−ξ∧2


 .

Reasoning in the same way, the remaining term behaves like

c2c3

i∑

j=0

(j + 1)
−ξ−δ

exp



−K3

i∑

k=j+1

γk+1





≲
c2c3

(i+ 1)
K3c1

exp

{
2K3c2ζ (ξ) +

K3c2
1− ξ

(i+ 1)
1−ξ

+
K3c2
2

(i+ 1)
−ξ

}
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·
i∑

j=0

(j + 1)
K3c1−ξ−δ

exp

{
K3c1 (j + 1)

−1
+

K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}

≲
c2c3

(i+ 1)
K3c1

exp {2K3c2ζ (ξ)}
i∑

j=0

(j + 1)
K3c1−ξ−δ

.

We have three different cases.
If K3c1 > δ, the EulerśMaclaurin formula yields

i∑

j=0

(j + 1)
K3c1−1−δ

=

i+1∑

j=1

jK3c1−1−δ

=

∫ i+1

1

xK3c1−1−δdx+O
(
iK3c1−1−δ + 1

)

=
(i+ 1)

K3c1−δ

K3c1 − δ
+O

(
iK3c1−1−δ + 1

)

and

i∑

j=0

a(j) exp



−K3

i∑

k=j+1

γk+1



 ≲

c1c3e
2K3c2ζ(ξ) (i+ 1)

−δ

K3c1 − δ

+O


i−1−δ + i−K3c1 + i−K3c1

i∑

j=0

(j + 1)
K3c1−δ−ξ∧2


 .

Now, i−K3c1 = o
(
i−δ
)

and i−1−δ = o
(
i−δ
)
. The last summand, i−K3c1

∑i
j=0 (j + 1)

K3c1−δ−ξ∧2
,

behaves like i−δ−ξ∧2+1 = o
(
i−δ
)

if K3c1 +1 > ξ ∧ 2+ δ, like i−K3c1 ln i = o
(
i−δ
)

if

K3c1 + 1 = ξ ∧ 2 + δ, and like i−K3c1 = o
(
i−δ
)

if K3c1 + 1 < ξ ∧ 2 + δ. Therefore,
∑i

j=0 a
(j) exp

{
−K3

∑i
k=j+1 γk+1

}
≲ c1c3e

2K3c2ζ(ξ)

K3c1−δ
i−δ and

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≲

c1c3e
2K3c2ζ(ξ)

K3c1 − δ
i−δ+∆i−K3c1 exp

{
−K3c1γ(0) +K3c2ζ (ξ)

}
≃ c1c3e

2K3c2ζ(ξ)

K3c1 − δ
i−δ.

If K3c1 = δ,
∑i

j=0 (j + 1)
−1

=
∑i+1

j=1 j
−1 = ln (i+ 1) +O (1) (see Lemma 5),

i∑

j=0

a(j) exp



−K3

i∑

k=j+1

γk+1



 ≲ c1c3e

2K3c2ζ(ξ)i−K3c1 ln i+O
(
i−K3c1

)

and ∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≲ c1c3e

2K3c2ζ(ξ)i−K3c1 ln i+O
(
i−K3c1

)
.

If K3c1 < δ, it is easy to see, using the limit comparison test, that

i∑

j=0

(j + 1)
K3c1−1−δ

exp

{
K3c1 (j + 1)

−1
+

K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}
= O (1) .

This implies that

i∑

j=0

a(j) exp



−K3

i∑

k=j+1

γk+1



 = O

(
i−K3c1

)
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and that ∥∥∥θ(i+1) − θ⋆
∥∥∥
2
= O

(
i−K3c1

)
.

A leading constant can be obtained through the (rough) majorization:

i∑

j=0

(j + 1)
K3c1−1−δ

exp

{
K3c1 (j + 1)

−1
+

K3c2
1− ξ

(j + 1)
1−ξ

+
K3c2
2

(j + 1)
−ξ

}

≤
i+1∑

j=1

jK3c1−1−δ exp

{
K3c1j

−1 +
K3c2
2

j−ξ

}
≤

i+1∑

j=1

jK3c1−1−δ exp

{
K3

(
2c1 + c2

2

)
j−1

}

=
i+1∑

j=1

jK3c1−1−δ

∞∑

k=0

Kk
3

(
2c1+c2

2

)k
j−k

k!
=

∞∑

k=0

Kk
3

(
2c1+c2

2

)k

k!

i+1∑

j=1

jK3c1−1−δ−k

≤
∞∑

k=0

Kk
3

(
2c1+c2

2

)k

k!
ζ (1 + δ + k −K3c1) .

Then,

i∑

j=0

a(j) exp



−K3

i∑

k=j+1

γk+1



 ≲ i−K3c1c1c3e

2K3c2ζ(ξ)
∞∑

k=0

Kk
3

(
2c1+c2

2

)k

k!
ζ (1 + δ + k −K3c1)

and

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≲ i−K3c1c1c3e

2K3c2ζ(ξ)
∞∑

k=0

Kk
3

(
2c1+c2

2

)k

k!
ζ (1 + δ + k −K3c1)

+ ∆i−K3c1 exp
{
−K3c1γ(0) +K3c2ζ (ξ)

}
.

If δ
(i)
1 ≡ 0, from (8.12),

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
≤ ∆exp

{
−K3

i∑

k=0

γk+1

}
.

For γ < 1,

∆exp

{
−K3

i∑

k=0

γk+1

}
≲ exp

{
−K3c1ζ (γ) +K3c2ζ (ξ)−

K3c1
1− γ

i1−γ

}
,

and for γ = 1,

∆exp

{
−K3

i∑

k=0

γk+1

}
≲ ∆exp

{
−K3c1γ(0) +K3c2ζ (ξ)

}
i−K3c1 .

QED
Proof of Corollary 2. Reasoning as in the proof of Theorem 3 and using Theorem

4, we have

P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P





i⋂

j=1

{∥∥∥θ(j) − θ⋆
∥∥∥
2
≤ ∆

}




≤ P

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2
> ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P

{∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ ∆

}
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≤ P

{(
1− γi+1λmin

(
F̈ (θ⋆)

))∥∥∥θ(i) − θ⋆
∥∥∥
2
+ γi+1

L2

2

∥∥∥θ(i) − θ⋆
∥∥∥
2

2

+γi+1δ
(i)
1 > ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P

{∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ ∆

}

≤ P

{(
1− γi+1λmin

(
F̈ (θ⋆)

))
∆+ γi+1

L2

2
∆2 + γi+1δ

(i)
1 > ∆

∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}
P

{∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ ∆

}

≤ P

{
δ
(i)
1 >

(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)
∆
∣∣∣
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

· P
{∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

≤ P

{
δ
(i)
1 >

(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)
∆,
∥∥∥θ(i) − θ⋆

∥∥∥
2
≤ ∆

}

≤ P

{
δ
(i)
1 >

(
λmin

(
F̈ (θ⋆)

)
− L2

2
∆

)
∆

}

≤
E

(
δ
(i)
1

)2

∆2
[
λmin

(
F̈ (θ⋆)

)
− L2

2 ∆
]2 ,

provided λmin

(
F̈ (θ⋆)

)
> L2

2 ∆.

The last result is proved as in Theorem 3. QED
Proof of Theorem 6. (i) We start decomposing (3.3) as

(8.19) θ(i+1) = θ(i) − γi+1
˙̃
F
(
θ(i)
)
= θ(i) − γi+1Ḟ

(
θ(i)
)
− γi+1η

(i).

Note that there is no guarantee that the expected value of η(i) is 0.

From the őrst inequality in Lemma 2, replacing θ1 with θ(i) and θ2 with θ(i+1),
we get

F
(
θ(i+1)

)
− F

(
θ(i)
)
−
(
θ(i+1) − θ(i)

)′
Ḟ
(
θ(i)
)
≤ L1

2

∥∥∥θ(i) − θ(i+1)
∥∥∥
2

2
.

We set hi := F
(
θ(i)
)
. Using (8.19) and the inequality (a+ b)

2 ≤ 2a2 + 2b2,

hi+1 − hi ≤− γi+1

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2
− γi+1

[
η(i)

]′
Ḟ
(
θ(i)
)

+ γ2
i+1

L1

2

∥∥∥Ḟ
(
θ(i)
)
+ η(i)

∥∥∥
2

2

≤− γi+1

[
η(i)

]′
Ḟ
(
θ(i)
)
− γi+1 (1− γi+1L1)

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2

+ γ2
i+1L1

∥∥∥η(i)
∥∥∥
2

2
,

γi+1 (1− γi+1L1)
∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2
≤ hi − hi+1 − γi+1

[
η(i)

]′
Ḟ
(
θ(i)
)
+ γ2

i+1L1

∥∥∥η(i)
∥∥∥
2

2
.

We take expectations:

γi+1 (1− γi+1L1)E
∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2
≤E (hi − hi+1)− γi+1E

[
η(i)

]′
Ḟ
(
θ(i)
)
+ γ2

i+1L1E

∥∥∥η(i)
∥∥∥
2

2
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≤E (hi − hi+1) + γi+1

∣∣∣∣E
[
η(i)

]′
Ḟ
(
θ(i)
)∣∣∣∣+ γ2

i+1L1E

∥∥∥η(i)
∥∥∥
2

2
.

From Assumption MaV and maxθ∈Θ

∥∥∥Ḟ (θ)
∥∥∥
2
≤ c1 < ∞ we have

∣∣∣∣E
[
Ḟ
(
θ(i)
)]′

η(i)

∣∣∣∣ =
∣∣∣∣EE

[[
Ḟ
(
θ(i)
)]′

η(i) |Fi

]∣∣∣∣

=

∣∣∣∣E
[
Ḟ
(
θ(i)
)]′

E

[
η(i) |Fi

]∣∣∣∣

≤ E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

∥∥∥E
[
η(i) |Fi

]∥∥∥
2

≤ E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

∥∥∥E
[
η(i) |Fi

]∥∥∥
2

≤ biE
∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
≤ c1bi,

E

∥∥∥η(i)
∥∥∥
2

2
≤ EE

[∥∥∥η(i)
∥∥∥
2

2
|Fi

]
≤ σi.

Summing up,

γi+1 (1− γi+1L1)E
∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2
≤ E (hi − hi+1) + γi+1c1bi + γ2

i+1L1σi.

Using the fact that 1− γi+1L1 ≥ c2 > 0 and summing from i = 0 to i = n, we get

c2γi+1E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2
≤ E (hi − hi+1) + γi+1c1bi + γ2

i+1L1σi,

c2E
n∑

i=0

γi+1E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2
≤

n∑

i=0

E (hi − hi+1) + c1

n∑

i=0

γi+1bi + L1

n∑

i=0

γ2
i+1σi,

(8.20)

E min
0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2
≤ c1

∑n
i=0 γi+1bi + E (h0 − hn+1) + L1

∑n
i=0 γ

2
i+1σi

c2
∑n

i=0 γi+1
.

From this, at last,

min
0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
= OP

((∑n
i=0 γi+1bi + E (h0 − hn+1) +

∑n
i=0 γ

2
i+1σi∑n

i=0 γi+1

) 1
2

)
.

If θ(0) is őxed and we minorize hn+1 = F
(
θ(n+1)

)
with F (θ⋆), we have

E (h0 − hn+1) ≤ E

(
F
(
θ(0)

)
− F (θ⋆)

)
= F

(
θ(0)

)
− F (θ⋆)

and

min
0≤i≤n

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
= OP

((
1 +

∑n
i=0 γi+1bi +

∑n
i=0 γ

2
i+1σi∑n

i=0 γi+1

) 1
2

)
.

(ii) We use CauchyśSchwarz inequality to get
(

n∑

i=0

E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

)2

≤
(

n∑

i=0

(
E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2

) 1
2

)2

=

(
n∑

i=0

(
γi+1E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2

) 1
2

γ
− 1

2
i+1

)2
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≤
n∑

i=0

γi+1E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2

n∑

i=0

γ−1
i+1,

or

1

n

n∑

i=0

E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
≤ 1

n

(
n∑

i=0

γi+1E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2

n∑

i=0

γ−1
i+1

) 1
2

.

From (8.20), we get

1

n

n∑

i=0

E

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
≤ 1

n

(
n∑

i=0

γ−1
i+1

) 1
2
(
c1
c2

n∑

i=0

γi+1bi +

∑n
i=0 E (hi − hi+1)

c2
+

L1

c2

n∑

i=0

γ2
i+1σi

) 1
2

.

(iii) Under Hess, the function F is strongly convex with parameter m > 0, see
Bertsekas et al. (2003, p. 72). In that case, from Eq. (1.16) in Bertsekas et al.
(2003, p. 72), we have

(
Ḟ (θ1)− Ḟ (θ2)

)′
(θ1 − θ2) ≥ m ∥θ1 − θ2∥22

for any θ1,θ2 ∈ R
K . Taking θ1 = θ(i) and θ2 = θ⋆, and using CauchyśSchwarz

inequality, we get ∥∥∥θ(i) − θ⋆
∥∥∥
2
≤ 1

m

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

from which the result follows. QED

Proof of Theorem 7. We write
∥∥∥θ(i+1) − θ⋆

∥∥∥
2

2
as

∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2

=
∥∥∥θ(i) − γi+1η

(i) − γi+1Ḟ
(
θ(i)
)
− θ⋆

∥∥∥
2

2

=
∥∥∥θ(i) − γi+1Ḟ

(
θ(i)
)
− θ⋆

∥∥∥
2

2
+ γ2

i+1

∥∥∥η(i)
∥∥∥
2

2

− 2γi+1

(
θ(i) − γi+1Ḟ

(
θ(i)
)
− θ⋆

)′
η(i)

=
∥∥∥θ(i) − θ⋆

∥∥∥
2

2
+ γ2

i+1

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

2
− 2γi+1

(
θ(i) − θ⋆

)′
Ḟ
(
θ(i)
)

+ γ2
i+1

∥∥∥η(i)
∥∥∥
2

2
− 2γi+1

(
θ(i) − γi+1Ḟ

(
θ(i)
)
− θ⋆

)′
η(i).(8.21)

Under Hess, Eq. (1.16) in Bertsekas et al. (2003, p. 72) yields
(
Ḟ (θ1)− Ḟ (θ2)

)′
(θ1 − θ2) ≥ m ∥θ1 − θ2∥22 .

Taking θ1 = θ(i) and θ2 = θ⋆ and using Ḟ (θ⋆) ≡ 0, we get
(
Ḟ
(
θ(i)
))′ (

θ(i) − θ⋆
)
≥ m

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
.

Moreover, under Lip-1, the second inequality in Lemma 2 yields
∥∥∥Ḟ
(
θ(i)
)∥∥∥

2
≤ L1

∥∥∥θ(i) − θ⋆
∥∥∥
2
.

These can be replaced in (8.21) to get
∥∥∥θ(i+1) − θ⋆

∥∥∥
2

2
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≤
∥∥∥θ(i) − θ⋆

∥∥∥
2

2
+ γ2

i+1L
2
1

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
− 2γi+1m

∥∥∥θ(i) − θ⋆
∥∥∥
2

2

+ γ2
i+1

∥∥∥η(i)
∥∥∥
2

2
− 2γi+1

(
θ(i) − γi+1Ḟ

(
θ(i)
)
− θ⋆

)′
η(i)

≤
(
1− 2γi+1m+ γ2

i+1L
2
1

) ∥∥∥θ(i) − θ⋆
∥∥∥
2

2

+ γ2
i+1

∥∥∥η(i)
∥∥∥
2

2
− 2γi+1

(
θ(i) − γi+1Ḟ

(
θ(i)
)
− θ⋆

)′
η(i).

Taking expectations conditionally on Fi, we get

E

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
|Fi

}

≤
(
1− 2γi+1m+ γ2

i+1L
2
1

) ∥∥∥θ(i) − θ⋆
∥∥∥
2

2
+ γ2

i+1E

{∥∥∥η(i)
∥∥∥
2

2
|Fi

}

− 2γi+1E

{(
θ(i) − γi+1Ḟ

(
θ(i)
)
− θ⋆

)′
η(i) |Fi

}
.(8.22)

From MaV, we have
∣∣∣∣E
{(

θ(i) − γi+1Ḟ
(
θ(i)
)
− θ⋆

)′
η(i) |Fi

}∣∣∣∣

=

∣∣∣∣
(
θ(i) − γi+1Ḟ

(
θ(i)
)
− θ⋆

)′
E

{
η(i) |Fi

}∣∣∣∣

≤
∥∥∥θ(i) − γi+1Ḟ

(
θ(i)
)
− θ⋆

∥∥∥
2

∥∥∥E
{
η(i) |Fi

}∥∥∥
2

≤
(∥∥∥θ(i) − θ⋆

∥∥∥
2
+ γi+1

∥∥∥Ḟ
(
θ(i)
)∥∥∥

2

)
bi

≤ bi (1 + γi+1L1)
∥∥∥θ(i) − θ⋆

∥∥∥
2

where the last step uses the second inequality in Lemma 2. Therefore, replacing
this into (8.22) and using MaV,

E

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
|Fi

}

≤
(
1− 2γi+1m+ γ2

i+1L
2
1

) ∥∥∥θ(i) − θ⋆
∥∥∥
2

2
+ γ2

i+1σi

+ 2γi+1bi (1 + γi+1L1)
∥∥∥θ(i) − θ⋆

∥∥∥
2
.(8.23)

We use the inequality 2ab ≤ a2 + b2 to write

2γi+1bi (1 + γi+1L1)
∥∥∥θ(i) − θ⋆

∥∥∥
2

≤ 2

{
γi+1 (1 + γi+1L1) bi

ci

}{
ci

∥∥∥θ(i) − θ⋆
∥∥∥
2

}

≤ γ2
i+1 (1 + γi+1L1)

2
b2i

c2i
+ c2i

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
(8.24)

for a sequence ci. We choose ci in such a way to balance, in (8.24), the two terms
γ2
i+1(1+γi+1L1)

2b2i
c2i

and c2i∆
2, intended as a replacement for c2i

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
. As a
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result, c2i = γi+1(1+γi+1L1)bi
∆ . Therefore, (8.23) becomes

E

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
|Fi

}

≤
(
1− 2γi+1m+ γ2

i+1L
2
1 +∆−1γi+1 (1 + γi+1L1) bi

) ∥∥∥θ(i) − θ⋆
∥∥∥
2

2

+ γi+1 (σiγi+1 +∆(1 + γi+1L1) bi) .

We set

A(i) = γi+1 (σiγi+1 +∆(1 + γi+1L1) bi) ,

B(i) = 1− 2γi+1m+ γ2
i+1L

2
1 +∆−1γi+1 (1 + γi+1L1) bi.

From

E

∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
= EE

{∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
|Fi

}
≤ E

{
A(i) +B(i)

∥∥∥θ(i) − θ⋆
∥∥∥
2

2

}

= A(i) +B(i)
E

∥∥∥θ(i) − θ⋆
∥∥∥
2

2
,

Lemma 4 allows us to prove the recurrence

E

∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
≤

i∑

j=0

A(j)
i∏

k=j+1

B(k) +
∥∥∥θ(0) − θ⋆

∥∥∥
2

2

i∏

k=0

B(k)

that, taking into account
∥∥∥θ(0) − θ⋆

∥∥∥
2

2
≤ ∆2, becomes

(8.25) E

∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
≤

i∑

j=0

A(j)
i∏

k=j+1

B(k) +∆2
i∏

k=0

B(k).

From
∣∣∣bi − c3 (i+ 1)

−β
∣∣∣ ≤ c4 (i+ 1)

−ζ
, we can see that bi ≤ K4 for a constant

K4 ≥ 0 and we can write

i∏

k=0

B(k) =

i∏

k=0

[
1− 2γi+1m+ γ2

i+1L
2
1 +∆−1γi+1 (1 + γi+1L1) bi

]

= exp

{
i∑

k=0

ln
[
1− 2γi+1m+ γ2

i+1L
2
1 +∆−1γi+1 (1 + γi+1L1) bi

]
}

≤ exp

{
−2m

i∑

k=0

γi+1 + L2
1

i∑

k=0

γ2
i+1 +∆−1

i∑

k=0

γi+1bi +∆−1L1

i∑

k=0

γ2
i+1bi

}

≤ exp

{
−2m

i∑

k=0

γi+1 +
(
L2
1 +∆−1K4L1

) i∑

k=0

γ2
i+1 +∆−1

i∑

k=0

γi+1bi

}

≤ exp

{
−2m

i∑

k=0

γi+1 +
((
L2
1 +∆−1K4L1

)
∨
(
∆−1

)) i∑

k=0

(
γ2
i+1 + γi+1bi

)
}

≤ exp

{
−2m

i∑

k=0

γi+1 +K5

i∑

k=0

(
γ2
i+1 + γi+1bi

)
}
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where we have set K5 :=
(
L2
1 +∆−1K4L1

)
∨∆−1. In the same way,

i∏

k=j+1

B(k) ≤ exp



−2m

i∑

k=j+1

γi+1 +K5

i∑

k=j+1

(
γ2
i+1 + γi+1bi

)


 .

As concerns
∑i

k=0 γi+1, we use Lemma 6 to get

(c1ζ (γ)− c2ζ (ξ))+
c1

1− γ
i1−γ+

c1
2
i−γ− c1γ

8
i−1−γ− c2

1− ξ
i1−ξ− c2

2
i−ξ ≤

i−1∑

k=0

γk+1.

Now we turn to
∑i−1

k=0

(
γ2
k+1 + γk+1bk

)
. From

∣∣∣γi+1 − c1 (i+ 1)
−γ
∣∣∣ ≤ c2 (i+ 1)

−ξ

and
∣∣∣bi − c3 (i+ 1)

−β
∣∣∣ ≤ c4 (i+ 1)

−ζ
, we have

γ2
i+1 ≤

(
c1 (i+ 1)

−γ
+ c2 (i+ 1)

−ξ
)2

= c21 (i+ 1)
−2γ

+ c22 (i+ 1)
−2ξ

+ 2c1c2 (i+ 1)
−γ−ξ

,

γi+1bi ≤
(
c1 (i+ 1)

−γ
+ c2 (i+ 1)

−ξ
)(

c3 (i+ 1)
−β

+ c4 (i+ 1)
−ζ
)

= c1c3 (i+ 1)
−γ−β

+ c2c4 (i+ 1)
−ξ−ζ

+ c2c3 (i+ 1)
−β−ξ

+ c1c4 (i+ 1)
−γ−ζ

,

γ2
i+1 + γi+1bi ≤ c21 (i+ 1)

−2γ
+ c22 (i+ 1)

−2ξ
+ c1c3 (i+ 1)

−γ−β
+ c2c4 (i+ 1)

−ξ−ζ

+ 2c1c2 (i+ 1)
−γ−ξ

+ c2c3 (i+ 1)
−β−ξ

+ c1c4 (i+ 1)
−γ−ζ

.

For the minorization, we use the obvious inequalities

γi+1 ≥ c1 (i+ 1)
−γ − c2 (i+ 1)

−ξ
,

bi ≥ c3 (i+ 1)
−β − c4 (i+ 1)

−ζ
.

However, when transforming them into minorizations for γ2
i+1 and γi+1bi, one must

pay attention to the fact that the right-hand sides of these inequalities could be
negative. We then introduce the set of indexes

I :=
{
i : c1 (i+ 1)

−γ ≥ c2 (i+ 1)
−ξ

, c3 (i+ 1)
−β ≥ c4 (i+ 1)

−ζ
}
.

We note that

I :=

{
i : i ≥ max

{(
c2
c1

) 1
ξ−γ

,

(
c4
c3

) 1
ζ−β

}
− 1

}
,

so that the set of i’s not belonging to I is őnite and has cardinality at most, say,
I. We then have

γi+1 ≥
(
c1 (i+ 1)

−γ − c2 (i+ 1)
−ξ
)
1{i∈I},

bi ≥
(
c3 (i+ 1)

−β − c4 (i+ 1)
−ζ
)
1{i∈I},

and

γ2
i+1 ≥

[
c1 (i+ 1)

−γ − c2 (i+ 1)
−ξ
]2

1{i∈I}

=
[
c21 (i+ 1)

−2γ
+ c22 (i+ 1)

−2ξ − 2c1c2 (i+ 1)
−γ−ξ

]
1{i∈I},

γi+1bi ≥
[
c1 (i+ 1)

−γ − c2 (i+ 1)
−ξ
]
1{i∈I}

[
c3 (i+ 1)

−β − c4 (i+ 1)
−ζ
]
1{i∈I}

=
[
c1c3 (i+ 1)

−γ−β
+ c2c4 (i+ 1)

−ξ−ζ − c2c3 (i+ 1)
−β−ξ − c1c4 (i+ 1)

−γ−ζ
]
1{i∈I},
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γ2
i+1 + γi+1bi ≥

[
c21 (i+ 1)

−2γ
+ c22 (i+ 1)

−2ξ
+ c1c3 (i+ 1)

−γ−β
+ c2c4 (i+ 1)

−ξ−ζ

−2c1c2 (i+ 1)
−γ−ξ − c2c3 (i+ 1)

−β−ξ − c1c4 (i+ 1)
−γ−ζ

]
1{i∈I}.

We note that, for a suitable choice of the constants kj1 , kj2 , αj1 and αj2 , the ma-
jorization and minorization of γ2

i+1 + γi+1bi can be written as

γ2
i+1 + γi+1bi ≤

∑

j1

kj1 (i+ 1)
−αj1 +

∑

j2

kj2 (i+ 1)
−αj2

and

γ2
i+1 + γi+1bi ≥

∑

j1

kj1 (i+ 1)
−αj1 1{i∈I} −

∑

j2

kj2 (i+ 1)
−αj2 1{i∈I}

≥
∑

j1

kj1 (i+ 1)
−αj1 1{i∈I} −

∑

j2

kj2 (i+ 1)
−αj2 .

Note that the exponents αj1 ’s correspond to 2γ, 2ξ, γ+β and ξ+ζ and the exponents
αj2 ’s correspond to γ + ξ, β + ξ and γ + ζ. Using Lemma 5, the corresponding

inequalities on
∑i−1

k=0

(
γ2
k+1 + γk+1bk

)
can be written as

i−1∑

k=0

(
γ2
k+1 + γk+1bk

)
≤
∑

j1

kj1

i−1∑

k=0

(k + 1)
−αj1 +

∑

j2

kj2

i−1∑

k=0

(k + 1)
−αj2

=
∑

j1

kj1

i∑

k=1

k−αj1 +
∑

j2

kj2

i∑

k=1

k−αj2

≤
∑

j1

kj1

(
ζ (αj1) +

1

1− αj1

i1−αj1 +
1

2
i−αj1

)

+
∑

j2

kj2

(
ζ (αj2) +

1

1− αj2

i1−αj2 +
1

2
i−αj2

)
(8.26)

and
i−1∑

k=0

(
γ2
i+1 + γi+1bi

)
≥
∑

j1

kj1

i−1∑

k=0

(k + 1)
−αj1 1{k∈I} −

∑

j2

kj2

i−1∑

k=0

(k + 1)
−αj2

=
∑

j1

kj1

i∑

k=1

k−αj1 1{k−1∈I} −
∑

j2

kj2

i∑

k=1

k−αj2

≥
∑

j1

kj1

i∑

k=1

k−αj1 −
∑

j2

kj2

i∑

k=1

k−αj2 −K6

≥
∑

j1

kj1

(
ζ (αj1) +

1

1− αj1

i1−αj1 +
1

2
i−αj1 − αj1

8
i−1−αj1

)

−
∑

j2

kj2

(
ζ (αj2) +

1

1− αj2

i1−αj2 +
1

2
i−αj2

)
−K6(8.27)

for a suitable constant K6, provided 2γ, 2ξ, γ + β, ξ + ζ, γ + ξ, β + ξ and γ + ζ are
larger than −1 and different from 1. If one of them is equal to 1, the modiőcation
to the proof is trivial, i.e. the leading constant ζ (αjk) is replaced by γ(0), the term
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1
1−αjk

i1−αjk is interpreted as a limit for αjk → 1, and the remaining terms are

modiőed accordingly. The choice of the coefficients αj1 ’s and αj2 ’s implies that all
terms of the form i−αj1 , i−1−αj1 and i−αj2 vanish asymptotically for large i.

Now we consider the behavior of ∆2
∏i

k=0 B
(k). We have

∆2
i∏

k=0

B(k)

≤∆2 exp

{
−2m

i∑

k=0

γk+1 +K5

i∑

k=0

(
γ2
k+1 + γk+1bk

)
}

≤∆2 exp

{
−2m

[
(c1ζ (γ)− c2ζ (ξ)) +

c1
1− γ

i1−γ +
c1
2
i−γ − c1γ

8
i−1−γ − c2

1− ξ
i1−ξ − c2

2
i−ξ

]

+K5

∑

j1

kj1

(
ζ (αj1) +

1

1− αj1

i1−αj1 +
1

2
i−αj1

)

+K5

∑

j2

kj2

(
ζ (αj2) +

1

1− αj2

i1−αj2 +
1

2
i−αj2

)

−2mγi+1 +K5

(
γ2
i+1 + γi+1bi

)}

=O


exp



−2mc1

1− γ
i1−γ +

2mc2
1− ξ

i1−ξ +K5

∑

j1

kj1
1− αj1

i1−αj1 +K5

∑

j2

kj2
1− αj2

i1−αj2








=O

(
exp

{
−2mc1
1− γ

i1−γ (1 + o (1))

})
.

Now we turn to the őrst term of (8.25). The minorization on
∑i

k=j+1 γi+1 comes
from Lemma 7:

i∑

k=j+1

γk+1 ≥ −2c2ζ (ξ) +
c1

1− γ

[
(i+ 1)

1−γ − (j + 1)
1−γ
]
+

c1
2

[
(i+ 1)

−γ − (j + 1)
−γ
]

− c2
1− ξ

[
(i+ 1)

1−ξ
+ (j + 1)

1−ξ
]
− c2

2

[
(i+ 1)

−ξ
+ (j + 1)

−ξ
]
− c1γ

8
(i+ 1)

−1−γ
.

The majorization on
∑i

k=j+1

(
γ2
k+1 + γk+1bk

)
is obtained from (8.26) and (8.27)

as

i∑

k=j+1

(
γ2
k+1 + γk+1bk

)

=

i∑

k=0

(
γ2
k+1 + γk+1bk

)
−

j∑

k=0

(
γ2
k+1 + γk+1bk

)

≤
∑

j1

kj1

(
1

1− αj1

(i+ 1)
1−αj1 +

1

2
(i+ 1)

−αj1

)

+
∑

j2

kj2

(
2ζ (αj2) +

1

1− αj2

(i+ 1)
1−αj2 +

1

2
(i+ 1)

−αj2

)
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−
∑

j1

kj1

(
1

1− αj1

(j + 1)
1−αj1 +

1

2
(j + 1)

−αj1 − αj1

8
(j + 1)

−1−αj1

)

+
∑

j2

kj2

(
1

1− αj2

(j + 1)
1−αj2 +

1

2
(j + 1)

−αj2

)
+K6.

As a result,

i∏

k=j+1

B(k) ≤ exp



−2m

i∑

k=j+1

γk+1 +K5

i∑

k=j+1

(
γ2
k+1 + γk+1bk

)




≤ exp

{
4mc2ζ (ξ)−

2mc1
1− γ

(i+ 1)
1−γ −mc1 (i+ 1)

−γ
+

mc1γ

4
(i+ 1)

−1−γ

+
2mc2
1− ξ

(i+ 1)
1−ξ

+mc2 (i+ 1)
−ξ

+K5

∑

j1

kj1

(
1

1− αj1

(i+ 1)
1−αj1 +

1

2
(i+ 1)

−αj1

)

+K5

∑

j2

kj2

(
2ζ (αj2) +

1

1− αj2

(i+ 1)
1−αj2 +

1

2
(i+ 1)

−αj2

)

+
2mc1
1− γ

(j + 1)
1−γ

+mc1 (j + 1)
−γ

+
2mc2
1− ξ

(j + 1)
1−ξ

+mc2 (j + 1)
−ξ

−K5

∑

j1

kj1

(
1

1− αj1

(j + 1)
1−αj1 +

1

2
(j + 1)

−αj1 − αj1

8
(j + 1)

−1−αj1

)

+K5

∑

j2

kj2

(
1

1− αj2

(j + 1)
1−αj2 +

1

2
(j + 1)

−αj2

)
+K5K6



 .

Moreover, we have

A(i) = γ2
i+1σi +∆γi+1bi +∆L1γ

2
i+1bi

≲ c21c5 (i+ 1)
−2γ−σ

+ c22c5 (i+ 1)
−2ξ−σ

+ 2c1c2c5 (i+ 1)
−γ−ξ−σ

+∆c1c3 (i+ 1)
−γ−β

+∆c2c4 (i+ 1)
−ξ−ζ

+∆c2c3 (i+ 1)
−β−ξ

+∆c1c4 (i+ 1)
−γ−ζ

+∆L1c
2
1c3 (i+ 1)

−2γ−β
+∆L1c

2
1c4 (i+ 1)

−2γ−ζ

+∆L1c
2
2c3 (i+ 1)

−2ξ−β
+∆L1c

2
2c4 (i+ 1)

−2ξ−ζ

+ 2∆L1c1c2c3 (i+ 1)
−γ−ξ−β

+ 2∆L1c1c2c4 (i+ 1)
−γ−ξ−ζ

≲ K7 (i+ 1)
−γ−(γ+σ)∧β

for a suitable constant K7. As a result,

i∑

j=0

A(j)
i∏

k=j+1

B(k)

≲ K7 exp

{
4mc2ζ (ξ)−

2mc1
1− γ

(i+ 1)
1−γ −mc1 (i+ 1)

−γ
+

mc1γ

4
(i+ 1)

−1−γ
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+
2mc2
1− ξ

(i+ 1)
1−ξ

+mc2 (i+ 1)
−ξ

+K5

∑

j1

kj1

(
1

1− αj1

(i+ 1)
1−αj1 +

1

2
(i+ 1)

−αj1

)

+K5

∑

j2

kj2

(
2ζ (αj2) +

1

1− αj2

(i+ 1)
1−αj2 +

1

2
(i+ 1)

−αj2

)
+K5K6





·
i∑

j=0

(j + 1)
−γ−(γ+σ)∧β

exp

{
2mc1
1− γ

(j + 1)
1−γ

+mc1 (j + 1)
−γ

+
2mc2
1− ξ

(j + 1)
1−ξ

+mc2 (j + 1)
−ξ

−K5

∑

j1

kj1

(
1

1− αj1

(j + 1)
1−αj1 +

1

2
(j + 1)

−αj1 − αj1

8
(j + 1)

−1−αj1

)

+K5

∑

j2

kj2

(
1

1− αj2

(j + 1)
1−αj2 +

1

2
(j + 1)

−αj2

)
 .

We are led to consider the second term in this equation. We apply Lemma 9 to get

i∑

j=0

(j + 1)
−γ−(γ+σ)∧β

exp

{
2mc1
1− γ

(j + 1)
1−γ

+mc1 (j + 1)
−γ

+
2mc2
1− ξ

(j + 1)
1−ξ

+mc2 (j + 1)
−ξ

−K5

∑

j1

kj1

(
1

1− αj1

(j + 1)
1−αj1 +

1

2
(j + 1)

−αj1 − αj1

8
(j + 1)

−1−αj1

)

+K5

∑

j2

kj2

(
1

1− αj2

(j + 1)
1−αj2 +

1

2
(j + 1)

−αj2

)


≃ (i+ 1)
−(γ+σ)∧β

2mc1
exp

{
2mc1
1− γ

(i+ 1)
1−γ

+mc1 (i+ 1)
−γ

+
2mc2
1− ξ

(i+ 1)
1−ξ

+mc2 (i+ 1)
−ξ

−K5

∑

j1

kj1

(
1

1− αj1

(i+ 1)
1−αj1 +

1

2
(i+ 1)

−αj1 − αj1

8
(i+ 1)

−1−αj1

)

+K5

∑

j2

kj2

(
1

1− αj2

(i+ 1)
1−αj2 +

1

2
(i+ 1)

−αj2

)


≃ (i+ 1)
−(γ+σ)∧β

2mc1
exp

{
2mc1
1− γ

(i+ 1)
1−γ

+
2mc2
1− ξ

(i+ 1)
1−ξ

−K5

∑

j1

kj1
1

1− αj1

(i+ 1)
1−αj1 +K5

∑

j2

kj2
1

1− αj2

(i+ 1)
1−αj2



 .

As a result,

i∑

j=0

A(j)
i∏

k=j+1

B(k)
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=O


(i+ 1)

−(γ+σ)∧β
exp





4mc2
1− ξ

(i+ 1)
1−ξ

+ 2K5

∑

j2

kj2
1− αj2

(i+ 1)
1−αj2






 .

This is
i∑

j=0

A(j)
i∏

k=j+1

B(k) = O
(
i−(γ+σ)∧β

)

provided 1 − ξ < 0 and 1 − αj2 < 0. Using the fact that αj2 is γ + ξ, β + ξ and
γ+ ζ, these conditions become 1 < ξ, 1 < γ+ ξ, 1 < β+ ξ and 1 < γ+ ζ, i.e. 1 < ξ
and 1 < γ + ζ.

Now we consider the case γ = 1. Using (8.17), the second summand in (8.25)
can be written as

∆2
i∏

k=0

B(k) = O

(
∆2 exp

{
−2m

i∑

k=0

γk+1

})
= O

(
i−2mc1

)
.

As to the őrst summand in (8.25), (8.18) yields

exp



−2m

i∑

k=j+1

γk+1





≤
(
j + 1

i+ 1

)2mc1

exp

{
4mc2ζ (ξ) +

2mc2
1− ξ

(i+ 1)
1−ξ

+mc2 (i+ 1)
−ξ

}

· exp
{
2mc1 (j + 1)

−1
+

2mc2
1− ξ

(j + 1)
1−ξ

+mc2 (j + 1)
−ξ

}
.

Therefore, using A(j) = O
(
(j + 1)

−2−σ∧(β−1)
)
, 2mc2

1−ξ
(i+ 1)

1−ξ
= o (1) and mc2 (i+ 1)

−ξ
=

o (1), we have

i∑

j=0

A(j) exp



−2m

i∑

k=j+1

γk+1





= O


(i+ 1)

−2mc1

i∑

j=0

(j + 1)
2mc1−2−σ∧(β−1)

· exp
{
2mc1 (j + 1)

−1
+

2mc2
1− ξ

(j + 1)
1−ξ

+mc2 (j + 1)
−ξ

})
.

The proof is similar to the one of Theorem 5.
If 2mc1−2−σ∧(β − 1) > −1 or 2mc1 > σ∧(β − 1)+1, the expansion ex ≃ 1+x

for small x yields

i∑

j=0

(j + 1)
2mc1−2−σ∧(β−1)

exp

{
2mc1 (j + 1)

−1
+

2mc2
1− ξ

(j + 1)
1−ξ

+mc2 (j + 1)
−ξ

}

=

i∑

j=0

(j + 1)
2mc1−2−σ∧(β−1)

+O




i∑

j=0

(j + 1)
2mc1−2−σ∧(β−1)−1∧(ξ−1)




= O
(
i2mc1−1−σ∧(β−1)

)
,
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and

i∑

j=0

A(j) exp



−2m

i∑

k=j+1

γk+1



 = O

(
i−1−σ∧(β−1)

)
,

E

∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
= O

(
i−1−σ∧(β−1) + i−2mc1

)

= O
(
i−1−σ∧(β−1)

)
,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
= OP

(
i−

1+σ∧(β−1)
2

)
.

If 2mc1−2−σ∧ (β − 1) = −1 or 2mc1 = σ∧ (β − 1)+1, the same method gives

i∑

j=0

(j + 1)
−1

exp

{
2mc1 (j + 1)

−1
+

2mc2
1− ξ

(j + 1)
1−ξ

+mc2 (j + 1)
−ξ

}

=

i∑

j=0

(j + 1)
−1

+O




i∑

j=0

(j + 1)
−1−(ξ−1)∧1




= O (ln i)

and

i∑

j=0

A(j) exp



−2m

i∑

k=j+1

γk+1



 = O

(
i−2mc1 ln i

)
,

E

∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
= O

(
i−2mc1 ln i

)
,

∥∥∥θ(i+1) − θ⋆
∥∥∥
2
= OP

(
i−mc1 ln

1
2 i
)
.

At last, when 2mc1 − 2− σ ∧ (β − 1) < −1 or 2mc1 < σ ∧ (β − 1) + 1, the limit
comparison test shows that

i∑

j=0

(j + 1)
2mc1−2−σ∧(β−1)

exp

{
2mc1 (j + 1)

−1
+

2mc2
1− ξ

(j + 1)
1−ξ

+mc2 (j + 1)
−ξ

}

converges as far as
∑i

j=0 (j + 1)
2mc1−2−σ∧(β−1)

does. Therefore, we have

i∑

j=0

(j + 1)
2mc1−2−σ∧(β−1)

exp

{
2mc1 (j + 1)

−1
+

2mc2
1− ξ

(j + 1)
1−ξ

+mc2 (j + 1)
−ξ

}

≤
i∑

j=0

(j + 1)
2mc1−2−σ∧(β−1)

exp

{
2mc1 +

2mc2
1− ξ

+mc2

}
= O (1) .

This implies that

i∑

j=0

A(j) exp



−2m

i∑

k=j+1

γk+1



 = O

(
i−2mc1

)
,

E

∥∥∥θ(i+1) − θ⋆
∥∥∥
2

2
= O

(
i−2mc1

)
,
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∥∥∥θ(i+1) − θ⋆
∥∥∥
2
= OP

(
i−mc1

)
.

QED

8.3. Proofs of Approximation Results. Proof of Theorem 8. We build a pre-
dicted value of F (θ0) as

F̃ (θ0) = x′
D (θ0) (X

′X)
−1

X′y = x′
D (θ0) (X

′X)
−1

X′ (y + ε) .

As explained in the text, we center the points in P (θ0) in θ0, so that θ0 ≡ 0. The
vector of regressors associated with the origin is xD (θ0) ≡ e1. Moreover, y and

ε are the vectors whose elements are, respectively, F (θj) and F̂ (θj) − F (θj) for
θj ∈ P (θ0). It should therefore be clear that ε may be deterministic or stochastic
but, in the second case, it does not have, in general, zero expectation. We have

∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ ≤

∣∣∣x′
D (θ0) (X

′X)
−1

X′y − F (θ0)
∣∣∣

+
∣∣∣x′

D (θ0) (X
′X)

−1
X′ε

∣∣∣ .(8.28)

Let us start from the last term. We have
∣∣∣x′

D (θ0) (X
′X)

−1
X′ε

∣∣∣ ≤ ∥xD (θ0)∥2
∥∥∥(X′X)

−1
X′
∥∥∥
2
∥ε∥2 = ∥xD (θ0)∥2 ∥ε∥2

√
λmax

(
(X′X)

−1
)

≤ ∥xD (θ0)∥2 ∥ε∥2√
λmin (X′X)

.

Now, ∥xD (θ0)∥2 = ∥e1∥2 = 1. Therefore, using Lemma 10,
∣∣∣x′

D (θ0) (X
′X)

−1
X′ε

∣∣∣ ≤ h−D ∥ε∥2√
Pλmin

(
1
P
X′

0X0

) .

We are left with the other term in (8.28), i.e.
∣∣∣x′

D (θ0) (X
′X)

−1
X′y − F (θ0)

∣∣∣.
The őrst term, x′

D (θ0) (X
′X)

−1
X′y, is p⋆ (θ0) where p⋆ ∈ PD is the polynomial

minimizing
∑

j:θj∈P(θ0)

|F (θj)− p⋆ (θj)|2 = inf
p∈Pd

∑

j:θj∈P(θ0)

|F (θj)− p (θj)|2 .

If θ0 ∈ P (θ0),

|F (θ0)− p⋆ (θ0)|2 ≤
∑

j:θj∈P(θ0)

|F (θj)− p⋆ (θj)|2 .

Let p⋆⋆ ∈ PD be a polynomial such that

∥F (θ)− p⋆⋆ (θ)∥ρB = inf
p∈Pd

∥F (θ)− p (θ)∥ρB .

Then,

|F (θ0)− p⋆ (θ0)|2 ≤
∑

j:θj∈P(θ0)

|F (θj)− p⋆ (θj)|2

≤
∑

j:θj∈P(θ0)

|F (θj)− p⋆⋆ (θj)|2

≤ P ∥F (θ)− p⋆⋆ (θ)∥2ρB .
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Therefore,
∣∣∣F̃ (θ0)− F (θ0)

∣∣∣ ≤ P
1
2 ∥F (θ)− p⋆⋆ (θ)∥ρB + h−D ∥ε∥2√

Pλmin

(
1
P
X′

0X0

) .

If θ0 /∈ P (θ0), we can write, for any θj ∈ P (θ0),

|F (θ0)− p⋆ (θ0)| ≤ |F (θj)− p⋆ (θj)|+ |F (θj)− F (θ0)|+ |p⋆ (θj)− p⋆ (θ0)| .
Here, |F (θj)− p⋆ (θj)| can be majorized as we did above. For the other two terms,
we have

|F (θj)− F (θ0)| ≤ |F |0,1 ∥θj∥2 ≤ |F |0,1 ρ̃
and

|p⋆ (θj)− p⋆ (θ0)| =
∣∣∣[x′

D (θj)− x′
D (θ0)] (X

′X)
−1

X′y
∣∣∣

≤ ∥xD (θj)− xD (θ0)∥2
∥∥∥(X′X)

−1
X′
∥∥∥
2
∥y∥2

≤ ∥xD (θj)− xD (θ0)∥2 ∥y∥2√
λmin (X′X)

.

From Lemma 11, we have

∥xD (θj)− xD (θ0)∥22 = ∥xD (θj)− e1∥22 = ∥xD (θj)∥22 − 1

≤ 1− ρ̃2(D+1)

1− ρ̃2
− 1 = ρ̃2

(
1− ρ̃2D

1− ρ̃2

)
.

Moreover,

∥y∥22 ≤ P sup
θj∈P(θ0)

|F (θj)|2 = P ∥F (θj)∥2P(θ0)
.

At last,

|p⋆ (θj)− p⋆ (θ0)|2 ≤ ρ̃

(
1− ρ̃2D

1− ρ̃2

) 1
2 ∥F∥P(θ0)√

λmin

(
1
P
X′X

) ≤ h−Dρ̃

(
1− ρ̃2D

1− ρ̃2

) 1
2 ∥F∥P(θ0)√

λmin

(
1
P
X′

0X0

)

and∣∣∣F̃ (θ0)− F (θ0)
∣∣∣ ≤ P

1
2 ∥F (θ)− p⋆⋆ (θ)∥ρB + |F |0,1 ρ̃

+ h−Dρ̃

(
1− ρ̃2D

1− ρ̃2

) 1
2 ∥F∥P(θ0)√

λmin

(
1
P
X′

0X0

) + h−DP− 1
2

∥ε∥2√
λmin

(
1
P
X′

0X0

) .

Now, we want to majorize supθ∈ρB |F (θ)− p⋆⋆ (θ)|. Let p⋆⋆⋆ be the Taylor
expansion of order d of F (θ) around θ0 ≡ 0. Then,

∥F (θ)− p⋆⋆ (θ)∥ρB ≤ ∥F (θ)− p⋆⋆⋆ (θ)∥ρB .
We use Lemma 1 with γ = 1:

|R0 (0;θ)| ≤
KD

(D − 1)!
γD ∥θ∥D+1

2 |F |D,1 ≤ KD

(D − 1)!
ρD+1 |F |D,1

and, through ρ = hρ0, we get the őnal result. QED
Proof of Theorem 9. We build a predicted value of F (θ) as

F̃ (θ) = x′
D (θ) (X′X)

−1
X′y = x′

D (θ) (X′X)
−1

X′ (y + ε) .
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The decomposition and the interpretation of the other quantities are similar to
those in Theorem 8. We have∣∣∣DkF̃ (θ)−DkF (θ)

∣∣∣ ≤
∣∣∣Dkx′

D (θ) (X′X)
−1

X′y −DkF (θ)
∣∣∣

+
∣∣∣Dkx′

D (θ) (X′X)
−1

X′ε
∣∣∣

≤
∣∣∣Dkx′

D (θ) (X′X)
−1

X′y −Dkx′
D (θ)β

∣∣∣

+
∣∣Dkx′

D (θ)β −DkF (θ)
∣∣

+
∣∣∣Dkx′

D (θ) (X′X)
−1

X′ε
∣∣∣

where β will be chosen below. From this, we get

max
|k|=S

∥∥∥DkF̃ (θ)−DkF (θ)
∥∥∥
ρB

≤ max
|k|=S

∥∥∥Dkx′
D (θ) (X′X)

−1
X′y −Dkx′

D (θ)β
∥∥∥
ρB

+ max
|k|=S

∥∥Dkx′
D (θ)β −DkF (θ)

∥∥
ρB

+ max
|k|=S

∥∥∥Dkx′
D (θ) (X′X)

−1
X′ε

∥∥∥
ρB

.(8.29)

Let us start from the last term in (8.29). By CauchyśSchwarz inequality, we
have ∣∣∣Dkx′

D (θ) (X′X)
−1

X′ε
∣∣∣ ≤

∥∥DkxD (θ)
∥∥
2

∥∥∥(X′X)
−1

X′
∥∥∥
2
∥ε∥2

≤
∥∥DkxD (θ)

∥∥
2
∥ε∥2

√
λmax

(
(X′X)

−1
)

≤
∥∥DkxD (θ)

∥∥
2
∥ε∥2√

λmin (X′X)
.

Therefore, using Lemma 10,

∣∣∣Dkx′
D (θ) (X′X)

−1
X′ε

∣∣∣ ≤ h−D
P− 1

2

∥∥DkxD (θ)
∥∥
2
∥ε∥2√

λmin

(
1
P
X′

0X0

) .

From Lemma 11,

max
|k|=S

max
θ∈ρB

∥∥∥Dkx′
D (θ) (X′X)

−1
X′ε

∥∥∥
2
≤ h−D

P− 1
2 maxθ∈ρB ∥ε∥2 max|k|=S maxθ∈ρB

∥∥DkxD (θ)
∥∥
2√

λmin

(
1
P
X′

0X0

)

≤ h−D
P− 1

2 maxθ∈ρB ∥ε∥2 S!
√∑D

d=S

(
d
S

)2
ρ2(d−S)

√
λmin

(
1
P
X′

0X0

) .

Now we turn to the second term of (8.29). Let β be the vector of coefficients of
the Taylor expansion of order D of F (θ) around 0. From Lemma 1,
(8.30)

|Rk (0;θ)| ≤
KD−|k|

(D − |k| − 1)!
γD−|k| ∥θ∥D−|k|+1

2 |F |D,1 ≤ KD−|k|

(D − |k| − 1)!
ρD−|k|+1 |F |D,1
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and the second term in (8.29) becomes

max
|k|=S

∥∥Dkx′
D (θ)β −DkF (θ)

∥∥
ρB

≤ max
|k|=S

|Rk (0;θ)| ≤
KD−S

(D − S − 1)!
ρD−S+1 |F |D,1 .

We are left with the őrst term in (8.29), i.e.

max
|k|=S

∥∥∥Dkx′
D (θ) (X′X)

−1
X′y −Dkx′

D (θ)β
∥∥∥
ρB

= max
|k|=S

∥∥∥Dkx′
D (θ)

(
(X′X)

−1
X′y − β

)∥∥∥
ρB

.

It is clear that x′
D (θ)

(
(X′X)

−1
X′y − β

)
is a polynomial of order D in θ. In order

to majorize ∥∥∥Dkx′
D (θ)

(
(X′X)

−1
X′y − β

)∥∥∥
ρB

we use |k| times a version of Markov brothers’ inequality. We recall that, for
a multidimensional polynomial p of order n in d variables, the generalization of
Markov brothers’ inequality in Kellogg (1928, Theorem VI) states that

sup
x∈B

√√√√
d∑

j=1

(
∂p (x)

∂xj

)2

≤ n2 sup
x∈B

|p (x)| .

Therefore,
∥∥∥Dkx′

D (θ)
(
(X′X)

−1
X′y − β

)∥∥∥
ρB

≤
(

D!

(D − |k|)!

)2
1

ρ|k|

∥∥∥x′
D (θ)

(
(X′X)

−1
X′y − β

)∥∥∥
ρB

.

We can write the term in the right-hand side of this equation as
∣∣∣x′

D (θ) (X′X)
−1

X′y − x′
D (θ)β

∣∣∣

≤
∣∣∣x′

D (θ) (X′X)
−1

X′y − F (θ)
∣∣∣+ |F (θ)− x′

D (θ)β| .

The last term can be bounded as in (8.30):

∥x′
D (θ)β − F (θ)∥ρB ≤ |R0 (0;θ)| ≤

KD

(D − 1)!
ρD+1 |F |D,1 .

We only need to bound supθ∈ρB

∣∣∣x′
D (θ) (X′X)

−1
X′y − F (θ)

∣∣∣. Using Theorem 2

in Calvi and Levenberg (2008),
∥∥∥x′

D (θ) (X′X)
−1

X′y − F (θ)
∥∥∥
ρB

≤
(
1 + CD (P (θ0) , ρB)

(
1 + P

1
2

))
inf

p∈PD

∥F (θ)− p (θ)∥ρB .

Here CD (P (θ0) , ρB) is the constant deőned as

CD (P (θ0) , ρB) := sup
p∈PD

∥p (θ)∥ρB
∥p (θ)∥P(θ0)

.
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We show that this constant can be written in a different way. Indeed, we know that
ρ = hρ0 and that P (θ0) = hP0 (θ0). Then,

sup
p∈PD

∥p (θ)∥ρB
∥p (θ)∥P(θ0)

= sup
p∈PD

suph−1θ∈ρ0B
|p (θ)|

suph−1θ∈P0(θ0) |p (θ)|

= sup
p∈PD

supθ∈ρ0B
|p (hθ)|

supθ∈P0(θ0) |p (hθ)|

= sup
p∈PD

∥p (θ)∥ρ0B

∥p (θ)∥P0(0)

.

Using the deőnition in the text, we write CD (P0) instead of CD (P (θ0) , ρB). As
to infp∈PD

supθ∈ρB |F (θ)− p (θ)|, let p⋆ be the polynomial for which

inf
p∈PD

∥F (θ)− p (θ)∥ρB = ∥F (θ)− p⋆ (θ)∥ρB .

If we replace p⋆ with another polynomial in PD, the result will be a majorization
of this term. We can use the Taylor expansion of order D of F (θ) around 0:

∥F (θ)− p⋆ (θ)∥ρB ≤ |R0 (0;θ)| ≤
KD

(D − 1)!
ρD+1 |F |D,1 .

As a result:

max
|k|=S

∥∥∥DkF̃ (θ)−DkF (θ)
∥∥∥
ρB

≤ h−D
P− 1

2 maxθ∈ρB ∥ε∥2 S!
√∑D

d=S

(
d
S

)2
ρ2(d−S)

√
λmin

(
1
P
X′

0X0

)

+




(
2 + CD (P0)

(
1 + P

1
2

))
(D!)

2
KS

((D − S)!)
2
(D − 1)!

+
1

(D − S − 1)!


KD−SρD−S+1 |F |D,1 .

The result follows linking ρ and h, through ρ = hρ0. QED

Proof of Corollary 3. We want to majorize supθ∈ρB

∥∥∥ ˙̃F (θ)− Ḟ (θ)
∥∥∥
2

for D = 1

or D = 2 and supθ∈ρB

∥∥∥ ¨̃F (θ)− F̈ (θ)
∥∥∥
2

for D = 2. Using the triangle inequality,

for S = 1 we have
∥∥∥
[
DiF̃ (θ)−DiF (θ)

]∥∥∥
2

≤
∥∥∥
[
Dix′

D (θ) (X′X)
−1

X′y −Dix′
D (θ)β

]∥∥∥
2

+
∥∥[Dix′

D (θ)β −DiF (θ)
]∥∥

2

+
∥∥∥
[
Dix′

D (θ) (X′X)
−1

X′ε
]∥∥∥

2
(8.31)

where β will be chosen below. For S = 2, the inequality is the same, with Dij

replacing Di. In the following, we will use Dk instead of either Di or Dij .
For the last term in (8.31), we have

∥∥∥
[
Dkx′

D (θ) (X′X)
−1

X′ε
]∥∥∥

2
≤
∥∥∥
[
Dkx′

D (θ) (X′X)
−1

X′ε
]∥∥∥

F
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=


∑

|k|=S

∣∣∣Dkx′
D (θ) (X′X)

−1
X′ε

∣∣∣
2




1
2

≤


∑

|k|=S

∥∥DkxD (θ)
∥∥2
2

∥∥∥(X′X)
−1

X′
∥∥∥
2

2
∥ε∥22




1
2

≤ K
S
2 max

|k|=S

∥∥DkxD (θ)
∥∥
2

∥∥∥(X′X)
−1

X′
∥∥∥
2
∥ε∥2

≤
K

S
2 S!

√∑D
d=S

(
d
S

)2
ρ2(d−S) ∥ε∥2√

λmin (X′X)
=

K
S
2 S!

√∑D
d=S

(
d
S

)2
ρ2(d−S) ∥ε∥2

P
1
2hD

√
λmin

(
1
P
X′

0X0

) .

In the second term of (8.31), let β be the vector of coefficients of the Taylor
expansion of order D of F (θ) around 0. Then,

∥∥[Dkx′
D (θ)β −DkF (θ)

]∥∥
2
=





∥∥∥Ḟ (θ)− Ḟ (0)
∥∥∥
2
≤ L1 ∥θ∥2 , S = 1, D = 1,∥∥∥Ḟ (θ)− Ḟ (0)− F̈ (0)θ

∥∥∥
2
≤ L2

2 ∥θ∥22 , S = 1, D = 2,∥∥∥F̈ (θ)− F̈ (0)
∥∥∥
2
≤ L2 ∥θ∥2 , S = 2, D = 2.

The őrst one comes from Lip-1, the second one from the third inequality in Lemma
2, the third one from Lip-2.

The őrst term in (8.31) is a polynomial. In the case S = 1, it can be ma-
jorized through the generalization of Markov brothers’ inequality in Kellogg (1928,
Theorem VI) seen above:

sup
θ∈ρB


∑

|k|=1

∣∣∣Dkx′
D (θ) (X′X)

−1
X′y −Dkx′

D (θ)β
∣∣∣
2




1
2

≤ D2

ρ
sup
θ∈ρB

∣∣∣x′
D (θ) (X′X)

−1
X′y − x′

D (θ)β
∣∣∣ .

In the case S = 2 and D = 2, the same inequality yields

sup
θ∈ρB


∑

i

∑

j

∣∣∣Dijx′
D (θ) (X′X)

−1
X′y −Dijx′

D (θ)β
∣∣∣
2




1
2

≤



∑

i





sup
θ∈ρB


∑

j

∣∣∣Dijx′
D (θ) (X′X)

−1
X′y −Dijx′

D (θ)β
∣∣∣
2




1
2





2



1
2

≤


∑

i

{
(D − 1)

2

ρ
sup
θ∈ρB

∣∣∣Dix′
D (θ) (X′X)

−1
X′y −Dix′

D (θ)β
∣∣∣
}2



1
2

≤ K
1
2 (D − 1)

2

ρ2
sup
i

sup
θ∈ρB

∣∣∣Dix′
D (θ) (X′X)

−1
X′y −Dix′

D (θ)β
∣∣∣
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≤ K
1
2 (D − 1)

2
D2

ρ2
sup
θ∈ρB

∣∣∣x′
D (θ) (X′X)

−1
X′y − x′

D (θ)β
∣∣∣ .

We can write the term in the right-hand side of both equations as
∣∣∣x′

D (θ) (X′X)
−1

X′y − x′
D (θ)β

∣∣∣

≤
∣∣∣x′

D (θ) (X′X)
−1

X′y − F (θ)
∣∣∣+ |F (θ)− x′

D (θ)β| .

As above,
∥∥∥x′

D (θ) (X′X)
−1

X′y − F (θ)
∥∥∥
ρB

≤
(
1 + CD (P0)

(
1 + P

1
2

))
inf

p∈PD

∥F (θ)− p (θ)∥ρB

≤
(
1 + CD (P0)

(
1 + P

1
2

))
∥F (θ)− p⋆ (θ)∥ρB

where p⋆ is the Taylor expansion of order D of F (θ) around 0. Therefore,

|F (θ)− p⋆ (θ)| =





∣∣∣F (θ)− F (0)− θ′Ḟ (0)
∣∣∣ ≤ L1

2 ∥θ∥22 , D = 1,∣∣∣F (θ)− F (0)− θ′Ḟ (0)− θ
′F̈ (0)θ

2

∣∣∣ ≤ L2

6 ∥θ∥32 , D = 2.

The statement follows by collecting the terms. QED
Proof of Theorem 10. The proof of the őrst result follows the one of Theorem 9.

Indeed, we can write

EDkF̃ (θ)−DkF (θ)

=Dkx′
D (θ) (X′X)

−1
X′y −DkF (θ) +Dkx′

D (θ) (X′X)
−1

X′
Eε,

so that it is apparent that the result is the same as in Theorem 9, with max|k|=S

∥∥∥EDkF̃ (θ)−DkF (θ)
∥∥∥
ρB

replacing max|k|=S

∥∥∥DkF̃ (θ)−DkF (θ)
∥∥∥
ρB

and Eε replacing ε.

Now we turn to the second result. As

DkF̃ (θ)− EDkF̃ (θ) = Dkx′
D (θ) (X′X)

−1
X′ (ε− Eε) ,

from Lemma 11, we have

max
|k|=S

max
θ∈ρB

E

∣∣∣DkF̃ (θ)−DkF (θ)− E

(
DkF̃ (θ)−DkF (θ)

)∣∣∣
2

= max
|k|=S

max
θ∈ρB

E

∣∣∣DkF̃ (θ)− EDkF̃ (θ)
∣∣∣
2

= max
|k|=S

max
θ∈ρB

E

∣∣∣Dkx′
D (θ) (X′X)

−1
X′ (ε− Eε)

∣∣∣
2

≤ max
|k|=S

max
θ∈ρB

∥∥DkxD (θ)
∥∥2
2

∥∥∥(X′X)
−1

X′
∥∥∥
2

2
E ∥ε− Eε∥22

≤ (S!)
2

(
D∑

d=S

(
d

S

)2

ρ2(d−S)

)∥∥∥(X′X)
−1

X′
∥∥∥
2

2
max
θ∈ρB

E ∥ε− Eε∥22

≤ h−2D (S!)
2

λmin (X′
0X0)

(
D∑

d=S

(
d

S

)2

ρ2(d−S)

)
max
θ∈ρB

E ∥ε− Eε∥22 .

QED



OPTIMIZATION OF COMPLEX OBJECTIVE FUNCTIONS 91

8.4. Proofs of Results Specific to the Approximating Algorithm. Proof of
Corollary 4. Using AUB,

∥ε∥2 =

√√√√
P∑

j=1

ε2j =

√√√√
P∑

j=1

(
F̂ (θj)− F (θj)

)2
≤ P

1
2 aN .

From Theorem 9, under Fun-D, one gets
(
δ
(i)
1

)2
=
∑

|k|=1

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

2

≤ K max
|k|=1

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

2

,

δ
(i)
1 ≤ K

1
2 max
|k|=1

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

≤ ρ−D
ρD0 K

1
2

√∑D
d=1 d

2ρ2(d−1)

√
λmin

(
1
P
X′

0X0

) aN

+




(
2 + CD (P0)

(
1 + P

1
2

))
D2K

D − 1
+ 1


 KD− 1

2 ρD |F |D,1

(D − 2)!

and
(
δ
(i)
2

)2
=
∥∥∥ ¨̃F
(
θ(i)
)
− F̈

(
θ(i)
)∥∥∥

2

2
≤
∥∥∥ ¨̃F
(
θ(i)
)
− F̈

(
θ(i)
)∥∥∥

2

F

=
∑

|k|=2

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

2

≤ K2 max
|k|=2

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

2

,

δ
(i)
2 ≤ K max

|k|=2

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

≤ ρ−D
2ρD0 K

√∑D
d=2

(
d
2

)2
ρ2(d−2)

√
λmin

(
1
P
X′

0X0

) aN

+




(
2 + CD (P0)

(
1 + P

1
2

))
D2 (D − 1)K2

D − 2
+ 1


 KD−1ρD−1 |F |D,1

(D − 3)!
.

Under MaV2, we have

∥Eε∥2 =

√√√√
P∑

j=1

(
EF̂ (θj)− F (θj)

)2

≤

√√√√
P∑

j=1

(
E

∣∣∣E
(
F̂ (θj) |Fi

)
− F (θj)

∣∣∣
)2

≤ P
1
2Bi
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and

E ∥ε− Eε∥22 =
P∑

j=1

E (εj − Eεj)
2

≤
P∑

j=1

Eε2j ≤
P∑

j=1

EE

((
F̂ (θj)− F (θj)

)2
|Fi

)
≤ PΣi.

Now we turn to E

(
δ
(i)
1

)2
and E

(
δ
(i)
2

)2
. We note that, using the triangle inequality,

E

(
δ
(i)
1

)2
= E

∥∥∥ ˙̃F
(
θ(i)
)
− Ḟ

(
θ(i)
)∥∥∥

2

2
=
∑

|k|=1

E

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

2

≤ K max
|k|=1

E

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

2

≤ K

{
max
|k|=1

E

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)
− E

[
DkF̃

(
θ(i)
)
−DkF

(
θ(i)
)
|Fi

]∣∣∣

+max
|k|=1

E

∣∣∣E
[
DkF̃

(
θ(i)
)
|Fi

]
−DkF

(
θ(i)
)∣∣∣
}2

≤ K

{(
max
|k|=1

E

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)
− E

[
DkF̃

(
θ(i)
)
−DkF

(
θ(i)
)
|Fi

]∣∣∣
2
) 1

2

+max
|k|=1

E

∣∣∣E
[
DkF̃

(
θ(i)
)
|Fi

]
−DkF

(
θ(i)
)∣∣∣
}2

and

E

(
δ
(i)
2

)2
= E

∥∥∥ ¨̃F
(
θ(i)
)
− F̈

(
θ(i)
)∥∥∥

2

2
≤ E

∥∥∥ ¨̃F
(
θ(i)
)
− F̈

(
θ(i)
)∥∥∥

2

F

=
∑

|k|=2

E

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

2

≤ K2 max
|k|=2

E

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)∣∣∣

2

≤ K2

{
max
|k|=2

E

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)
− E

[
DkF̃

(
θ(i)
)
−DkF

(
θ(i)
)
|Fi

]∣∣∣

+max
|k|=2

E

∣∣∣E
[
DkF̃

(
θ(i)
)
|Fi

]
−DkF

(
θ(i)
)∣∣∣
}2

≤ K2

{(
max
|k|=2

E

∣∣∣DkF̃
(
θ(i)
)
−DkF

(
θ(i)
)
− E

[
DkF̃

(
θ(i)
)
−DkF

(
θ(i)
)
|Fi

]∣∣∣
2
) 1

2

+max
|k|=2

E

∣∣∣E
[
DkF̃

(
θ(i)
)
|Fi

]
−DkF

(
θ(i)
)∣∣∣
}2

.

The őnal formulas are easily obtained through Theorem 10.
Now we consider bi and σi as deőned in Assumption MaV. From the inequality

∥∥∥E
[
˙̃
F
(
θ(i)
)
|Fi

]
− Ḟ

(
θ(i)
)∥∥∥

2
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=




∑

|k|=1

∣∣∣E
[
DkF̃ (θ) |Fi

]
−DkF (θ)

∣∣∣
2





1
2

≤ K
1
2 max
|k|=1

∥∥∥E
[
DkF̃ (θ) |Fi

]
−DkF (θ)

∥∥∥
θ(i)⊕ρB

,

we note that we can take, from Theorem 10,

bi = ρ−D
ρD0 K

1
2

√∑D
d=1 d

2ρ2(d−1)

√
λmin

(
1
P
X′

0X0

) Bi

+




(
2 + CD (P0)

(
1 + P

1
2

))
D2K

(D − 1)!
+

1

(D − 2)!


KD− 1

2 ρD |F |D,1 .

We also have

E

(
δ
(i)
1

)2
= E

∥∥∥ ˙̃F
(
θ(i)
)
− Ḟ

(
θ(i)
)∥∥∥

2

2
= E

{
E

(∥∥∥ ˙̃F
(
θ(i)
)
− Ḟ

(
θ(i)
)∥∥∥

2

2
|Fi

)}
≤ Eσi = σi.

Therefore, we can take the upper bound on E

(
δ
(i)
1

)2
as σi. QED

Proof of Theorem 11. From Corollary 4, under AUB and Fun-D, δ
(i)
1 =

O
(
ρ−D
i aN + ρDi

)
= O

(
iDρ−α + i−Dρ

)
and δ

(i)
2 = O

(
ρ−D
i aN + ρD−1

i

)
= O

(
iDρ−α + i−(D−1)ρ

)

and one can indeed take two constants K8 > 0 and K9 > 0 such that δ
(i)
1 ≤

K8 (i+ 1)
−(α−Dρ)∧(Dρ)

(1 + o (1)) and δ
(i)
2 ≤ K9 (i+ 1)

−(α−Dρ)∧((D−1)ρ)
. This im-

plies that we can identify, in Theorem 2, ξ = (α−Dρ) ∧ ((D − 1) ρ) and δ =
(α−Dρ) ∧ (Dρ). Moreover, Fun-2 implies that Lip-2 holds with L2 = K |F |2,1.

Now we pass to the conditions in Theorem 2 (i). The őfth condition,
δ
(i)
1

m−δ
(i)
2

≤
c3 (i+ 1)

−δ
(1 + o (1)), is ensured by taking δ = (α−Dρ) ∧ (Dρ) and c3 large

enough, i.e. such that K8

m
≤ c3. Taking c1 =

3K|F |2,1
2m ∆, the fourth condition,

1

m−δ
(i)
2

(
δ
(i)
2 M

m
+ 3L2

2 ∆

)
≤ c1

(
1 + c2 (i+ 1)

−ξ
)
, can be written as

(8.32) δ
(i)
2 ≤

3mK |F |2,1 ∆c2 (i+ 1)
−ξ

2M + 3K |F |2,1 ∆+ 3K |F |2,1 ∆c2 (i+ 1)
−ξ

.

If we take ξ = (α−Dρ) ∧ ((D − 1) ρ), it is possible to choose K9 in such a way
that

δ
(i)
2 ≤

3mK |F |2,1 ∆c2 (i+ 1)
−ξ

2M + 3K |F |2,1 ∆+ 3K |F |2,1 ∆c2 (i+ 1)
−ξ

≤ K9 (i+ 1)
−ξ

.

(As an example, K9 = mc2.) The third condition, δ
(i)
2 < m, using (8.32), is

guaranteed if

δ
(i)
2 ≤

3mK |F |2,1 ∆c2 (i+ 1)
−ξ

2M + 3K |F |2,1 ∆+ 3K |F |2,1 ∆c2 (i+ 1)
−ξ

< m,

or 0 < 2mM +3mK |F |2,1 ∆ and this is automatically true. The second condition,

δ
(i)
1 +δ

(i)
2

(
1 + M

m

)
∆ ≤

(
m− 3L2

2 ∆
)
∆, is reproduced as it is in the statement. From
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1 > c1 > 0, we have 2m
3K|F |2,1

> ∆ > 0. From Theorem 2, the őnal result follows.

QED
Proof of Theorem 12. We őrst identify c1 and c2 in Theorem 5 as C1 and C2 in

this theorem. From the inequalities on ρi and aN , from Corollary 4 and Remark 15,

δ
(i)
1 = O

(
ρ−D
i aN + ρDi

)
= O

(
iDρ−α + i−Dρ

)
, and one can take a constant K10 > 0

such that δ
(i)
1 ≤ K10 (i+ 1)

−(α−Dρ)∧(Dρ)
(1 + o (1)). As a result, in Theorem 5,

δ = (α−Dρ) ∧ (Dρ) and the őnal result follows. QED
Proof of Theorem 13. The result follows replacing in Theorem 3 and Corollary

2 the formulas of Corollary 4. QED
Proof of Theorem 14. We apply Theorem 7 and Corollary 4. From the latter,

we have

bi ≍ ρ−D
i Bi + ρDi ≍ iDρ− ν

2 + i−Dρ,

σi ≍
{
ρ−D
i

(
Σ

1
2
i +Bi

)
+ ρDi

}2

≍ i2Dρ−ν + i−2Dρ.

Therefore, β =
(
ν
2 −Dρ

)
∧ (Dρ), ζ =

(
ν
2 −Dρ

)
∨ (Dρ) and σ = (ν − 2Dρ)∧ (2Dρ).

Note that the constants c3, c4 and c5 do not really matter for the őnal result. The
condition 1 < γ + ζ boils down to γ + ν

2 > 1 +Dρ and γ +Dρ > 1. As a result,

(σ + 1) ∧ β = (ν − 2Dρ+ 1) ∧ (2Dρ+ 1) ∧
(ν
2
−Dρ

)
∧ (Dρ) =

(ν
2
−Dρ

)
∧ (Dρ)

and

(γ + σ)∧β = (γ + ν − 2Dρ)∧ (γ + 2Dρ)∧
(ν
2
−Dρ

)
∧ (Dρ) =

(ν
2
−Dρ

)
∧ (Dρ) ,

and the őnal result follows. QED

8.5. Proofs of Computation Results. Proof of Proposition 1. We start from the
nearest matrix in the Frobenius norm and we follow the notation in Higham (1988).
First, note that our matrix is automatically symmetric so that the skew-symmetric
matrix C in Higham (1988, Theorem 2.1) is identically equal to 0. Then, the nearest
psd matrix in the Frobenius norm is given in the proof of Theorem 2.1 in Higham
(1988) (the formulation in the statement of the same result is less interesting for
us). From the same source, it is apparent that the Frobenius distance between the
two matrices is: ∥∥∥ ¨̃F (θ)−UΛ+U

′
∥∥∥
F
=

√ ∑

j:λj<0

λ2
j .

It can be shown that in our case, as the matrix
¨̃
F (θ) is symmetric and normal,

UΛ+U
′ is also a nearest psd matrix in the spectral norm (see Halmos, 1972).

However, as Halmos (1972) is cast in a more general framework, we provide a
proof. From the statement of Theorem 3.1 in Higham (1988), using the fact that

C = 0, the distance between the matrix
¨̃
F (θ) and the set of psd matrices is:

δ2

(
¨̃
F (θ)

)
= min

{
r ≥ 0 :

¨̃
F (θ) ≥ rI

}
= max {0,−λmin} .

Now, from the proof of Lemma 3.5 in Higham (1988), it is easy to see that∥∥∥ ¨̃F (θ)−UΛ+U
′
∥∥∥
2
= max {0,−λmin}, so that δ2

(
¨̃F (θ)

)
is attained by UΛ+U

′.

QED
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