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Abstract

We establish the identification of a specific shock in a structural vector autoregressive model

under the assumption that this shock is independent of the other shocks in the system, without requir-

ing the latter shocks to be mutually independent, unlike the typical assumptions in the independent

component analysis literature. The shock of interest can be either non-Gaussian or Gaussian, but,

in the latter case, the other shocks must be jointly non-Gaussian. We formally prove the global

identification of the shock and the associated column of the impact multiplier matrix, and discuss

parameter estimation by maximum likelihood. We conduct a detailed Monte Carlo simulation to

illustrate the finite sample behavior of our identification and estimation procedure. Finally, we

estimate the dynamic effect of a contraction in economic activity on some measures of economic

policy uncertainty.
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1 Introduction

Structural vector autoregressive (Svar) models are valuable tools for addressing both theoretical and

practical economic questions. To recover the future effects of economic shocks on the variables in the

system and their instantaneous relationships it is essential to identify the structural shocks. Common

identification schemes use short- and long-run restrictions, sign restrictions or instrumental variables

(see e.g. Sims, 1980; Blanchard and Quah, 1989; Faust, 1998; Mertens and Ravn, 2012). More agnostic

statistical identification can be achieved through heteroskedasticity (Sentana and Fiorentini, 2001) or,

more recently, through non-Gaussianity, as in Lanne et al. (2017) and Gouriéroux et al. (2017), based

on independent component analysis (Ica). In the Ica setting, the Darmois-Skitovich theorem ensures

identification of the matrix of impact multipliers up to column permutations and scaling (see Comon,

1994; Moneta et al., 2013). However, if the Ica assumptions fail, the model becomes underidentified.

Lanne and Luoto (2021) consider a Gmm estimator that achieves local identification under weaker

assumptions, requiring only fourth moment independence. Guay (2021) derives sufficient conditions

for local identification based on the third and fourth unconditional moments of reduced-form innovations,

which allow determining prior to estimation which subsets of the structural parameters are identified.

Mesters and Zwiernik (2024) establish identification by replacing the independence assumption with

higher order moment or cumulant restrictions. Lee and Mesters (2024) propose a semiparametric

estimator which remains robust even when the shocks are nearly Gaussian. Maxand (2020) explore the

identification of a non-Gaussian subvector of shocks in the presence of multiple Gaussian components

using independence-based approaches. For a complete review of the statistical identification approach

we refer to Lewis (2024).

Researchers are often primarily interested in the effects of a single shock, such as the monetary

policy shock. In this paper we consider weakening the full mutual independence assumption, which is

often too strong and not innocuous, as suggested by Montiel Olea et al. (2022). Specifically, we focus

on a setting where the effect of one shock is of interest and assume its independence from the other ones.

Under our assumptions, we establish the identification of the shock of interest and the corresponding

column of the impact multiplier matrix. Notably, the shock of interest can be statistically identified

even if it is Gaussian. Furthermore, in order to identify the shock of interest, we do not need to impose

a column-permutation of the estimated impact matrix, as it is typically done in applications of Ica to

Svar models. Related works on partial statistical identification of Svar models include Lütkepohl et al.

(2024), Anttonen et al. (2023), and Keweloh et al. (2023). In Section 2, we present the main theoretical

results and discuss estimation methods. Section 3 provides the results of a simulation study and an

empirical illustration is presented in Section 4. Section 5 concludes.
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2 Svar model and identification

Consider the following #-variate stable Svar(p) model

XC = - + A1XC−1 + . . . + A?XC−? + C9C , (1)

where uC = XC − % (XC |�C−1) denote the reduced-form innovations, corresponding to the residuals of

the linear projection of XC on past information, with uC = C 9C , and 34C (�# − �1I − · · · − �?I
?) ≠ 0,

for all |I | ≤ 1 and I ∈ C. Without loss of generality, the variance matrix of the structural errors can be

normalized, so that � [9C9
′
C ] = I# . Then, the reduced-form error variance matrix is � = CC′. Assume

the matrix of impact multipliers C is invertible, hence 9C = C−1uC . Knowledge of C allows tracing the

effects of economic shocks on current and future values of the model variables and the instantaneous

relationships among them. As is well-known, identification of C requires further statistical assumptions

and/or prior economic information.

2.1 Identification with partially independent components

Consider partitions of the # structural shocks 9C and of the # × # matrix C

9C =
(
Y1C , 9

′
2C

) ′

C = [c1C2] , (2)

where Y1C is a scalar, and 92C , c1, C2 have dimensions (# − 1) × 1, # × 1, # × (# − 1), respectively.

The following proposition establishes identification of c1.

Proposition 1 Consider the SVAR model in (1) and partitions in (2). Assume that

i) C is nonsingular;

and the error process is such that

ii) Y1C is independent of 92C ;

iii) one of the following is true:

(a) Y1C is non-Gaussian and 92C is Gaussian;

(b) Y1C is Gaussian, 92C is jointly non-Gaussian, and %′92C is non-Gaussian ∀% ∈ ℜ#−1;

(c) Y1C is non-Gaussian and 92C is jointly non-Gaussian.

Given two alternative representations C9C = C∗9∗C with CC′
= C∗C∗

′

and � [9∗C 9
∗′
C ] = I# , where

C∗ and 9∗ also satisfy the same assumptions with analogous partitions, it holds that:

c∗1 = ±c1; C∗
2 = C2Q with QQ′

= I#−1; Y∗1C = ±Y1C ; 9∗2C = Q′92C .

Notice that case (iii)-(a) is just a special case of Maxand (2020), while cases (iii)-(b) and (iii)-(c)

are new and allow identification of the shock of interest even when the other shocks are not independent

(differently from the standard Ica case).
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2.2 Maximum likelihood estimation

We estimate the model parameters by non-Gaussian maximum likelihood. To do so, define the vector of

parameters� = () ′, (′)′, where ) = (-′, a′, c′)′, ( = ((′
1
, (′

2
)′, with a = E42(A1, . . . ,A?), c = E42(C),

and (′
1
, (′

2
are the vector of shape parameters of the distributions assumed for Y1C and 92C . The log-

likelihood function for a sample of size ) is

L) (X;�) = −
)

2
log |��′ | +

)∑

C=?+1

log 5 (Y1,C ()), (1) +

)∑

C=?+1

log 6(92C ()), (2), (3)

where 5 (·) and 6(·) are the assumed parametric densities. For example, if a standardized Student C

distribution is assumed for the shocks, we have

log 6(92C ()), [) = log

[
Γ

(
[# − 1] [ + 1

2[

)]
− log

[
Γ

(
1

2[

)]
−

# − 1

2
log

(
1 − 2[

[

)
−

# − 1

2
log c

−
(# − 1)[ + 1

2[
log

[
1 +

[

1 − 2[
92C ())

′92C ())

]
,

where [ = 1/a with a equal to degrees of freedom, and log 5 (Y1,C ()), [) is obtained by setting # = 2

in the equation above.

Since C2 is only identified up to rotations it is convenient to impose (# −1) (# −2)/2 arbitrary exact

identification restrictions on C2 which amounts to fixing a particular rotation matrix Q. Assumption

(ii) and det(Q) = 1 imply that the estimator of c1, which identifies the shock of interest, is numerically

invariant to the particular choice of the identification restrictions.

3 Monte Carlo simulations

To evaluate the finite sample behaviour of our estimator, we conduct a simulation exercise using a

VAR(1) model with # = 5 with:

XC =



1

1

1

1

1



+



0.8 0 0 0 0

0 0.8 0 0 0

0 0 0.8 0 0

0 0 0 0.8 0

0 0 0 0 0.8



XC−1 + C9C

We consider two different designs for C :

Design 1: C =



4 1 1 2 −1

0 4 1 3 −2

1 2 2 −1 −4

2 1 −1 6 −1

1 2 −1 −2 6



, Design 2: C =



1 1 2 4 −1

4 1 3 0 −2

2 2 −1 1 −4

1 −1 6 2 −1

2 −1 −2 1 6



.

Notice the under Design 1, the columns of C satisfy the ordering proposed in Ilmonen and Paindav-

eine (2011), while under Design 2 they do not.
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We assume three different data-generating processes (DGPs) for the structural shocks:

Dgp A: Y1C ∼ Student-t(0, 1, 5); 92C ∼ # (0, I#−1).

Dgp B: Y1C ∼ # (0, 1); 92C ∼ Student-t(0, I#−1, 5).

Dgp C: Y1C ∼ Student-t(0, 1, 8); 92C ∼ Student-t(0, I#−1, 5).

For each design, we generate 2000 samples of size ) = 1000 and estimate the model by maximizing the

likelihood under the assumption that Y1C follows a Student-C distribution and 92C follows a multivariate

Student-C distribution with degrees of freedom a1 and a2, respectively. We impose six arbitrary

zero restrictions on the elements of C2. Additionally, we estimate the model using the standard Ica

assumptions, where C is unrestricted and each shock is assumed to follow an independent Student-C

distribution with degrees of freedom h8 (8 = 1, . . . , #), as in Lanne et al. (2017). Table 1 presents the

Monte Carlo means and standard deviations of our proposed estimator (Ica-1S), the standard independent

components estimator (Ica), and the Ica estimator where, after each replication, the columns of Ĉ are

permuted according to the scheme proposed by Ilmonen and Paindaveine (2011) (Ica-P).

To save space, Table 1 presents results only for the estimator of c1, which measures the impact of the

shock of interest. Our proposed estimator consistently shows superior precision across all designs. The

Ica estimator, however, exhibits significant variability, primarily due to the underidentification of the

correct column permutation. Under Design 1, when the columns of the Ica estimator of C are ordered

using the Ilmonen and Paindaveine (2011) scheme, the Ica-P estimator performs reasonably well. This

is expected since the true C in Design 1 adheres to the column ordering of Ilmonen and Paindaveine

(2011). In contrast, Design 2 presents a different scenario, as shown in the bottom panel of Table 1,

where both the Ica and Ica-P estimators perform poorly. In contrast, our proposed Ica-1S estimator

continues to perform remarkably well, as it does not rely on any particular a priori assumptions about

the column ordering of C.

4 Empirical illustration

Svar models have been extensively used in the empirical macroeconomic literature to investigate the

relationship between uncertainty and economic activity (Fajgelbaum et al., 2017; Carriero et al., 2021;

Ludvigson et al., 2021). However, most works have focused on measuring the effects of uncertainty

on the business cycle, but it has been pointed out that causality can also run in the opposite direction

(Angelini et al., 2019). Carriero et al. (2021) investigate this issue through a Bayesian estimated

Svar model with stochastic volatility that allows for both causal directions. Their findings point out

that some macroeconomic variables have indeed a significant and contemporaneous feedback effect

on uncertainty. In this illustrative application, we examine the dynamic impact that a contractionary
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shock to economic activity has on uncertainty. Thus, we focus on the backward direction of the causal

relationship, and for this, we consider a Svar model with four variables for the US: rate of growth of

industrial production (Ipi), economic policy uncertainty (Epu), monetary policy uncertainty (Mpu) and

fiscal policy uncertainty (Fpu). Data are monthly and Ipi data are obtained from the FRED database,

while we refer to Baker et al. (2016) for the three uncertainty measures considered, downloadable at

https://www.policyuncertainty.com/. An alternative definition of uncertainty is provided by Jurado et al.

(2015), who define it as the common volatility in the unforecastable component of a number of economic

indicators. Given the illustrative purpose of this application, we prefer to use the data from Baker et al.

(2016), so that we have a setting with one shock (the shock to economic activity) independent of multiple

uncertainty (possibly mutually dependent) shocks.

The sample period spans from 1985:1 to 2019:12. To clearly analyse the relationship between

real economic activity and uncertainty, we do not include data sampled from the COVID-19 pandemic

period. Lenza and Primiceri (2022) have shown that dropping these observations is not appropriate

for forecasting, but it is an acceptable solution for the sake of parameter estimation, given the presence

of extreme observations. We estimate the model with 4 lags using our method and the standard Ica

maximum likelihood estimator, obtaining

ĈIca-1S =



0.487 −0.174 0.071 0.065

−0.087 −0.092 0.088 0.174

−0.125 0 0.378 0.219

−0.061 0 0 0.318



, ĈIca =



0.166 −0.082 0.474 −0.061

0.214 0.015 −0.083 0.018

0.326 0.240 −0.126 −0.153

0.233 0.091 −0.057 0.195



.

The results reveal that the first column of ĈIca-1S (our method) aligns well with expectations. An

(expansionary) shock on economic activity exerts a positive impact on Ipi and negatively affects various

measures of uncertainty. Interestingly, the third column of ĈIca (standard Ica) closely resembles the

first column ĈIca-1S, reinforcing the hypothesis that the economic-activity shock is independent of other

shocks. However, the standard ĈIca estimator fails to accurately spot the economic-activity shock,

leaving the task of labelling to the researcher.

Figure 1 presents the impulse response functions to a negative shock to (Ipi), which we interpret as

a contractionary shock to economic activity, along with bootstrap-based confidence intervals. The Mpu

index shows a more pronounced response compared to the Epu and Fpu indices, though the latter two

exhibit greater persistence.

5 Concluding remarks

We examine a significant scenario in which economists aim to quantify the dynamic effects of a specific

shock on system variables within a Svar model. Our findings demonstrate that, under certain assump-

tions, the shock of interest is statistically identified without assuming a predetermined permutation of the
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impact multiplier matrix. Our Monte Carlo simulation study confirms the feasibility of our proposal, and

the empirical exercise on the relationship between economic activity and uncertainty indices illustrates

the potentiality of applications in contexts in which one is interested in identifying a single independent

structural shock.

Our approach could be extended to relax the statistical independence assumption between the shock

of interest and other shocks by considering only higher order moments independence. Importantly,

the identifying assumptions are testable, and it would be valuable to adapt the testing procedures from

Amengual et al. (2022, 2024), Matteson and Tsay (2017), and Maxand (2020) to our context. We are

currently exploring these research avenues.
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Table 1: Monte Carlo results

Design 1 Dgp A Dgp B Dgp C

Parameter True Ica-1S Ica Ica-P Ica-1S Ica Ica-P Ica-1S Ica Ica-P

�11 4.00 3.97 2.83 3.96 3.95 2.71 3.95 3.97 2.75 3.97

(0.26) (1.46) (0.29) (0.18) (1.47) (0.21) (0.17) (1.47) (0.22)

�21 0.00 0.01 1.16 0.01 0.01 1.08 0.00 0.01 1.09 0.02

(0.41) (1.64) (0.44) (0.31) (1.65) (0.38) (0.26) (1.63) (0.32)

�31 1.00 1.01 1.24 1.01 0.99 1.08 0.99 0.99 1.03 0.99

(0.38) (1.41) (0.40) (0.28) (1.48) (0.35) (0.24) (1.36) (0.30)

�41 2.00 1.98 2.03 1.98 1.96 1.99 1.97 2.00 2.08 2.00

(0.49) (1.62) (0.52) (0.36) (1.61) (0.44) (0.31) (1.59) (0.37)

�51 1.00 0.97 0.01 0.96 1.00 0.03 0.98 0.99 0.04 0.99

(0.52) (2.18) (0.54) (0.37) (2.23) (0.46) (0.33) (2.19) (0.39)

Design 2 Dgp A Dgp B Dgp C

Parameter True Ica-1S Ica Ica-P Ica-1S Ica Ica-P Ica-1S Ica Ica-P

�11 1.00 0.98 2.54 3.38 0.99 2.38 3.36 0.99 2.42 3.36

(0.35) (1.42) (0.91) (0.26) (1.35) (0.81) (0.24) (1.34) (0.82)

�21 4.00 3.92 1.58 0.78 3.95 1.52 0.70 3.96 1.60 0.72

(0.61) (1.57) (1.26) (0.23) (1.65) (1.22) (0.22) (1.60) (1.23)

�31 2.00 1.92 0.93 1.13 1.96 0.80 1.15 1.97 0.89 1.21

(0.44) (1.53) (1.26) (0.27) (1.71) (1.45) (0.25) (1.69) (1.47)

�41 1.00 1.01 2.47 2.14 1.00 2.41 2.12 1.00 2.45 2.06

(0.49) (2.58) (2.06) (0.36) (2.56) (2.01) (0.33) (2.52) (1.99)

�51 2.00 2.01 -0.52 -0.03 1.99 -0.40 -0.08 2.00 -0.52 -0.10

(0.58) (2.08) (1.96) (0.36) (2.33) (2.00) (0.33) (2.26) (2.08)

Monte Carlo means and (standard deviations) of different estimators of c1 = (�11, . . . , �#1)
′. Sample length=1000. Repli-

cations=2000.
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Figure 1: Impulse response functions to a contractionary shock to economic activity and 16% and 84%

bootstrapped quantiles.
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Appendix

A Proof of Proposition 1

Notice first that identification of - and the autoregressive matrix coefficients A 9 , 9 = 1 . . . , ? is trivially

obtained from the reduced-form Var and, thus, we focus on the identification of c1, the first column of

C.

Let C9C = C∗9∗C

9C = C−1C∗9
∗

C = M9∗C .

Under Assumption (ii) Y∗
1C

and 9∗
2C

are mutually independent, and moreover, under Assumption

(iii)-(a) Y∗
1C

is non-Gaussian. Let

Y1C = <11Y
∗
1C +

#∑

8=2

<18Y
∗
8C

YℓC = <ℓ1Y
∗
1C +

#∑

8=2

<ℓ8Y
∗
8C ℓ = 2, . . . , # ,

given that Y1C and YℓC are mutually independent and Y∗
1C

is non-Gaussian, <11<ℓ1 = 0, ∀; ≥ 2 (see

Theorem 19 in Comon, 1994). In addition, Lemma 9 in Comon (1994) implies that <11 ≠ 0, since Y1C

is non-Gaussian. Therefore, <ℓ1 = 0, ∀ℓ ≥ 2. Also, since Y1C and 92C are mutually independent and

� (Y∗28C ) = 1, we have

� (Y1CYℓC ) =

#∑

8=2

<18<ℓ8� (Y
∗2
8C ) = 0 ⇒

#∑

8=2

<18<ℓ8 = 0

which implies that (<12, . . . <1# ) is orthogonal to (<ℓ2, . . . <ℓ# ), ∀ℓ.≥ 2. Invertibility of M implies

that <1; = 0, ∀ℓ ≥ 2, and therefore

C∗
= CM, with M =

[
<11 0′

0 Q

]
,

where |<11 | = 1 and Q is an orthonormal matrix of order # − 1, which implies

c∗1 = ±c1 and C∗
2 = C2Q.

Under Assumption (ii) Y∗
1C

and 9∗
2C

are mutually independent, while under Assumption (iii)-(b) 9∗
2C

is jointly non-Gaussian and %′92C is non-Gaussian ∀% ∈ ℜ#−1.

But then, for any real vector q, Assumption (ii) implies Y∗
1C

and q′9∗
2C

are mutually independent. Let

Y1C = <11Y
∗
1C +

#∑

8=2

<18Y
∗
8C = <11Y

∗
1C + q′19

∗
2C = <11Y

∗
1C + U1q∗′1 9

∗
2C

YℓC = <ℓ1Y
∗
1C +

#∑

8=2

<ℓ8Y
∗
8C = <ℓ1Y

∗
1C + q′ℓ9

∗
2C = <ℓ1Y

∗
1C + Uℓq

∗′
ℓ 9

∗
2C
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where q∗9 = (< 92, . . . , < 9# )/U 9 . Since Y1C and YℓC are mutually independent, and q∗′
1
9∗

2C
and q∗′

ℓ
9∗

2C
are

non-Gaussian, U1Uℓ = 0, ∀ℓ ≥ 2 If U1 ≠ 0, it must be that Uℓ = 0 for any ∀ℓ ≥ 2 which is impossible

because M is full rank, and therefore the only nonzero element of the first row of M is <11. We then

finally have

� (Y1CYℓC ) =

#∑

8=2

<18<ℓ8� (Y
∗2
8C ) = <11<ℓ1 = 0,

which implies that the only non zero elements of the first column is <11. Under assumptions (ii) and

(iii)-(c) identification is implied a fortiori by the previous two cases.

�
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