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Abstract—Autonomous underwater vehicles (AUVs) have been
effectively used for investigating oceanographic processes which
vary in space and time. For adequately capturing the spatial and
temporal information of an oceanographic process at a desired
resolution, adaptive sampling by multiple AUVs is often required.
Although, multiple AUVs will allow quicker area coverage,
occurrence of physical faults will create uncovered regions in the
search space. The AUVs need to cooperate with one another and
be fault tolerant. In this paper, we develop an adaptive sampling
algorithm utilizing lane based sampling methodology. The width
of lanes is adapted depending on the information acquired by
the vehicles. We deploy the vehicles in opposite directions to
allow periodic coordination and enable fault tolerance. Through
simulations we show the capability of the developed algorithm
to completely cover a region with minimal overlaps and fault
tolerant to AUV physical faults.

I. INTRODUCTION

Physical, biochemical and geological processes in the ocean
are highly complex. Understanding oceanographic processes
of various types and scales, e.g., water mass and heat fluxes,
harmful algal blooms (HABs), is essential for maintaining
sustained ocean health as they affect the human population
through climate change, toxic plumes, fisheries, etc. Many
dynamic processes are episodic phenomena with high spatio-
temporal variability. Over the past decade, autonomous un-
derwater vehicles (AUVs) and gliders are playing a pivotal
role in studying oceanographic processes which vary in space
and time [16, 8]. The ”Lawn-mowing” pattern is the most
often adopted AUV survey pattern. Bellingham and Willcox
developed a quantitative AUV survey error metric which
accounts for errors due to spatial under-sampling and temporal
evolution of the surveyed oceanographic field [1, 14]. This
pioneering effort provided a benchmark for designing and
evaluating AUV sampling strategies. In order to better under-
stand oceanographic processes, we need to design advanced
sampling algorithms for the AUVs to cover a wide spectrum
of spatio-temporal variations. For this, the AUVs must co-
operate with each other in searching a region, detecting the
phenomenon and mapping the complete event, and sampling
the phenomenon with the desired resolution.

High spatio-temporal variability processes can be quickly
detected and mapped using multiple AUVs. The AUVs’ survey
paths need to be designed so as to persistently sample and track
the evolving process. Smith et al. [12] developed an intelligent
path planning algorithm to track the process and collect data
from the core of the process. After collection, data assimilation

is done with the ROMS (Regional Ocean Modeling System)
model and based on the updated predictions, a new mission is
generated. Das et al. [6] developed a mechanism to determine
a search region for sampling based on a combination of
high frequency radar and MODIS satellite data. The selected
region is then assigned to an AUV to sample using a lawn-
mowing pattern. Both the approaches use a closed-loop model
of prediction followed by data assimilation. However, both the
above studies do not consider fault tolerance.

The emphasis of adaptive sampling is to adapt the sampling
strategy based on observations, so that the future observations
are effective and efficient for enabling better prediction of the
oceanographic process [17]. Adaptive sampling has two main
components: area coverage and high resolution sampling at the
core of the process. Using multiple AUVs, these two compo-
nents can be achieved effectively. Munafó et al. [9] designed a
communication constrained AUV team approach to maximize
the information gained by each agent in a static field. The
AUVs sample only at certain locations and not continuously.
Thus this approach is not suitable for spatio-temporal variable
processes. Caiti et al. [2] developed a cooperative AUV path
planning technique to estimate field flux while covering the
entire area and maintaining agents in the communication
range. Such constrains make all the platforms sweep along
one particular direction. Fiorelli et al. [7] developed artificial
potentials fields and a virtual leaders based cooperative control
algorithm to adaptively sample a region by gliders. The control
law requires the knowledge of all other agents’ positions. The
issue of area coverage is not addressed. The problem of area
coverage and mapping an oceanographic the process in this
area is different from the traditional problems of area coverage
[4] and perimeter/boundary tracking [3, 13, 5]. In our problem
these two problems are addressed jointly rather than separately.

Most of the work on multiple AUVs sampling assume that
all the AUVs function perfectly throughout the mission. How-
ever, in reality, multiple AUVs deployments are susceptible
to physical faults due to various issues like propeller getting
stuck to a fishing net or seaweed, failure of actuators, etc. Due
to physical faults, some of the AUVs are unable to perform the
mission. Therefore one of the key requirements with multiple
AUVs deployment is that the cooperative algorithms must be
fault tolerant and achieve complete area coverage with minimal
overlap. This issue of fault tolerant area coverage for sampling
has not received adequate attention previously. In this paper,
we develop an adaptive sampling algorithm that detects, maps



and samples at the desired resolution within a given search
region. The algorithm is fault tolerant to physical faults with
minimal survey overlaps.

The developed adaptive sampling algorithm uses the lawn-
mowing pattern for sampling. However, the width of the lane
is adaptively changed to sample the process depending on the
sensed information. In order to have fault tolerant cooperations
between agents, we use the notion of periodic communication
rather than communication constrained cooperation. To attain
periodic coordination, every pair of agents are deployed in
opposite directions traveling along the same lane. As the
mission progresses, each pair meets at every second lane from
the current lane as they are alternating their directions of travel.
After meeting they move to the next lane and then depart away
with opposite directions. During the meeting, they share the
sensed information by which the next lane width is determined.
In this fashion, coordination is achieved periodically, fault
tolerance is achieved when one of the agent is at fault the
other agent covers the track of the faulty agent. The algorithm
is simple and scalable to a large number of agents. Yoon and
Qiao [15] developed a similar algorithm with fixed lanes and
assumed that agents can stop at the predefined meeting points,
which is sometimes hard to realize in practice.

The rest of the paper is organized as follows. In Section
II we describe the area coverage and fault tolerance problem
taking realistic constraints into account for sampling. In Sec-
tion III, the adaptive sampling algorithm is presented while
the fault tolerance capability is described in Section IV. The
developed algorithm is validated using simulations in Section
V. We conclude in Section VI.

II. PROBLEM STATEMENT

A. Problem

Consider a search space Ω having m number of processes
that need to detected and mapped to a desired resolution. Each
process is represented as pk, k = 1, . . . ,m. The search and
sampling is carried out on 2D, that is, the AUVs cover the
area and sample with constant depth. These process could be
moving and spreading. For example, consider five processes
of interest as shown in Figure 1(a). Assume that n AUVs are
deployed for the mission. Each AUV is denoted as Ai and
have kinematics constraints

ẋi = vi cos(ψi)

ẏi = vi sin(ψi)

ψ̇i = κ(ψdi − ψi) (1)

where, vi is the speed of the vehicle Ai, ψi is the vehicle’s
heading and ψdi is the desired heading. We assume that the
speed of the AUVs can be different and hence the system is
heterogeneous. Each AUV has limited communication range of
rc meters and carries a sensor si that measures the observation
at the AUV current location zi = (xi, yi). Given the search
space Ω and n AUVs, the problem is to detect all the processes,
map them and sample to the desired solution under physical
AUV faults and limited communication ranges.

(a) (b)

Fig. 1. (a) Five processes in a given search region (b) Fixed lane based
sampling

B. Approach

There are three objectives for the problem: (i) complete
coverage (ii) adaptive sampling and (iii) fault tolerance. A
default fixed lane search and sampling satisfies only the first
objective and not the others as shown in Fig. 1(b). Fixed
lane search will miss the core regions and hence sampling
may not satisfy the desired resolution. On the other hand, the
lane size can be small enough that the complete coverage is
carried out at high resolution. This will take longer duration
to complete the mission and the process can move out of the
search or even can disappear. In order to adaptively sample, we
change the width of the lanes adaptively based on the sensed
observations of the AUVs as shown in Figure 2(a). We can
see that at the core of the process (area with high gradient)
the lane width is small while in the areas where there is no
process, the lane width length is modified to default value. This
kind of adaptive strategy satisfies both objectives (i) and (ii)
with quicker area coverage while sampling at higher resolution
in the core regions. However, to enable fault tolerance to
physical faults, we deploy the agents in opposite directions
along the same lane. By deploying in opposite directions, the
neighbor agents will meet periodically and thus enabling fault
tolerance when one agent fails, the other agent can cover the
region without leaving any gaps. For example, a three agent
deployment is shown in Figure 2(b). The agent A2 and A3

will meet as the mission progress. While A1 and A2 will
meet in the next lane. The new direction of agent A1 after
approaching the boundary and the direction of A2 and A3 after
sharing information are shown in the figure. Detailed analysis
of the lane width selection and fault tolerance are described
in Section III and IV.

III. ADAPTIVE SENSING

The width of the lane must be adapted based on the strength
of the observations. Initially all the vehicles are deployed on
the first lane with opposite heading directions along the first
lane. All the agents with odd id, that is, Ai, i = 1, 3, 5, . . . will
have heading direction from east to west, while the even agent
(Ai = 2, 4, . . . ) have direction of travel from west to east. The
agents A1 and An are the border agents as they approach the
boundary of Ω every alternate lane. The direction of the agents



(a)

meet hereand
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Fig. 2. (a) Adaptive lane for sampling (b) Deployment of three agents and
their initial directions of travel

is shown in Figure 2(b). For reference, the agents touching the
boundary are called boundary agents, while the rest of agent
in the middle of search space are called as middle agents.

The boundary agents have to change the lane when they
meet the neighboring agents or when they approach the
boundary. At the beginning of the mission, t = 0, let agent
Ai be the boundary agent and it approaches the boundary at
time t′. While traversing towards the boundary, it samples at
some rate that is dependent on the sensor. For analysis, assume
that the sampling rate of the sensor is s Hz and the sensed
data is recorded into a vector Di. We also assume that the
time synchronization issues and delays in recording are either
not present or taken care. When Ai approaches boundary, it
has to determine the new lane width. The new lane width is
determined between a low resolution (default fixed lane width,
w`) and the minimum lane width defined by high resolution
(wh) sampling strategies. The lane widths w` and wh are the
bounds for the adaptive sampling strategy. Let D̄i = maxDi,
be the maximum sensed value of the process by Ai, then new
lane width wi is determined as

wi =

{
wh if w`e−αD̄i < wh

w`e
−αD̄i Otherwise

(2)

where α > 0 is a constant. The agent Ai generates a new lane
parallel to the current lane and travels towards the first location
of the new lane at the boundary. After determining the lane
width, the data in D is removed and new data recording begins.
The new lane is represented by two waypoint W r

i and W¬ri ,
where W r

i represents the lane termination point on the right
side of boundary, while W¬ri represents the lane termination
point on the left side of the boundary. Using the waypoints,
the AUV updates its desired heading ψdi as:

ψdi =

{
atan2(yri − yi, xri − xi) if agent is going right

atan2(y¬ri − yi, x¬ri − xi) if agent is going left
(3)

When Ai is in the communication range of a neighboring
agent Aj at time t′′, then both Ai and Aj share D̄i and D̄j

with each other. The agents compare the maximum sensed
value of both the agents and determine the lane width based
on the highest detected value as given in Algorithm 1. By

modifying the lane width based on the cooperative information
from neighbors will allow the agent with the highest sensing
parameter to determine the lane width. Since, higher the
sensing parameter value, lower the lane width, an agent whose
sensing value is higher than the other agent will not have a
low resolution lane width. Thus this, mechanism will enable
sampling at high resolution in the detected areas.

Note that during comparison between two agents, we do
not assume that both agents are sensing the same process. The
processes detected by these agents could be different, however,
their sensors and sensing parameter is the same. Therefore,
the agent that has low sensing value may be subject to high
resolution lane width but this will not reduce the process
sensing accuracy. Once the new lane is determined, the agent
Ai and Aj travel together to the next lane and then depart in
opposite directions. While implementing this phenomena, we
can consider the movement as a sequence of waypoints. When
agents meet each other, they generate two waypoints: the first
one that leads to the next lane, while the second one makes
the agent follow the path defined by the lane.

Algorithm 1 Algorithm to adaptively select lanes
1: while Agent Ai is in motion do
2: if Agent reaches boundary then
3: Determine wi using (2)
4: else if Neighboring agent Aj is in the communication

range then
5: Share Di and Dj

6: if Di ≥ Dj then
7: Determine wi using (2)
8: else
9: D̄i ← D̄j , Determine wi using (2)

10: end if
11: end if
12: Update agent positions using (1) and (3)
13: end while

The process to be detected can be located anywhere in the
search space. However, to determine w`, we must assume some
kind of process information to ensure that using w`, the vehicle
will detect the process at least once, though not with desired
resolution. Therefore, we assume that each process pi has at
least 2w` height and width. We also assume that the process
is slowly moving process (< 30cm/sec), and hence its speed
is small compared to the AUV speed. Otherwise, the process
may move out of the search space.

Lemma 1: Each and every unique process pk will be de-
tected by the agents

Proof: Assume the mission is carried out with a single
vehicle. The vehicle moves along a defined lane either from
left to right or right to left. The minimum height of pk ≥ 2w`,
and the maximum lane width for a vehicle is w`. Therefore,
as the vehicle moves along a lane, it will intersect with the
process and hence, it is detected. �



IV. FAULT TOLERANCE

During a mission, some of the agents may have faults. Since
the agents have communication capability, we can assume
that, if the neighboring agent is within the communication
range, then it can share the information and update its status.
However, it is not always the case. There can be situations
where the vehicle is drifted away by currents after being at
fault and unable to communicate or its transponders are not
working to communicate. Therefore, to address different kinds
of issues, we assume that if the agent has a fault then it cannot
communicate. We devise a strategy by which the agents ensure
the area is covered and adaptively reconfigure to the loss of
the agent.

Agent faults will affect complete area coverage by leaving
uncovered areas. We say that the area is completely covered,
if there is no space Ω′ ⊂ Ω, such that no vehicle has passed
through Ω′. We consider two types of faults: border agent
fault and middle agent faults. To show how fault tolerance is
introduced into the system, we consider the scenario where
three agents A1, A2 and A3 are deployed with the assigned
direction of travel as shown in Figure 3(a).

A. Boundary/Border agent faults

Consider the initial deployment of vehicles as shown in
Figure 3(a). Assume that the border agent A3 is at fault and
it does not move. Then, A2 will cover the region that A3 was
supposed to cover due to its direction of motion and will meet
A1 at location τ12 in the next lane as shown in Figure 3(b).
Through, this simple example, we can see that if the border is
at fault then middle agent or the other border agent will cover
the region without generating Ω′.

Similarly, now consider A1 is at fault, then agents A2 and
A3 will meet each other at τ23 as shown in Figure 3(c).
Depending upon the sensed value, the next lane width is
determined. They both move up towards the next lane and
depart in opposite directions. The agent A2 approaches the
boundary, determines next lane width and moves to the next
lane. Since the agent A1 has not started, the region in dashed
rectangle as shown in Figure 3(c) is not covered. However,
since we assumed that the minimum height of the process is
2w`, and A2 passes through th e lane w` higher than the lane
A1 is located, it will detect the process. Thus, when there is a
border agent fault, the agent in the middle will cover the region
and ensure that all the processes are detected. Therefore, we
can say that by deploying the agents in opposite directions,
uncovered regions can be mitigated.

B. Middle agent faults

Consider the scenario as shown in Figure 3(d). Assume
that the mission has been progressed upto k − 2th lane where
agents A1 and A2 meet at τ12. The next lane is determined
based on the sensed value. The direction of travel for the two
agents is shown in the figure. Let agents A2 and A3 meet at
τ23 on the k − 1 lane. Since A2 detected some process, the
new lane is determined to be k′ and the direction of travel for
both the agents is shown in the figure. Assume that at τ23, the

(a)

(b)

(c)

(d)

Fig. 3. (a) Initial locations of the vehicle and the direction of travel with
the maximum lane width as the next search path (b) Situation when boundary
agent A3 failed at the initial location itself, then A2 will cover A3 search
space and meet A1 at τ12 (c) Situation where A1 has failed and the region
in rectangle is not covered (d) When middle agent A2 fails, the rectangular
region is not covered.

agent A2 is at fault after determining the new lane. The agent
A3 continues its determined lane as shown in the figure.

The agent A1 after completing the lane k−1 will determine
a new lane k, as shown in the figure. The lane k is above k′

and A1 will meet A3 at τ13. Note that τ13 is not in the same
lane but both the agents are within the communication range.
As A2 could not move to complete its part of the coverage, the
rectangular area shown in Figure 3(d) is uncovered. However,
the lane k+1 taken by A3 is at maximum w` units above lane
k′. Since, we assume that the process is 2w` units height, A3

will detect any existing process. Hence, even when there is a
middle agent fault, the notion of moving in opposite directions
will enable fault tolerance.



Theorem 1: Assume that the agents fail sequentially, then
the developed method of determining lanes as given in Algo-
rithm 1 and deploying the agents in opposite direction is a
fault tolerant method.

Proof: If the developed method is not fault tolerant then,
there exists an uncovered space Ω′ in the search space Ω.
Lemma 1 shows that if there are no faults then the process
will be detected. For Ω′ to exist, there must be some agent
faults, either a border agent or middle agent fault.

If there is a border agent fault, then in Section IV-A, we
have shown that the agents cover the region under border
agent fault. In Section IV-B, we have shown that the coverage
is complete under middle agent faults. Since, coverage is
complete under border and middle agent faults, and Ω′ exists
only under faulty conditions, the developed method is fault
tolerant. �

V. SIMULATION RESULTS

The proposed fault tolerant method is validated using sim-
ulations. Through simulations, we will show the following:
coverage time analysis with low resolution, high resolution
and the developed adaptive sampling method. Then we will
analyze the effect of increasing the number of process on the
coverage time and the effect of increase in number of faulty
agents to coverage and sampling.

A. Example

Initially, we will show the performance of the developed
algorithm using an example. We considered a scenario, where
a process is stationary in the middle of a 200m × 200m
search space as shown in Figure 1(b). The process has a
radius of 30m located at (100, 100) and the value of the
process is dependent on the distance between the agent and the
(100,100). The value is determines as Di(t) = e−βdi , where
di = ||zi − (100, 100)|| and ||.|| is the Euclidean norm. The
vehicles speeds are constant at 3knots.

Figure 4(a) shows the trajectories of the three vehicles
starting from z1 = (66.67, 0), z2 = (69.67, 3), z3 = (197, 0),
respectively using the default fixed lane width (low resolution
sampling (LRS)) of 10m. From the figure, we can see that
the vehicles observe the process for a short duration. Next,
we used high resolution sampling (HRS) for the vehicle. The
Figure 4(b) shows the trajectories of the vehicle sampling
the process for longer duration and hence receive more in-
formation. Figure 5 shows the vehicle trajectories using the
developed adaptive lane selection algorithm (AS). We can see
that even in this strategy, the sampling of the process is high
but not as high as HRS. However, in adaptive sampling, we can
see that when there is no process, it uses LRS and changes
the lane width adaptively to increase the information of the
process.

In order to compare the performance of the three strategies,
we record the sensed data Di(t) for each vehicle over the
entire mission. We then determine information captured as
F =

∑
i

∑T
t=0Di(t). From the strategies, we know that

HRS achieves the best performance. Therefore, we consider
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Fig. 4. (a) Area coverage and process detection using default fixed width
lanes of 10m (b) Area coverage and process detection using high resolution
fixed width lanes of 3m

information obtained by HRS as the base strategy and hence
its value is 1 in Figure 6(a). The percentage information that
AS captured was 76% of HRS while LRS captured only 28%
of the HRS information.

Further to determine the time taken to accomplish the
mission, we recorded the mission time of each strategy and
the Figure 6(b) shows the time taken by each strategy. In this
case, we considered LRS strategy as the base strategy and
hence its value is 1. The AS takes 38% more time than LRS
while HRS takes 330% more than LRS. Thus from Figures
6(a) and 6(b) we can see that the developed adaptive sampling
strategy captures good amount of information while allowing
the missing to be completed quickly.

B. Effect of increase in number of processes

For a given number of agents, HRS determines the upper
bound on the coverage as well as to achieve maximum infor-
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Fig. 5. Area coverage and process detection using adaptive lane width

mation about any kind of process. With increase in number of
processes, the agents have to carry out more number of high
resolution sampling lanes. In the worst case, if there are large
number of processes, then the agents will perform a HRS even
though they are using AS. Any further increase in number of
processes will not affect the sampling and coverage time.

C. Effect of faulty agents

The presence of faulty agents will reduce the coverage time
and the sampling information about the process. We will first
show through an example the effect of faulty agent on the
performance and then show the trajectories of the vehicles for
border and middle agent failures.

Consider the same scenario as given in Section V-A with
the same initial locations. At time t = 295, the border agent
A1 fails to operate. This scenario is shown in Figure 7(a).
From this time onwards, only agents A2 and A3 carry out the
sampling and coverage actions. From the figure, we can see
that the two agents cover the area effectively and adaptively
sample the process.

We next considered the middle agent failure as shown in the
Figure 7(b). The fault in A2 causes the width of some region
to be more than the default lane width as shown by an ellipse
in Figure 7(b). The region is of height 15m and the minimum
process height is 20m, therefore if a process was existing in
this region, then the remaining agents will detect it. From the
figure we can see that both the agents cover the region and
the process quite well.

The adaptive lane sampling and coverage algorithm not only
performs well for static process but also for moving scenarios.
Consider the scenario in Figure 8, where the process is moving
at 20cm/sec. From the figure, we can see that as the process
moves, the agents perform high resolution sampling at the core
of the process and track it properly. Thus AS is useful for both
static and moving processes as well.

With increase in number of faulty agents, the time to
accomplish the mission increases. Figure 9 shows the effect of
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Fig. 6. (a) The percentage information gathered using different techniques
assuming high resolution strategy as the baseline (b) The time taken by each
strategy to complete the mission

increasing the number of faulty agents for a 3 agent simulation.
It is natural that with increase in number of faulty agents, the
effective number of agents performing the mission decreases.
Hence, the time taken to accomplish the mission increases.
The same effect is shown in the figure.

D. Discussions

In this section, we will discuss justifications for several
assumptions in the paper.

1) 2D sampling: Through simulations we have shown
that the developed adaptive sampling strategy performs better
sampling than fixed lane width sampling strategy and is fault
tolerant. However, typical sampling of processes in the ocean
is carried out in 3D. That is given a lane, the agent performs a
YO-YO maneuver in x− z coordinate frame and y coordinate



−50 0 50 100 150 200

0

20

40

60

80

100

120

140

160

180

200

X in meters

Y
 in

 m
et

er
s

A
1
 is faulty

(a)

0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

120

140

160

180

200

X in meters

Y
 in

 m
et

er
s

A
2
 is faulty

15m

(b)

Fig. 7. (a) Agent A1 becomes a faulty agent at time t = 295s (b) Agent
A2 becomes a faulty agent at time t = 295s
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is constant defined by the lane. Here, we assume that the
agents move in a horizontal plane. The developed strategy
need to be modified to be used in ocean sampling applications.
However, there are several sampling strategies in river that
use constant depth for which the developed algorithm suits
pretty well. For example, the sampling strategy developed in
[10, 11] uses constant depth sampling for pollution parameters
in a river. However, for the sampling strategy to be used
for oceanography applications, 3D trajectories need to be
accommodated. This work will be carried out in the future.

2) Minimum process width: Note that, unlike image based
sonar, the sensor carried by the AUV to detect biophysical
process is point based. That is, it samples at a single point.
Therefore, to search the space within reasonable amount of
time, virtual sensor footprint is assumed in the form of
minimum lane width. Typically, in the ocean, the process of
interest are in kilometers and the minimum sampling lanes are
of the order of tens of meters. Hence, an assumption of 2w` is
a reasonable assumption for sampling applications. However,
even if we assume a minimum lane length of w`, still we
could achieve coverage by considering several modifications.
This aspect will be investigated further.

3) Speed variations: The simulations were carried out
using constant AUV speed. However, the area coverage algo-
rithm will work for heterogeneous speeds. However, the speeds
between the agents should not vary too much. Further work
needs to be done to determine tight bounds on the maximum
variation in agent speeds.

4) Process speed: In the simulations we assumed that the
process speed in 30cm/s. However, the maximum proceed
speed that the process can travel depends not only on the agent
speed, but on a combination of agent speed and size of the
search space. An upper bound of the process speed needs to
be derived.

VI. CONCLUSIONS

We presented a simple algorithm for multiple AUVs per-
forming sampling missions in the ocean. The algorithm has



two main features: fault tolerance and adaptive sampling based
on the sensor observations. Through analysis and examples
we have shown that the algorithm is fault tolerant to agent
faults. The algorithm can handle border agent and middle
faults equally well. The results show that the performance
of the adaptive sampling strategy developed in this paper
performs close to the high resolution sampling strategy in
terms of information captured, while it performs close to the
low resolution sampling strategy in terms of time taken to
accomplish the mission. Thus, the developed method achieves
good performance in terms of information and mission time.
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