Capturing the Key Oceanographic Signals with Autonomous Underwater Vehicles

Yanwu Zhang and James G. Bellingham

Monterey Bay Aquarium Research Institute

Monterey Bay Aquarium Research Institute (MBARI)

MBARI founder David Packard:

"Send instruments to sea, not people."

Return information to shore, not samples"

Outline

- State-of-the-art of Autonomous Underwater Vehicles (AUVs)
- Designing AUV survey strategies for capturing key signals in the ocean.
 - Synoptic mapping of an ocean field
 - Ocean flux estimation
 - Capturing peak samples from a thin layer
- Ongoing and future work

State-of-the-art of AUVs

MBARI Dorado

500 kg. 1.5 m/s. Carries many sensors, but only lasts a day.

MBARI Tethys

110 kg. 0.5 m/s and 1 m/s.

Can run slowly for a long distance or faster for a shorter distance. Can wait in drifting mode until something interesting happens.

Scripps Spray (Russ Davis)

48 kg. 0.27 m/s. Can run for months, but can only carry a few sensors, and goes quite slowly. Bellingham

MBARI Tethys AUV

J. G. Bellingham, Y. Zhang, J. E. Kerwin, J. Erikson, B. Hobson, B. Kieft, M. Godin, R. McEwen, T. Hoover, J. Paul, A. Hamilton, J. Franklin, and A. Banka, "Efficient Propulsion for the Tethys Long-Range Autonomous Underwater Vehicle " *Proc. IEEE AUV'2010*, pp. 1-6, Monterey, CA, U.S.A., September 2010.

Autonomous Ocean Sampling Network (AOSN) 2003 Experiment in Monterey Bay

Ocean Flux Estimation

Flux Estimation by AUVs versus Moorings

Heat Flux Estimation Performance of Mooring and AUVs

Y. Zhang, J. G. Bellingham, and Y. Chao, "Error Analysis and Sampling Strategy Design for Using Fixed or Mobile Platforms to Estimate Ocean Flux," *Journal of Atmospheric and Oceanic Technology*, Vol. 27, No. 3, pp. 481-506, March 2010.

Optimizing Platform Choice for Flux Estimation

Capturing peak samples from a thin layer

An Adaptive Triggering Method for Capturing Peak Samples in a Thin Phytoplankton Layer by an AUV

Gulf of Mexico Oil Spill Response Scientific Survey in 2010

2010

Gulf of Mexico Oil Spill Response Scientific Survey in 2010

Y. Zhang, R. S. McEwen, J. P. Ryan, J. G. Bellingham, H. Thomas, C. H. Thompson, and E. Rienecker "A Peak-Capture Algorithm Used on an Autonomous Underwater Vehicle in the Gulf of Mexico Oil Spill Response Scientific Survey," *to be submitted to Journal of Field Robotics*.

Ongoing and Future Work

М

The presented work was funded by the David and Lucile Packard Foundation and the Office of Naval Research under Grant N00014-02-1-0856.

感谢母校!

