
Chapter 11 

Complex-Valued Generalized Hebbian 
Algorithm and Its Applications to Sensor 

Array Signal Processing 

Yanwu Zhang 

Principal component extraction is an efficient statistical tool that is 
applied to feature extraction, data compression, and signal process
ing. The Generalized Hebbian Algorithm (GHA) (Sanger 1992) can 
be used to iteratively extract principal eigenvectors in the real do
main. In some scenarios such as sensor array signal processing, we 
encounter complex data. The Complex-valued Generalized Hebbian 
Algorithm (CGHA) (Zhang et al. 1997) is presented in this chapter. 
Convergence of CGHA is proved. Like GHA, CGHA can be im
plemented by a single-layer linear neural network. An application 
of CGHA to sensor array signal processing is demonstrated through 
Direction of Arrival (DOA) estimation. 

1 Review of Principal Component 
Extraction and the Generalized 
Hebbian Algorithm (GHA) 

Consider the autocorrelation matrix of an iV-dimensional random 
column vector X: Rxx = E[XXH] where H stands for conjugate 
transpose. Rxx c^n be expressed as (Strang 1993): 
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228 Y. Zhang 

Rxx = Y,\iUiU^ (1) 

where Ui is the ith eigenvector (column vector) and A; is the corre
sponding eigenvalue. Here the eigenvectors are normalized and or-
thogonalized. In the real domain, conjugate transpose H reduces to 
transpose T. 

If we sort the eigenvectors by their associated eigenvalues in de
scending order, the leading eigenvectors are called the principal 
eigenvectors because they span the major portion of Rxx-

Due to their statistical significance, principal eigenvectors find ap
plications in various realms. Their usefulness to sensor array signal 
processing will be demonstrated in Section 3. 

Data compression also relies on principal eigenvectors. The tech
nique of principal component extraction (also called principal com
ponent analysis) (Sanger 1992), (Oja 1992), (Haykin 1994) linearly 
reduces the dimensionality of input data while retaining major statis
tical information (Bannour et al. 1995), (Plumbley 1995), shown as 
follows. 

Consider an iV-dimensional zero-mean random vector 

X = [xi x2 ■■■ xN]T (2) 

We desire to reduce its dimension from N to M (M < N). First, we 
find the M principal eigenvectors of the input's autocorrelation ma
trix Rxx, denoted as Ui, U2, • ■ ■, UM (orthonormalized and arranged 
in descending order of their associated eigenvalues). These column 
vectors constitute an N x M mapping matrix 
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Complex-Valued Generalized Hebbian Algorithm 229 

Q = PI : u2 ; ••• ; uM] (3) 

Then we map the iV-dimensional input vector X to an M-
dimensional output vector Y through Q: 

Y = QHX (4) 

Elements of vector Y are called principal components. 

Since M < N, dimensionality of the input vector space is reduced. 
Data are thus compressed. Compression generally induces informa
tion loss, but it can be proven (Hornik et al. 1992) that the linear 
transform in Equation (4) is optimal in the sense that it minimizes 
the mean squared error when reconstructing X: 

X = QY (5) 

Sanger presented the Generalized Hebbian Algorithm 
(GHA) (Sanger 1992) to iteratively derive principal eigenvec
tors using a single-layer linear neural network. The algorithm can be 
summarized as follows. 

The AT x 1 input vector X is expressed in Equation (2). The eigen
vectors of Rxx are denoted as U\, U2, ■ ■ ■, UN (arranged in de
scending eigenvalue order). We randomly initialize JVx 1 vectors 
Vi, V2, ■ ■ ■, VN. GHA then updates Vj iteratively. The updating rule 
for Vj at iteration step n is given by Equation (6) and Equation (7): 

Vjin + 1) = Vj(n) + »(n)yj(n)[X(n)-yj{n)Vj(n)-Y,Vi(n)Vi(n)] 
i<j 

(6) 
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230 Y. Zhang 

y3{n) = V?(n)X(n) (7) 

where fi(n) is a learning rate factor. Sanger proved that Vj converges 
to Uj (Sanger 1992). 

GHA possesses the following features: snapshot-based processing 
instead of eigendecomposition, parallel processing, and good ex
pandability. Hence this algorithm facilitates fast and distributed pro
cessing. It has been applied to image coding and texture segmenta
tion (Sanger 1992). 

2 Complex-Valued Generalized 
Hebbian Algorithm (CGHA) 

GHA is applicable only in the real domain. In some scenarios, we 
encounter complex data. For example, in sensor array signal pro
cessing, typically the received real signal at each sensor is quadra
ture demodulated to a complex signal (Van Trees 2002). We are in
terested in the principal eigenvectors of the array's autocorrelation 
matrix because they contain key information about the signals' in
coming directions. Therefore, an extension of GHA to the complex 
domain is needed. 

2.1 Formulation of CGHA 

Now we present the Complex-valued Generalized Hebbian Algo
rithm (CGHA) (Zhang et al. 1997). Randomly initialize N x 1 vec
tors Vi, V2, • • •, VM- CGHA then updates Vj iteratively. The updating 
rule for Vj at iteration step n is given by Equation (8) and Equa
tion (9): 
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Complex-Valued Generalized Hebbian Algorithm 231 

Wn + l) = VJ{n) + »{n)y*{n)[X{n)-y]{n)VM)-Y.yi(n)Vi^ 
i<j 

(8) 

yj(n) = t f (n)X(n) (9) 
where y*j(n) denotes the complex conjugate of yj(n), and fj,(ri) is a 
learning rate factor. Vj(n) will converge to the jth normalized eigen
vector of Rxx- Proof is given in the next subsection. 

As shown in Figure 1, each block represents an iV-dimensional 
weight vector Vj (j = 1,2, ■ • •, N). The output of the jth block is 
2/j = V^X. As the input vector X flows through each block, yjVj 
is subtracted from X to form the updating vector that is contained in 
the bracket in Equation (8). 

Figure 1. Implementation of CGHA. 

2.2 Convergence of CGHA 
Convergence analysis of CGHA extends that of GHA (Sanger 1992) 
to the complex domain. Let us rewrite Equation (8) in matrix form 
to include all eigenvectors: 
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232 Y. Zhang 

W(n + l) = W(n) + fJt(n)lX(n)XH(n)W(n) 

-W(n){UT[Y(n)YH(n)}}\ (10) 

where W(n) is an N x N matrix: 
W(n)=[V1(n) i V2(n) \ ••■ ! VN(n)}, and 

y(n) = WH(n)X(n) (11) 

Operator £/T[-] (standing for upper triangle) sets all elements below 
the diagonal of the square matrix to zero, thereby producing an upper 
triangular matrix. 

Assume temporal stationarity. Then Rxx — E[X{n)XH{n)} does 
not vary with n. Taking expectation on both sides of Equation (10) 
and incorporating Equation (11), we have 

W(n + 1) = W{n) + ii(n)lRxxW{n) 

-W(n){UT[WH(n)RxxW(n)}} \ (12) 

The convergence property of the above discrete-time difference 
equation is the same as that of the following continuous-time dif
ferential equation: 

jW{t) = RXXW(t) - W(t){UT[WH(t)RxxW(t)]} (13) 

We prove the convergence in two steps: 
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Complex-Valued Generalized Hebbian Algorithm 233 

\l Prove that Vi(t) converges to the eigenvector associated with the 
largest eigenvalue. 
V\ is the first column of matrix W. According to Equation (13), 
variation of Vi(t) is governed by 

j^it) = RxxV^t) - V^tWfMRxxV^t)] (14) 

Assume Rxx is positive definite with N distinct eigenvalues 
Ai > A2 > • • • > \N which correspond to orthonormalized eigen
vectors Ei, E2, ■ ■ ■, EN- Note that since Rxx is Hermitian, all of 
its eigenvalues are real. 
Expand Vi (t) as 

N 

Vi(t) = J2ck(t)Ek (15) 
k=i 

Ek (k = 1,2, • • ■, N) is an orthonormal base. Premultiply E^ to 
both sides of Equation (15) and we have 

ck(t) = E^Vi(t) (16) 

Plugging Equation (16) together with RXxEk = XkEk into Equa
tion (14) gives 

N dcdt) N N N 
E ^JT-Ek = E ck(t)XkEk - E |Q(t)|2A|] E db(«)^ (17) 
fc=i a t k=i i=i k=i 

where | • | denotes norm of a complex variable. 
Premultiply Ek to both sides of Equation (17). The orthonormal-
ity of base Ek leads to 

^ = cfc(i)[Afc-E|Q(i)|2A,] (18) 
a t 1=1 
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234 Y. Zhang 

We now study the convergence of Ck(t) in two cases: when k > 1 
and when A; = 1. 

(a) When k > 1. 
Define rk(t) = | 4 ^ , assuming c\(t) ^ 0. Take differentiation 
of rk(t) with respect to t: 

drk{t) 1 tdck{t) ^ d c i j t ) , Q 

r̂ = ^) ["^r- r f c ( £ )^r ] (19) 
Plugging Equation (18) into Equation (19), we have 

drk{t) l fck(t)[\k-j:\cl(t)\2xl 
1=1 
N 

dt a(t) 

- r - f c^CiWfAi -ShWI 'A/ ]} (20) 
i=i 

which can be simplified to 

^ - = rk(t)(\k - Xi) (21) 
at 

The solution to the above differential equation is 

rk(t) = rk(0) e^-W (22) 

We know that Â  < Ai for k > 1. Therefore, with any initial 
value, rk(t) exponentially decays to 0 when k > 1. 

(b) When k = 1. 
According to Equation (18) and definition rfc(£) = ^44, we 
have 

^ = c^HAi - |c1(t)|2A1 - | C l ( ; ) | 2 f> ( t ) | 2 A z ] (23) 
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Complex-Valued Generalized Hebbian Algorithm 235 

We have shown that Tk(t) exponentially decays to 0 when 
k > 1. So at a large t, |ci(£)|2Ai dominates over 
|ci(£)|2 YI1L2 \ri(t)\2^i- F° r convergence analysis, we can thus 
drop the last term. Then Equation (23) reduces to 

^ . = c1(t)[X1-\cl(t)\2X1] (24) 

Let us define another function 

F(t) = [\Cl(t)\2-l}2 (25) 

Utilizing Equation (24), we have 

^ ^ = -4A1 |Cl(*)|2[|ci(t)r - l]2 (26) 

Equation (25) gives that F(t) > 0, and Equation (26) shows 
that —J& < 0. Therefore F(t) must converge to 0. Equiva-
lently, \ci(t)\ converges to 1, according to Equation (25). 
By Equation (15) and definition rk(t) = f4^y, we have Vi(t) = 
Ci{t)Ei + Ci{t) Y^=2rk{t)Ek- In la, itis shown thatrfc(it) con
verges to 0 when k > 1. In lb it is shown that |cj(t)| converges 
to 1. Hence Vi(t) converges to Ex with a complex factor of 
norm one. 

]2 Prove that for j > 1, Vj(t) converges to the eigenvector associated 
with the jth largest eigenvalue. 
We resort to the method of induction. Given that V\(t) —► E\, 
we only need to show that if Vk(t) converges to Ek for k = 
1,2, • • •, j — 1, Vj(t) converges to Ej. 

According to Equation (13), variation of Vj(t) is governed by 

jV.it) = RxxV3{t) - j : Vk{t)[Vk
H[DRXXVM (27) 

k<j 
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236 Y. Zhang 

Vk (t) can be expressed as 

Vk(t) = Ek + ek(t)Gk(t) (28) 

where Gk(t) is a unit-length vector and ek(t) is a scalar. 
The premise of the induction is that Vk(t) converges to Ek for 
k < j , so ek(t) converges to 0 for k < j . Combining Equation (28) 
and Equation (27), we have 

jV3{t) = RxxW-VMVfmxxVM 

+0(e) + 0(\e\2) (29) 

where 0(e) represents a term converging to 0 at least as fast as the 
slowest vanishing ek(t) for k < j . 0(|e|2) has a similar meaning. 
At a large t, we neglect terms 0(e) and 0(|e|2). 
Expand Vj(t) as 

AT 

Vj(t) = Y,h{t)Ek (30) 

v/hcrebk(t) = Ek
HVj(t) 

Plugging Equation (30) together with RxxEk = XkEk into Equa
tion (29) (neglecting vanishing terms), we have 

-£EIM*)l2AiMt)£* 
k<j 1=1 

+ lbl^-Y,\bi(t)\2Mh(t)Ek (31) 
k=j i=i 

J2dbk^EK 
fc=l dt 
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Complex-Valued Generalized Hebbian Algorithm 237 

Premultiplying Ef? to both sides of Equation (31), and utilizing 
the orthonormality of Ek, we have 

^ = -&*(*) ElM*)|2Ai fork<j (32) 
dt l=1 

^ = h(t){\k - f ] Ht)^} fork> j (33) 
at l=l 

(a) For k < j , the solution to differential equation (32) is 

&fc(0 = ^ 0 ) e - K i l M * ) N t ( 3 4 ) 

i?xx is positive definite, so A/ > 0. Hence 
— E i l i |^(^)|2Az] < 0. Consequently, bk(t) exponentially 
decays to 0 for k < j . 

(b) For k > j , define Sk(t) = ^4ft, assuming bj(t) ^ 0. Then 
Equation (33) leads to 

dSk{t) x
 :{bk(t)[xk-j:\bl(t)\'xl} dt bj(t) i=i 

sk(t)b1(t)[Xj-'ZMt)\2M} (35) 
z=i 

which can be simplified to 

dsk(t) sk(t)(Xk-X3) (36) 
dt 

The solution to the above differential equation is 

sk(t) = sk(0)e^-x^ (37) 

Since Â  < Xj for any k > j , sk{t) exponentially decays to 0 
for k > j . 
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(c) For k = j , Equation (33) becomes 

^ = b3m>-w)\% 
-m)\2j:\si(t)\2xi-Y:Ht)\2xi} m 

l>3 Kj 

It has been shown in 2a that bi{t) —» 0 for / < j , and in 2b 
that si(t) —> 0 for £ > j . We thus drop the last two terms in 
Equation (38) for a large t, and the equation reduces to 

^ = 6 i(t)[A i-|6;(*)|aA i] (39) 

To show that bj(t) converges, we define another function 

H(t) = [\b3(t)\2-lf (40) 

Using Equation (39), we have 

dH{t) 
dt -&j\bMnMW-Vf (41) 

Equation (40) gives that H(t) > 0, and Equation (41) shows 
that —JjQ < 0. Therefore H(t) must converge to 0. Equiva-
lently, \bj(t)\ converges to 1, according to Equation (40). 
We know the expansion Vj(t) = bj(t)E3- + Y,k<jh(t)Ek + 
Y.k>jbk(t)Ek. It has been shown that bk(t) —► 0 for k < j , 
bk(t) —> 0 for fc > j (because Sk(t) —> 0 for k > j), and 
\bj(t)\ —y 1. Therefore Vj(t) converges to E3- with a complex 
factor of norm one. 

Analyses in §1 and §2 establish convergence of CGHA: V3\n) con
verges to Ej for j = 1,2, • • •, N. 
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Complex-Valued Generalized Hebbian Algorithm 239 

2.3 Implementation of CGHA 
As illustrated in Figure 1, CGHA can be implemented by a single-
layer linear neural network. The slanted arrows in the figure repre
sent updating of Vj, j = 1,2, ■ ■ ■, N. 

Like GHA, CGHA possesses the following features: 

§1 There is no need to estimate the autocorrelation matrix Rxx- Its 
eigenvectors are derived directly from the input vector. In sensor 
array signal processing, the input vector is just a snapshot of re
ceived signals at all sensors at one sampling instant. 

§2 The implementation architecture has good expandability. Updat
ing of Vj is affected by Vk of k < j , but not by Vk of k > j . 
If convergence has been reached for the first M eigenvectors, the 
additional learning of the (M + l)th eigenvector will leave intact 
the preceding M eigenvectors. 

§3 The algorithm can be carried out by parallel processing. Equa
tion (8) can be rewritten as 

V3{n + 1) = Vj{n) + n{n)y*{n)[X3{n) - y » V » ] (42) 

where 

Xj(n) = X(n) - X>(n)K(n) (43) 

can be deemed the "net" input for updating Vj. 
Equation (42) gives a uniform rule for updating Vj. Thus CGHA 
can be carried out by multiple processors in parallel. 
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240 Y. Zhang 

3 Application of CGHA to Sensor 
Array Signal Processing 

3.1 Transformation of Real Signal to Complex 
Signal by Quadrature Demodulation 

Consider a linear array composed of N equally spaced sensors with 
identical directivity. Suppose D narrowband signals impinge on the 
array as plane waves from directions 61,82, • •■ ,0D, as illustrated 
in Figure 2. Assume the received noise is spatially white with zero 
mean, and is uncorrelated with the signals. 

Suppose the narrow-band signals have a carrier frequency /0. At sen
sor No. N, the received narrow-band signal of incident angle 6k can 
be expressed as 

skN(t) = fk(t)cos[2nf0t + <f>k(t)] (44) 

where amplitude fk(t) and phase <f>k{t) have narrow bands that sat
isfy (Van Trees 2002) 

Bfk ATk <C 1 (45) 

B^ ATk < 1 (46) 

where Bfk and B^k are the bandwidth of fk(t) and 4>k(t), respec
tively. ATfc is the plane wave's travel time from sensor No. 1 to 
No. N. Hence variations of fk(t) and <fik(t) over ATfc can be deemed 
negligible. 

Relative to the signal received by sensor No. N, the received signal 
at sensor No. m (m = 1,2, • • •, N — 1) has a time delay: 
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Complex-Valued Generalized Hebbian Algorithm 241 

Skm(t) = fk(t~ Tkm) COs[2irf0(t - Tkm) + <j>k(t ~ Tkm)) (47) 

where 

\{N - m)d)sin{Ok) 
Tkm = (48) 

c 
is the delay; d is the spacing between adjacent sensors, and c is the 
propagation speed of the plane waves. 
Under the narrow-band conditions in Equation (45) and Equa
tion (46), we have 

fk(t-Tkm) « fk(t) (49) 
M-Tkm) « 4>k{t) (50) 

Then Equation (47) is simplified to 

Skm(t) = fk(t) cos[2irf0(t - Tkm) + (j)k(t)] (51) 

The received signal is carried at a center frequency /0 . To lower 
the sampling frequency and hence reduce the system's cost, the sig
nal is typically quadrature demodulated (Van Trees 2002) prior to 
analog-to-digital conversion. Quadrature demodulation is illustrated 
in Figure 2. Two branches of the received signal are multiplied by 
2cos(2irf0t) and —2sin(2itf0t), respectively, and then low-passed to 
keep only the base-band components. The two branches then add up 
to a complex base-band signal. After quadrature demodulation, real 
signal skm(t) in Equation (51) is transformed to a complex signal 
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242 Y. Zhang 

sensor N 

2cos(27tf0t)—(X) (X>— [-2sin(2itf0t)] 2cos(2itf( [-2sin(27tf0t)] 

Figure 2. Quadrature demodulation of sensor array signals. At each sen
sor's output, the imaginary part (the right branch) is multiplied by j prior 
to summation. 

hm(t) = fk(t) cos[(f)k(t) - 2irfoTkm\ 

+j\ fk{t) Sitl[(f)k(t) - 2-KfoTkr, 

= fk(t) ejMt)
 e-j2wfoTkm (52) 

where the real part fk(t)cos[4>k(t) — ^foTkm] is called the in-phase 
component, and the imaginary part fk(t)sin[<f>k(t) — 27r/oTfcm] is 
called the quadrature component. 

The original signal sfcm(t) can be restored from Skm{t) by using both 
the in-phase and the quadrature components: 

skm(t) = Re{~skm{t) e j w } 

= Re\[fk(t)e j<t>k(t) p-J2irf0Tkm] j2nf0t (53) 
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where -Re{} takes the real part of the argument. 

Note that Skm(t) cannot be restored by the in-phase component or 
the quadrature component alone. Hence we need to keep both com
ponents to preserve the information contained in skm(t). Complex 
signal Skm(t) in Equation (52) is thus an equivalent representation of 
the original real signal Skm{t). 

3.2 Direction-Of-Arrival (DOA) Derived from 
Principal Eigenvectors of Array's 
Autocorrelation Matrix 

Equation (52) gives the signals' phase-shift relationship between 
sensors. Now let us combine Equation (52) and Equation (48), and 
introduce notation 

7fc = fodsin{9k) (54) 

Then for the signal of incident angle 6k, demodulated signals at all 
sensors can be expressed by an iV-element column vector: 

Sk(t) = fk(t)eJMt)[e-j2wfoTk' ■■■ e-j2nfoTkN]T 

= fk{t)ej<t>k{t)\e~j2'*{N~l)'1k ■ ■ ■ e~j2^N~N)lk]T 

= fk(t)ei4'k{-i)e~j2'K(N~l)lk\l ■■■ e>2*(N-i)jkYr 
= fk{t)Zk (55) 

where fk(t) = fk{t)e^k^e-j2^N-^k 
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Zk = 

1 

aj2Tr(N-\)lk 

(56) 

is the steering vector of the kth signal. It carries information of the 
signal's direction, yet is independent of t. 

The sum of the D signals received by the array is 

S(t) = E sk(t) 
fc=i 

E h(t)zk 

Zi : Z2 : w 

flit) 
h(t) 

fu(t) 

(57) 

With addition of noise, the total output of the array is represented by 
an iV-element column vector X(t): 

X(t) S(t) + B{t) 

Z\\ Z2: • • Z D 

flit) 
Ut) 

hit) 
+ 

Ut) 
Ut) 

~bN(t) 

(58) 
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where column vector B(t) = [&i (t) 62(t) • • • &JV(£)]T denotes noise 
received by the N sensors. The noise is assumed to be spatially white 
with zero mean and variance a2, and uncorrelated with the signals. 

The autocorrelation matrix of X(t) is RXx = E[X(t)XH(t)], an 
N x N matrix. Denote the eigenvectors as Vj, j = 1,2, • • ■, N. As
suming the signals do not contain coherent pairs (Van Trees 2002), it 
can be shown (Schmidt 1986) that D eigenvectors have eigenvalues 
larger than a2. Vj (j = 1,2, • • •, D) span the signal subspace (Van 
Trees 2002). 

Signals' directions can be estimated from these principal eigen
vectors (Tufts 1998). Utilizing properties of Vandermonde vectors 
(the steering vectors Zk in Equation (56) are Vandermonde vectors), 
Reddi proposed a method (Reddi 1979) to estimate the signals' di
rections based on the signal-subspace eigenvectors. 

It can be shown (Cadzow 1988) that the signal-subspace eigenvectors 
are linear combinations of Zk, k = 1,2, • • •, D: 

D 
V3 = Y.a3kZk j = 1,2, • • •, D with Xj > a2 (59) 

fc=i 

where ajk is a coefficient. 

By Equation (54) and Equation (56), Z)~ can be regarded as a sinu
soid of spatial frequency 7^ = f°ds™\e*) a nd Gf length N. Then Vj 
(j = 1, 2, • • •, D) can be regarded as a one-dimensional sequence 
composed of multiple sinusoids. 

Utilizing Equation (59), we look for signals' directions in three steps: 

• Obtain the signal-subspace eigenvectors Vj (j = 1,2, • ■ •, D) by 
CGHA. 

 C
om

pl
ex

-V
al

ue
d 

N
eu

ra
l N

et
w

or
ks

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 Y
an

w
u 

Z
ha

ng
 o

n 
07

/1
1/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



246 Y. Zhang 

• Find the frequency components 7fc (k — 1,2, ■ ■ ■ ,D) of Vj. 

• Derive 9k by relationship lk = ^ f ^ 1 (Equation (54)). 

Convergence of principal eigenvectors 

0 500 1000 1500 2000 2500 3000 
Iteration number 

Figure 3. Learning curves of the first and the second principal eigenvectors. 

Consider a 15-sensor uniform linear array. Two acoustic signals 
impinge on the array. The first signal is of normalized frequency 
/i = 0.2 (normalized by the sampling frequency) and incident angle 
91 = 10°. The second signal is of normalized frequency f2 = 0.15 
and incident angle 92 = 40°. The sensor spacing is d = \\x = |A2 
where Ai = -f- and A2 = f- are the wavelengths of the two signals, 
and c is the sound speed. Signal-to-Noise-Ratio (SNR) is 20 dB for 
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the first signal, and 14 dB for the second. Using demodulation fre
quency 0.2, the two signals are quadrature demodulated to f[ = 0 
and f2 = —0.05, respectively. 

Running CGHA, the simultaneous learning curves of the first and 
the second principal eigenvectors of Rxx are shown in Figure 3. 
The relative error of the A;th principal eigenvector is defined as 

r\ A ,• k, precise ' k.CGHA /rr\\ 
Relative error = ^r~F7 ^1 (°0) 

|| *k,precise II 

where V^predse is the precise eigenvector, and Vkt CGHA is the eigen
vector learned by CGHA. || • || denotes Euclidean norm. After 3000 
iterations, the relative errors are 2% for the first principal eigenvector 
and 1 % for the second. Using AutoRegressive (AR) modeling (Kay 
1988) to analyze the principal eigenvectors obtained with CGHA, we 
get the spatial spectra of the first and the second principal eigenvec
tors, as shown in Figure 4. 

With the first principal eigenvector, the two spectral peaks lie at spa
tial frequencies 0.087 and 0.240. By the spatial frequency definition 
in Equation (54), the peak frequencies correspond to direction esti
mates 9\ = 10.0° and #2 = 39.8°. With the second principal eigen
vector, the two spectral peaks lie at spatial frequencies 0.085 and 
0.241, corresponding to 02 = 9.8° and 62 = 40.0°. These estimates 
are very close to the true values 0\ = 10° and 02 = 40°. 

4 Conclusion 
The Complex-valued Generalized Hebbian Algorithm (CGHA) is 
presented in this chapter. Its convergence is proved. The algorithm 
can be implemented by a single-layer linear neural network. An ap
plication of CGHA to sensor array signal processing is demonstrated. 
Converged principal eigenvectors provide good estimates of signals' 
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Spatial spectrum of the 1st principal eigenvector 

0.15 0.2 0.25 0,3 0.35 
Spatial frequency 

Spatial spectrum of the 2nd principal eigenvector 

0.15 0.2 0.25 0.3 0.35 
Spatial frequency 

Figure 4. AR spectra of the first and the second eigenvectors. 

directions. 
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