Combined Agronomic and Economic Modeling in Farmers’ Determinants of Soil Fertility Management Practices: Case Study from the Semi-Arid Ethiopian Rift Valley
Abstract
:1. Introduction
Benin [23] | Pender and Gebremedhin [24] | Marenya and Barrett [26] | Kassie et al. [27] | Ketema and Bauer [25] | Teklewold et al. [28] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OF | IF | |||||||||||||
LP a | HP a | OF | IF | OF | IF | OF | IF | OF | IF | OF | IF | |||
Household-Level Factors | ||||||||||||||
gender | + | + | + | + *** | – | + ** | + * | – | + | – | + | – * | + | |
age | – | – ** | + *** | – | + | – ** | – | – ** | – | + * | – | + | + | |
education | + | – | + * | + | – | + * b | + c | + | + | + | + | nu | nu | |
off-farm | – | + | – | – | − | + *** | + * | nu | nu | nu | – | + | – | |
farm | – | – | + *** | – | – ** | + ** | + * | + | + | – *** | – | nu | nu | |
livestock | + ** | + | – *** | + d | + ** e | + * | + ** | + ** | + *** | + | + *** | + *** | + | |
labor | – ** | + | + | – | – | + *** | + ** | + | – | + * | nu | nu | nu | |
asset | nu | nu | nu | nu | nu | nu | nu | nu | nu | nu | nu | – | + *** | |
Plot-Level Factors | ||||||||||||||
ownership | – ** f | + * g | + h | nu | nu | nu | nu | + *** | + ** | + | + | + *** | – | |
slopei | + | + *** | + *** | nu | nu | nu | nu | – *** | – *** | + ** | + | – ** | + *** | |
plotsize | – | + | + *** | nu | nu | nu | nu | nu | nu. | + *** | + *** | nu | nu | |
distance | – *** | – | – ** | – *** | – ** | nu | nu | + | + ** | – * | + | + | – *** | |
Access to Markets or Services | ||||||||||||||
market | + *** j | – j | + j | + k | + k | nu | nu | + | – | nu | + | – | – | |
credit | – | – * | + *** | + m | + *** n | nu | nu | nu | nu | – | + * | – | + ** | |
extension | + | – *** | – *** | – | – | nu | nu | + *** | + *** | nu | nu | nu | nu | |
Ahmed [29] | Hassen [30] | Kassie et al. [31] | Ahmed [32] | |||||||||||
Kenya | Malawi | Ethiopia | Tanzania | |||||||||||
OF | IF | OF | IF | OF | IF | OF | IF | OF | IF | OF | IF | OF | IF | |
Household-Level Factors | ||||||||||||||
gender | nu | nu | + | – | + | – | + | + *** | + | – | – | – | – | + * |
age | – | + | – | + | + ** | – | + | – | + | – ** | + | + | + * | + ** |
education | + | + * | + | + * | + ** | + *** | + | – | – | + | – | + ** | + | + * |
off-farm | – | + | – | + *** | nu | nu | nu | nu | nu | nu | nu | nu | nu | nu |
farm | – | – | nu | nu | + | + | + | – ** | + ** | – ** | + | – * | – | + ** |
livestock | + ** | – | + *** | nu | + *** | – | + ** | + | + | + | + *** | + *** | + *** | – *** |
labor | + | – * | + *** | + | – | – | + * | – | – | – | + *** | – | nu | nu |
asset | nu | nu | + | + *** | + ** | + | – | + | – | + *** | + | + *** | nu | nu |
Plot-Level Factors | ||||||||||||||
ownership | + | + | + | + *** | + * | – | + * | + *** | + *** | + | + *** | + | + ** | – |
slopei | – *** | + | + ** | + *** | – | + | – | – | + | + ** | + | – * | nu | nu |
plotsize | + | + * | – | + | – * | + | – | + *** | – *** | + *** | + ** | – *** | nu | nu |
distance | – | – ** | – *** | – | + ** | – | – | – | – *** | + *** | + *** | + *** | – | – |
Access to Markets or Services | ||||||||||||||
market | – | + | + | – | – | + ** | + | – | – * | + | + | + *** | + l | – ** l |
credit | + | + | nu | nu | + | – | + | – | – ** | – | + | + | – | + ** |
extension | + *** | + | – *** | – | – | – | + | + | + | + | + | + | – * | + *** |
Dependent Variables Man (1 = OFs Were Applied, 0 = Otherwise) Fer (1 = IFs Were Used, 0 = Otherwise) | Expected Sign | Mean | Std. Dev. | Min. | Max. | FCCS Plots (n = 266) | CCCS Plots (n = 258) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
[1] Only OF (n = 218) | [2] Only IF (n = 5) | [3] No Amend (n = 43) | [4] Only IF (n = 153) | [5] OF + IF (n = 105) | |||||||
Independent Variables Socioeconomic Characteristics of the Sample Households | |||||||||||
zone (sub-area; 1 = MM, 0 = MD) | + | 0.50 | 0.50 | 0 | 1 | 0.56 a | 0.20 ab | 0.21 b | 0.54 a | 0.46 a | |
gender (HH head gender; 1 = male, 0 = female) | ± | 0.88 | 0.33 | 0 | 1 | 0.88 ab | 0.80 ab | 0.86 ab | 0.84 a | 0.93 b | |
training (1 = received, 0 = otherwise) a | + | 0.58 | 0.49 | 0 | 1 | 0.56 ab | 0.60 ab | 0.67 ab | 0.52 a | 0.66 b | |
off-farm (1 = engaged, 0 = otherwise) b crop (1 = FCCS, 0 = CCCS) c | ± ± | 0.29 0.51 | 0.45 0.50 | 0 0 | 1 1 | 0.30 ns 1.00 a | 0.40 ns 1.00 a | 0.35 ns 1.00 a | 0.29 ns 0.00 b | 0.26 ns 0.00 b | |
farm (total farmland holding; ha) | ± | 2.06 | 1.73 | 0.1 | 14.5 | 2.08 ab | 1.77 ab | 1.76 ab | 1.82 a | 2.48 b | |
livestock (livestock ownership level; TLU) d | + | 3.30 | 2.60 | 0 | 13.4 | 3.43 a | 1.35 ab | 2.47 b | 2.71 b | 4.32 c | |
labor (family and permanent labor force; persons) e | ± | 3.56 | 1.80 | 0 | 12.0 | 3.57 ns | 2.80 ns | 3.45 ns | 3.44 ns | 3.80 ns | |
market (distance from the nearest market; km) | ± | 2.12 | 2.11 | 0.5 | 9.0 | 2.43 ad | 0.90 b | 0.97 b | 1.76 c | 2.41 d | |
Biophysical Characteristics of the Sample Plots | |||||||||||
plotsize (size of the plot; ha) | + | 0.33 | 0.26 | 0.01 | 2.00 | 0.22 a | 0.55 b | 0.51 b | 0.39 b | 0.39 b | |
distance (commuting distance to the plot; m) | ± | 734 | 1193 | 0 | 10000 | 82 a | 3221 abc | 1453 b | 1321 b | 790 c | |
0 m ≤ 100 mf | 246 plots (47%) | 187 (86%) | 0 (0%) | 5 (12%) | 30 (20%) | 24 (16%) | |||||
100 m ≤ 1000 m | 170 plots (32%) | 28 (13%) | 1 (20%) | 22 (51%) | 67 (44%) | 52 (34%) | |||||
1000 m < | 108 plots (21%) | 3 (1%) | 4 (80%) | 16 (37%) | 56 (37%) | 29 (19%) | |||||
Types of the sample plot g | Arada | 230 plots (44%) | 218 (100%) | 0 (0%) | 12 (28%) | 0 (0%) | 0 (0%) | ||||
Masa | 258 plots (49%) | 0 (0%) | 0 (0%) | 0 (0%) | 153 (100%) | 105 (100%) | |||||
Golba | 36 plots (7%) | 0 (0%) | 5 (100%) | 31 (72%) | 0 (0%) | 0 (0%) |
Cropping Systems a | Plot No. | Main Crops | Field Types b | Soil Fertility Management Practices c | Cluster No. (Subdataset, n) | |
---|---|---|---|---|---|---|
FCCS (n = 266) | Continuous food crop cultivation | 218 | Maize, barley | Infield (arada) | [1] Continuous OF application (n = 218) | 1 (FCCS, 218) |
44 | Maize | Outfield (golba) | [3] No soil amendment on fertile golbas or onas (n = 39) [2] IF use on unfertile golbas (n = 5) | 1 (FCCS, 27) and 2 (CCCS, 17) | ||
2 (CCCS, 5) | ||||||
4 | Sorghum | Outfield (golba) | [3] No soil amendment (n = 4) | 1 (FCCS, 4) | ||
CCCS (n = 258) | Food crops and cash crops are rotationally cultivated | 258 | Food crops (sorghum, barley, beans, and peas) and cash crops (tef, wheat, haricot bean, rainfed vegetables) | Outfield (masa) | [4] Only IF use (n = 153) [5] IF and compost application (n = 105) | 2 (CCCS, 258) |
2. Materials and Methods
2.1. Study Area and Narrative Inquiry Interviews
2.2. Variable Selection
2.3. Sampling Procedure for a Semi-Structured Questionnaire Survey
2.4. Econometric Analysis
2.5. Supplementary Qualitative Data on Compost Making and Application
3. Results
3.1. Model Comparison
3.2. Determinants of Soil Fertility Management Practices
3.3. Food-Crop-Based Cropping Systems (FCCSs)
3.4. Cash-Crop-Based Cropping Systems (CCCSs)
4. Discussion
4.1. Determinants of the Soil Fertility Management Options
4.2. Reciprocal Relationship between Organic and Inorganic Fertilizers Use
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dixon, J.; Gulliver, A.; Gibbon, D. Sub-Saharan Africa. In Farming Systems and Poverty: Improving Farmers’ Livelihoods in a Changing World; Hall, M., Ed.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2001; pp. 29–80. [Google Scholar]
- Thornton, P.K.; Kruska, R.L.; Henninger, N.; Kristjanson, P.M.; Reid, R.S.; Atienp, F.; Odero, A.N.; Ndegwa, T. Mapping Poverty and Livestock in the Developing World; International Livestock Research Institute (ILRI): Nairobi, Kenya, 2002. [Google Scholar]
- Nin-Pratt, A. Agricultural Intensification and Fertilizer Use. In Agricultural Productivity in Africa-Trends, Patterns, and Determinants; Benin, S., Ed.; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2016; pp. 199–246. [Google Scholar]
- Liverpool-Tasie, L.S.O.; Jayne, T.S.; Muyanga, M.; Sanou, A. Are African Farmers Experiencing Improved Incentives to Use Fertilizer? Department of Agricultural, Food and Resource Economics, Michigan State University: East Lansing, MI, USA, 2017. [Google Scholar]
- Morris, M.; Kelly, V.A.; Kopicki, R.J.; Byerlee, D. Fertilizer Use in African Agriculture. Lessons Learned and Good Practice Guidelines; World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Bationo, A.; Waswa, B.; Kihara, J.; Adolwa, I.; Vanlauwe, B.; Saidou, K. Overview of Long Term Experiments in Africa. In Lessons Learned from Long-Term Soil Fertility Management Experiments in Africa; Bationo, A., Waswa, B., Kihara, J., Adolwa, I., Vanlauwe, B., Saidou, K., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 1–26. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Bationo, A.; Chianu, J.; Giller, K.E.; Merckx, R.; Mokwunye, U.; Ohiokpehai, O.; Pypers, P.; Tabo, R.; Shepherd, K.D.; et al. Integrated Soil Fertility Management: Operational Definition and Consequences for Implementation and Dissemination. Outlook Agric. 2010, 39, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, T.; Yamano, T. Maize, Soil Fertility, and the Green Revolution in East Africa. In An African Green Revolution; Otsuka, K., Larson, D., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 197–221. [Google Scholar] [CrossRef]
- Sheahan, M.; Black, R.; Jayne, T.S. Are Kenyan Farmers Under-Utilizing Fertilizer? Implications for Input Intensification Strategies and Research. Food Policy 2013, 41, 39–52. [Google Scholar] [CrossRef]
- Liverpool-Tasie, L.S.O.; Omonona, B.T.; Sanou, A.; Ogunleye, W.O. Is Increasing Inorganic Fertilizer Use for Maize Production in SSA a Profitable Proposition? Evidence from Nigeria. Food Policy 2017, 67, 41–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, W.J.; Jayne, T.S.; Black, J.R. Factors Explaining the Low and Variable Profitability of Fertilizer Application to Maize in Zambia. Agric. Econ. 2017, 48, 115–126. [Google Scholar] [CrossRef]
- Burke, W.J.; Frossard, E.; Kabwe, S.; Jayne, T.S. Understanding Fertilizer Adoption and Effectiveness on Maize in Zambia. Food Policy 2019, 86, 101721. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Kihara, J.; Chivenge, P.; Pypers, P.; Coe, R.; Six, J. Agronomic Use Efficiency of N Fertilizer in Maize-Based Systems in Sub-Saharan Africa within the Context of Integrated Soil Fertility Management. Plant Soil 2011, 339, 35–50. [Google Scholar] [CrossRef]
- Tittonell, P.; Vanlauwe, B.; Leffelaar, P.A.; Shepherd, K.D.; Giller, K.E. Exploring Diversity in Soil Fertility Management of Smallholder Farms in Western Kenya. II. Within-Farm Variability in Resource Allocation, Nutrient Flows and Soil Fertility Status. Agric. Ecosyst. Environ. 2005, 110, 166–184. [Google Scholar] [CrossRef]
- Turner, M.D.; Hiernaux, P. The Effects of Management History and Landscape Position on Inter-Field Variation in Soil Fertility and Millet Yields in Southwestern Niger. Agric. Ecosyst. Environ. 2015, 211, 73–83. [Google Scholar] [CrossRef]
- Zingore, S.; Murwira, H.K.; Delve, R.J.; Giller, K.E. Soil Type, Historical Management and Current Resource Allocation: Three Dimensions Regulating Variability of Maize Yields and Nutrient Use Efficiencies on African Smallholder Farms. Field Crops Res. 2007, 101, 296–305. [Google Scholar] [CrossRef]
- Omamo, S.W.; Williams, J.C.; Obare, G.A.; Ndiwa, N.N. Soil Fertility Management on Small Farms in Africa: Evidence from Nakuru District, Kenya. Food Policy 2002, 27, 159–170. [Google Scholar] [CrossRef]
- Waithaka, M.M.; Thornton, P.K.; Shepherd, K.D.; Ndiwa, N.N. Factors Affecting the Use of Fertilizers and Manure by Smallholders: The Case of Vihiga, Western Kenya. Nutr. Cycl. Agroecosys. 2007, 78, 211–224. [Google Scholar] [CrossRef]
- de Jager, A.; Kariuku, I.; Matiri, F.M.; Odendo, M.; Wanyama, J.M. Monitoring Nutrient Flows and Economic Performance in African Farming Systems (NUTMON). IV. Linking Nutrient Balances and Economic Performance in Three Districts in Kenya. Agric. Ecosyst. Environ. 1998, 71, 81–92. [Google Scholar] [CrossRef]
- Tittonell, P.; Shepherd, K.D.; Vanlauwe, B.; Giller, K.E. Unravelling the Effects of Soil and Crop Management on Maize Productivity in Smallholder Agricultural Systems of Western Kenya-An Application of Classification and Regression Tree Analysis. Agric. Ecosyst. Environ. 2008, 123, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Mugwe, J.; Mugendi, D.N.; Mucheru-Muna, M.; Merckx, R.; Chianu, J.N.; Vanlauwe, B. Determinants of the Decision to Adopt Integrated Soil Fertility Management Practices by Smallholder Farmers in the Central Highlands of Kenya. Exp. Agric. 2009, 45, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Mukai, S. Data on Farmers’ Determinants of Manure and Inorganic Fertilizer Use in the Semi-Arid Ethiopian Rift Valley. Data Br. 2017, 14, 804–812. [Google Scholar] [CrossRef]
- Benin, S. Policies and Programs Affecting Land Management Practices, Input Use, and Productivity in the Highlands of Amhara Region, Ethiopia. In Strategies for Sustainable Land Management in the East African Highlands; Pender, J., Frank, P., Ehui, S.K., Eds.; IFPRI: Washington, DC, USA, 2006; pp. 217–256. [Google Scholar]
- Pender, J.; Gebremedhin, B. Land Management, Crop Production, and Household Income in the Highlands of Tigray, Northern Ethiopia: An Econometric Analysis. In Strategies for Sustainable Land Management in the East African Highlands; Pender, J., Place, F., Ehui, S.K., Eds.; IFPRI: Washington, DC, USA, 2006; pp. 107–140. [Google Scholar]
- Ketema, M.; Bauer, S. Determinants of Manure and Fertilizer Applications in Eastern Highlands of Ethiopia. Q. J. Int. Agric. 2011, 50, 237–252. [Google Scholar] [CrossRef]
- Marenya, P.P.; Barrett, C.B. Household Level Determinants of Adoption of Improved Natural Resources Management Practices among Smallholder Farmers in Western Kenya. Food Policy 2007, 32, 515–536. [Google Scholar] [CrossRef]
- Kassie, M.; Zikhali, P.; Manjur, K.; Edwards, S. Adoption of Sustainable Agriculture Practices: Evidence from a Semi-Arid Region of Ethiopia. Nat. Resour. Forum 2009, 33, 189–198. [Google Scholar] [CrossRef]
- Teklewold, H.; Kassie, M.; Shiferaw, B. Adoption of Multiple Sustainable Agricultural Practices in Rural Ethiopia. J. Agric. Econ. 2013, 64, 597–623. [Google Scholar] [CrossRef]
- Ahmed, M.H. Adoption of Multiple Agricultural Technologies in Maize Production of the Central Rift Valley of Ethiopia. Stud. Agric. Econ. 2015, 117, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Hassen, S. Disadoption, Substitutability, and Complementarity of Agricultural Technologies: A Random Effects Multivariate Probit Analysis; Environment for Development Centers: Washington, DC, USA, 2015. [Google Scholar]
- Kassie, M.; Teklewold, H.; Jaleta, M.; Marenya, P.P.; Erenstein, O. Understanding the Adoption of a Portfolio of Sustainable Intensification Practices in Eastern and Southern Africa. Land Use Policy 2015, 42, 400–411. [Google Scholar] [CrossRef]
- Ahmed, M.H.; Geleta, K.M.; Tazeze, A.; Mesfin, H.M.; Tilahun, E.A. Cropping Systems Diversification, Improved Seed, Manure and Inorganic Fertilizer Adoption by Maize Producers of Eastern Ethiopia. J. Econ. Struct. 2017, 6, 6–31. [Google Scholar] [CrossRef] [Green Version]
- Belderbos, R.; Carree, M.; Diederen, B.; Lokshin, B.; Veugelers, R. Heterogeneity in R&D Cooperation Strategies. Int. J. Ind. Organ. 2004, 22, 1237–1263. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, B.; Geisseler, D.; Michel, K.; Joergensen, R.G.; Schulz, E.; Merbach, I.; Raupp, J.; Rauber, R.; Hu, K.; Niu, L.; et al. Effects of Fertilization and Soil Management on Crop Yields and Carbon Stabilization in Soils. A Review. Agron. Sustain. Dev. 2011, 31, 361–372. [Google Scholar] [CrossRef] [Green Version]
- Kibunja, C.N.; Mwaura, F.B.; Mugendi, D.N.; Wamae, D.K.; Bationo, A. Long-Term Land Management Effects on Crop Yields and Soil Properties in the Sub-Humid Highlands of Kenya. In Innovations as Key to the Green Revolution in Africa: Exploring the Scientific Facts; Bationo, A., Okeyo, J.M., Waswa, B.S., Mapfumo, P., Maina, F., Kihara, J., Eds.; Centro Internacional de Agricultura Tropical (CIAT), Tropical Soil Biology and Fertility (TSBF): Nairobi, Kenya, 2007; pp. 169–174. [Google Scholar]
- Kihanda, F.M.; Warren, G.P.; Micheni, A.N. Effect of Manure Application on Crop Yield and Soil Chemical Properties in a Long-Term Field Trial of Semi-Arid Kenya. Nutr. Cycl. Agroecosystems 2006, 76, 341–354. [Google Scholar] [CrossRef]
- Alem, Y.; Bezabihb, M.; Kassie, M.; Zikhalic, P. Does Fertilizer Use Respond to Rainfall Variability? Panel Data Evidence from Ethiopia. Agric. Econ. 2010, 41, 165175. [Google Scholar] [CrossRef] [Green Version]
- Ano, A.O.; Ubochi, C.I. Neutralization of Soil Acidity by Animal Manures: Mechanism of Reaction. Afr. J. Biotechnol. 2007, 6, 364–368. [Google Scholar] [CrossRef]
- International Centre for Development Oriented Research in Agriculture (ICRA). Livelihood and Drought Coping Strategies of Farm Households in the Central Rift Valley, Ethiopia: Challenges for Agricultural Research; ICRA: Wageningen, The Netherlands, 1999. [Google Scholar]
- Cohen, L.; Manion, L.; Morrison, K. Research Methods in Education, 6th ed.; Psychology Press: London, UK, 2007. [Google Scholar]
- Wooldridge, J.M. Introductory Economics: A Modern Approach, 4th ed.; South-Western Cengage Learning: Mason, OH, USA, 2009. [Google Scholar]
- Twumasi-Afriyie, S.; Zelleke, H.; Yihun, K.; Asefa, B.; Tariku, S. Development and Improvement of Highland Maize in Ethiopia. In Enhancing the Contribution of Maize to Food Security in Ethiopia, Proceedings of the Second National Maize Workshop of Ethiopia, Addis Ababa, Ethiopia, 12–16 November 2001; Nigussie, M., Tanner, D., Twumasi-Afriyie, S., Eds.; Ethiopian Institute of Agricultural Research (EIAR) and International Maize and Wheat Improvement Center (CYMMIT): Addis Ababa, Ethiopia, 2002; pp. 31–38. [Google Scholar]
- Central Statistical Agency (CSA); Ethiopian Agricultural Sample Enumeration, 2001/02, Oromia Region, Statistical Report on Socio-Economic Characteristics of the Population in Agricultural Households, Land Use, and Area and Production of Crops, Part 1; CSA: Addis Ababa, Ethiopia, 2003.
- Clandinin, D.J.; Huber, J. Narrative Inquiry: Toward Understanding Life’s Artistry. Curric. Inq. 2002, 32, 161–169. [Google Scholar] [CrossRef]
- Patton, M.Q. Qualitative Research and Evaluation Methods, 3rd ed.; Sage Publications: Thousand Oaks, CA, USA, 2002. [Google Scholar]
- Cope, M. Coding Transcripts and Diaries. In Key Methods in Geography, 2nd ed.; Clifford, N., Valentine, G., Eds.; Sage Publications: Thousand Oaks, CA, USA, 2003; pp. 440–452. [Google Scholar]
- Debelle, T.; Bogale, T.; Negassa, W.; Worayehu, T.; Liben, M.; Mesfin, T.; Mekonen, B.; Mazengia, W. A Review of Fertilizer Management Research on Maize in Ethiopia. In Enhancing the Contribution of Maize to Food Security in Ethiopia, Proceedings of the Second National Maize Workshop of Ethiopia, Addis Ababa, Ethiopia, 12–16 November 2001; Nigussie, M., Tanner, D., Twumasi-Afriyie, S., Eds.; Ethiopian Institute of Agricultural Research (EIAR) and International Maize and Wheat Improvement Center (CYMMIT): Addis Ababa, Ethiopia, 2002; pp. 46–55. [Google Scholar]
- Mukai, S. Assessment of Long-Term Soil Dynamics at Manured Fields with Field Measurement and Interviews: A Case Study in the Semi-Arid Ethiopian Rift Valley. Agroecol. Sustain. Food Syst. 2019, 43, 261–273. [Google Scholar] [CrossRef]
- Mukai, S.; Oyanagi, W. Evaluation on Maturity and Stability of Organic Fertilizers in Semi-Arid Ethiopian Rift Valley. Sci. Rep. 2021, 11, 4035. [Google Scholar] [CrossRef]
- Ketema, S. Tef. Eragrostis Tef (Zucc.). Trotter; Gatersleben & International Plant Genetic Resources Institute: Rome, Italy, 1997. [Google Scholar]
- Mamo, T.; Erkossa, T.; Tulema, B. Soil Fertility and plant Nutrition Research on Tef in Ethiopia. In Narrowing the Rift: Tef Research and Development; Tefera, H., Belay, G., Sorrels, M., Eds.; EIAR: Addis Ababa, Ethiopia, 2001; pp. 191–200. [Google Scholar]
- van Delden, S.H.; Vos, J.; Ennos, A.R.; Stomph, T.J. Analysing Lodging of the Panicle Bearing Cereal teff (Eragrostis Tef). New Phytol. 2010, 186, 696–707. [Google Scholar] [CrossRef]
- Landon, J.R. Booker Tropical Soil Manual. A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Sub Tropics; John Wiley and Sons: New York, NY, USA, 2014. [Google Scholar]
- Abebe, T.; Manetti, P.; Bonini, M.; Corti, G.; Innocenti, F.; Mazzanini, F. Geological Map of the Northern Main Ethiopian Rift, Map and Chart Series; Geological Society of America: Boulder, CO, USA, 2005. [Google Scholar]
- Alemayehua, K.; Shelemea, B.; Schoenau, J. Phosphorus Fractions in Sodic Soils of the Great Ethiopian Rift Valley Soils as Affected by Reclamation. Commun. Soil Sci. Plant Anal. 2017, 48, 2477–2484. [Google Scholar] [CrossRef]
- Mesfin, H. Characterization of Agricultural Soils of Meki and Adamitulu in the Central Rift Valley of Ethiopia. Acad. Res. J. Agric. Sci. Res. 2020, 8, 12–23. [Google Scholar] [CrossRef]
- Alemayehu, K.; Sheleme, B.; Schoenau, J. Characterization of Problem Soils in and around the South Central Ethiopian Rift Valley. J. Soil Sci. Environ. Manag. 2016, 7, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Mukai, S.; Oyanagi, W. Decomposition Characteristics of Indigenous Organic Fertilizers and Introduced Quick Compost and their Short-Term Nitrogen Availability in the Semi-Arid Ethiopian Rift Valley. Sci. Rep. 2019, 9, 16000. [Google Scholar] [CrossRef] [Green Version]
- Mukai, S. Historical Role of Manure Application and its Influence on Soil Nutrients and Maize Productivity in the Semi-Arid Ethiopian Rift Valley. Nutr. Cycl. Agroecosys. 2018, 111, 127–139. [Google Scholar] [CrossRef]
- Mkhabela, T.S.; Materechera, S.A. Factors Influencing the Utilization of Cattle and Chicken Manure for Soil Fertility Management by Emergent Farmers in the Moist Midlands of KwaZulu-Natal Province, South Africa. Nutr. Cycl. Agroecosys. 2003, 65, 151–162. [Google Scholar] [CrossRef]
- Kihanda, F.M.; Warren, G.P.; Atwal, S.S. The influence of goat manure application on crop yield and soil nitrate variations in semi-arid eastern Kenya. In Managing Nutrient Cycles to Sustain Soil Fertility in Sub-Saharan Africa; Bationo, A., Ed.; Academy Science Publishers: Nairobi, Kenya, 2004; pp. 173–186. [Google Scholar]
- Grimes, R.C.; Clarke, R.T. Continuous Arable Cropping with the Use of Manure and Fertilizers. East Afr. Agric. For. J. 1962, 28, 74–80. [Google Scholar] [CrossRef]
- CSA. Ethiopia-Population and Housing Census; CSA: Addis Ababa, Ethiopia, 1984. [Google Scholar]
- CSA. Ethiopia-Population and Housing Census; CSA: Addis Ababa, Ethiopia, 1994. [Google Scholar]
- CSA. The 2005 National Statistics. Section-B Population; CSA: Addis Ababa, Ethiopia, 2005. [Google Scholar]
- CSA. Ethiopia-Population and Housing Census; CSA: Addis Ababa, Ethiopia, 2010. [Google Scholar]
- CSA. Population Projection of Ethiopia for All Regions at Wereda Level from 2014–2017; CSA: Addis Ababa, Ethiopia, 2013. [Google Scholar]
- Scott, M.; Smith, P. Determining Sample Size. Market Research Ebook; Qualtrics: Provo, UT, USA, 2020. [Google Scholar]
- Maddala, G.S. Limited-Dependent and Qualitative Variables in Econometrics; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Cappellari, L.; Jenkins, S. Multivariate Probit Regression Using Simulated Maximum Likelihood. Stata J. 2003, 3, 278–294. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, J.S. Long-Range Forecasting: From Crystal Ball to Computer, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 1985. [Google Scholar]
- Greene, W.H. Econometric Analysis, 5th ed.; Pearson Education: London, UK, 2000. [Google Scholar]
- Hernán, M.A.; Robins, J.M. Causal Inference: What If; Chapman & Hall/CRC: Boca Raton, FL, USA, 2020. [Google Scholar]
Benin [23] | Pender and Gebremedhin [24] | Marenya and Barrett [26] | Kassie et al. [27] | Ketema and Bauer [25] | Teklewold et al. [28] | Ahmed [29] | Hassen [30] | Ahmed [32] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Farming systems | Highland temperate mixed | Highland temperate mixed | Maize mixed | Highland temperate mixed | Maize mixed | Highland temperate mixed | Agro-pastoral maize mixed | Highland temperate mixed | Maize mixed | |||||||||
Crops | FC | CC | FC | CC | FC | CC | FC | CC | FC | CC | FC | CC | FC | CC | FC | CC | FC | CC |
Ba, Ma, Wh, Be | Tef, Wh, Ma, Be | Ba, Wh, Be | Wh, Be | Ma, Be | Tea, Cof | Ba, Wh | Wh, Be | Ma, So | Cha, Cof | Ba, So, Ma, Wh, Be | Tef, Wh, Ma, Be | Ma (71%) | Ma (21%) | Ba, So, Wh, Be | Tef, Wh, Be | Ma (77–83%) | Ma (5–10%) |
Crop | Cultivated Area (ha) | Percent Utilized for (%) | ||
---|---|---|---|---|
House Consumption | Sale | Others | ||
Tef | 23,752 | 31 | 54 | 16 |
Maize | 21,915 | 74 | 14 | 12 |
Haricot beans | 8431 | 14 | 75 | 11 |
Sorghum | 6334 | 73 | 16 | 11 |
Wheat | 3422 | 58 | 16 | 26 |
Field peas | 3789 | 55 | 23 | 21 |
Barley | 2775 | 56 | 16 | 28 |
Horse beans | 442 | 73 | 11 | 16 |
Lentils | 408 | 71 | 21 | 8 |
Model 1 (Pooled Dataset, n = 524) | Model 2 (Pooled Dataset, n = 524) | Model 3 (FCCS Subdataset, n = 250) | Model 4 (CCCS Subdataset, n = 274) | |||||
---|---|---|---|---|---|---|---|---|
OFs (Man) | IFs (Fer) | OFs (Man) | IFs (Fer) | OFs (Man) | IFs (Fer) | OFs (Man) | IFs (Fer) | |
zone | 0.01 (0.15) | 0.10 (0.34) | −0.06 (0.14) | 0.19 (0.13) | 0.52 (0.36) | −0.37 (2.30) | −0.33 * (0.18) | 0.39 (0.56) |
gender | 0.21 (0.21) | 0.36 (0.47) | 0.21 (0.20) | −0.05 (0.18) | −0.56 (0.47) | 2.03 (2.66) | 0.41 (0.29) | 0.91 (0.72) |
training | 0.03 (0.14) | 0.23 (0.32) | 0.02 (0.13) | 0.03 (0.12) | −0.37 (0.34) | −0.30 (0.96) | 0.23 (0.17) | 0.28 (0.51) |
off-farm | −0.07 (0.16) | 0.20 (0.36) | −0.03 (0.15) | −0.07 (0.13) | 0.10 (0.32) | 0.50 (0.82) | −0.09 (0.20) | −0.46 (0.69) |
crop | 1.06 *** (0.15) | −4.52 *** (0.37) | not used | not used | not used a | not used a | −7.18 (37,036.70) | −13.01 (910,950.00) |
farm | 0.13 *** (0.05) | 0.03 (0.10) | 0.12 *** (0.05) | 0.03 (0.03) | 0.22 (0.18) | −0.16 (0.52) | 0.13 ** (0.06) | 0.24 (0.33) |
livestock | 0.12 *** (0.03) | −0.11 (0.07) | 0.09 *** (0.03) | −0.05 (0.04) | 0.26 *** (0.10) | −0.19 (0.19) | 0.12 *** (0.04) | −0.26 * (0.15) |
labor | −0.03 (0.05) | 0.04 (0.10) | 0.00 (0.04) | 0.01 (0.03) | 0.00 (0.13) | 0.08 (0.34) | −0.05 (0.05) | 0.31 (0.21) |
market | 0.12 *** (0.04) | 0.03 (0.09) | 0.11 *** (0.04) | 0.03 (0.09) | 0.23 * (0.12) | −0.03 (0.36) | 0.09 * (0.05) | 0.11 (0.22) |
plotsize | −1.03 *** (0.30) | 0.57 (0.56) | −1.22 *** (0.28) | 0.81 (0.24) | −1.26 ** (0.62) | 1.50 (1.91) | 0.23 (0.49) | 0.55 (4.50) |
distance | −0.00 *** (0.00) | 0.00 *** (0.00) | −0.00 *** (0.00) | 0.00 *** (0.00) | −0.00 *** (0.00) | 0.00 ** (0.00) | −0.00 *** (0.00) | −0.00 (0.00) |
Log-likelihood | −261.52 | −540.89 | −50.85 | −163.96 | ||||
ρb | 0.00 (0.22) | −0.56 (0.07) *** | −0.72 (1.32) | 0.90 (0.75) | ||||
BIC | 679.57 | 1225.80 | 228.69 | 473.86 | ||||
LR testc | χ2 (1) = 0.004, p > χ2 = 0.985 | χ2 (1) = 46.292, p > χ2 = 0.000 | χ2 (1) = 0.109, p > χ2 = 0.741 | χ2 (1) = 0.358, p > χ2 = 0.358 |
Model 3 (FCCS Subdataset) | Model 4 (CCCS Subdataset) | |||
---|---|---|---|---|
OFs (man) | IFs (fer) | OFs (man) | IFs (fer) | |
zone | 0.04 (0.03) | −0.00 (0.00) | −0.09 (0.06) | 0.03 (0.02) |
gender | −0.03 (0.02) | 0.00 (0.00) | 0.13 (0.09) | 0.01 (0.04) |
training | −0.03 (0.02) | −0.00 (0.00) | 0.09 (0.06) | −0.00 (0.00) |
off-farm | 0.01 (0.02) | 0.00 (0.00) | −0.04 (0.07) | −0.01 (0.02) |
farm | 0.02 (0.01) | −0.00 (0.00) | 0.05 ** (0.02) | 0.00 (0.00) |
livestock | 0.02 *** (0.01) | −0.00 (0.00) | 0.04 *** (0.01) | −0.00 (0.00) |
labor | 0.00 (0.01) | 0.00 (0.00) | −0.02 (0.02) | −0.00 (0.00) |
market | 0.02 * (0.01) | −0.00 (0.00) | 0.03 * (0.02) | 0.01 (0.01) |
plotsize | −0.09 ** (0.05) | 0.00 (0.00) | −0.13 (0.15) | −0.08 (0.04) |
distance | −0.00 *** (0.00) | 0.00 ** (0.00) | −0.00 *** (0.00) | −0.00 (0.00) |
FCCS Compost-Application Plots (n = 106) | CCCS Compost-Application Plots (n = 105) | |
---|---|---|
Frequency of compost application Every year Once every two years or more | 1.1 ± 0.5 96 (91) 10 (9) | 1.3 ± 0.7 86 (82) 19 (18) |
Continuous compost application years | 14 ± 12 | 11 ± 10 |
from whom the sample household heads acquired compost application techniques a Administration Relatives Neighbors Others | 29 (27) 65 (61) 11 (10) 3 (3) | 35 (33) 57 (54) 16 (15) 2 (2) |
Total compost application area (ha) Compost application area in a year (ha) | 0.28 ± 0.25 0.24 ± 0.23 | 0.66 ± 0.47 0.40 ± 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukai, S. Combined Agronomic and Economic Modeling in Farmers’ Determinants of Soil Fertility Management Practices: Case Study from the Semi-Arid Ethiopian Rift Valley. Agriculture 2023, 13, 281. https://doi.org/10.3390/agriculture13020281
Mukai S. Combined Agronomic and Economic Modeling in Farmers’ Determinants of Soil Fertility Management Practices: Case Study from the Semi-Arid Ethiopian Rift Valley. Agriculture. 2023; 13(2):281. https://doi.org/10.3390/agriculture13020281
Chicago/Turabian StyleMukai, Shiro. 2023. "Combined Agronomic and Economic Modeling in Farmers’ Determinants of Soil Fertility Management Practices: Case Study from the Semi-Arid Ethiopian Rift Valley" Agriculture 13, no. 2: 281. https://doi.org/10.3390/agriculture13020281
APA StyleMukai, S. (2023). Combined Agronomic and Economic Modeling in Farmers’ Determinants of Soil Fertility Management Practices: Case Study from the Semi-Arid Ethiopian Rift Valley. Agriculture, 13(2), 281. https://doi.org/10.3390/agriculture13020281