A Rule-Based Agent for Unmanned Systems with TDGG and VGD for Online Air Target Intention Recognition
Abstract
:1. Introduction
2. Definition of Intention Space and Intention Parameters
3. Proposed Method
3.1. Online Intention Recognition Task Methodology for Unmanned Systems
3.2. Information Access
3.3. Intention Recognition
3.3.1. Construction of TDGG
3.3.2. Formation Identification
3.3.3. Intention Recognition of Air Formation
3.3.4. Intention Recognition of the Remaining Targets
4. Instance and Simulation
4.1. Instance Analysis
4.1.1. Data Preparation
4.1.2. Experiment and Analysis
4.2. Simulation Experiment
4.2.1. Experimental Design
4.2.2. Simulation and Analysis
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
DURC Statement
Conflicts of Interest
References
- Zhou, K.; Wei, R.; Xu, Z.; Zhang, Q.; Lu, H.; Zhang, G. An air combat decision learning system based on a brain-like cognitive mechanism. Cogn. Comput. 2020, 12, 128–139. [Google Scholar] [CrossRef]
- Kumar, P.; Perrollaz, M.; Lefevre, S.; Laugier, C. Learning-based approach for online lane change intention prediction. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, Australia, 23–26 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 797–802. [Google Scholar]
- Lee, H.; Choi, B.J.; Kim, C.O.; Kim, J.S.; Kim, J.E. Threat evaluation of enemy air fighters via neural network-based Markov chain modeling. Knowl.-Based Syst. 2017, 116, 49–57. [Google Scholar] [CrossRef]
- Petrovic, I.; Kankaras, M. DEMATEL-AHP multi-criteria decision making model for the selection and evaluation of criteria for selecting an aircraft for the protection of air traffic. Decis. Making Appl. Manag. Eng. 2018, 2, 93–110. [Google Scholar]
- Zhou, T.; Chen, M.; Yang, C.; Nie, Z. Data fusion using Bayesian theory and reinforcement learning method. Inf. Sci. 2020, 63, 170209. [Google Scholar] [CrossRef]
- Zhang, Z.; Qu, Y.; Liu, H. Air Target Intention Recognition Based on Further Clustering and Sample Expansion. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 3565–3569. [Google Scholar]
- Noble, D.F. Schema-based knowledge elicitation for planning and situation assessment aids. IEEE Trans. Syst. Man Cybern. 1989, 19, 473–482. [Google Scholar] [CrossRef]
- Jiang, W.; Han, D.; Fan, X.; Duanmu, D. Research on Threat Assessment Based on Dempster-Shafer Evidence Theory. In Green Communications and Networks: Proceedings of the International Conference on Green Communications and Networks (GCN 2011); Springer: Dordrecht, The Netherlands, 2012; pp. 975–984. [Google Scholar]
- Carling, R.L. Naval situation assessment using a real-time knowledge-based system. Nav. Eng. J. 2010, 111, 108–113. [Google Scholar] [CrossRef]
- Geng, T.; Zhang, A.; Lu, G. Consensus intuitionistic fuzzy group decision-making method for aircraft cockpit display and control system evaluation. J. Syst. Eng. Electron. 2013, 24, 634–641. [Google Scholar] [CrossRef]
- Qing, J.; Xiantai, G.; Weidong, J.; Nanfang, W. Intention recognition of aerial targets based on Bayesian optimization algorithm. In Proceedings of the 2017 2nd IEEE International Conference on Intelligent Transportation Engineering (ICITE), Singapore, 1–3 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 356–359. [Google Scholar]
- Zhang, W.; Yang, F.; Liang, Y. A Bayesian Framework for Joint Target Tracking, Classification, and Intent Inference. IEEE Access 2019, 7, 66148–66156. [Google Scholar] [CrossRef]
- Gonzalez-Diaz, I.; Benois-Pineau, J.; Domenger, J.P.; Cattaert, D.; de Rugy, A. Perceptually-guided deep neural networks for ego-action prediction: Object grasping. Pattern Recognit. 2019, 88, 223–235. [Google Scholar] [CrossRef]
- Cevikalp, H.; Benligiray, B.; Gerek, O.N. Semi-supervised robust deep neural networks for multi-label image classification. Pattern Recognit. 2020, 100, 107164. [Google Scholar] [CrossRef]
- Basha, S.S.; Dubey, S.R.; Pulabaigari, V.; Mukherjee, S. Impact of fully connected layers on performance of convolutional neural networks for image classification. Neurocomputing 2020, 378, 112–119. [Google Scholar] [CrossRef]
- Yin, R.; Li, K.; Zhang, G.; Lu, J. A deeper graph neural network for recommender systems. Knowl.-Based Syst. 2019, 185, 105020. [Google Scholar] [CrossRef]
- Shi, H.; Qin, C.; Xiao, D.; Zhao, L.; Liu, C. Automated heartbeat classification based on deep neural network with multiple input layers. Knowl.-Based Syst. 2020, 188, 105036. [Google Scholar] [CrossRef]
- Fong, I.H.; Li, T.; Fong, S.; Wong, R.K.; Tallón-Ballesteros, A.J. Predicting concentration levels of air pollutants by transfer learning and recurrent neural network. Knowl.-Based Syst. 2020, 192, 105622. [Google Scholar] [CrossRef]
- Chen, L.; Huang, H.; Feng, Y.; Cheng, G.; Huang, J.; Liu, Z. Active one-shot learning by a deep Q-network strategy. Neurocomputing 2020, 383, 324–335. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, M.; Wu, Q.; Chen, S. Prediction of unmanned aerial vehicle target intention under incomplete information. SCIENTIA SINICA Inform. 2020, 50, 704–717. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, M.; Chen, S.; Zou, J. Intention prediction of aerial target under incomplete information. ICIC Express Lett. Part B Appl. Int. J. Res. Surv. 2017, 8, 623–631. [Google Scholar]
- Zhou, T.; Chen, M.; Wang, Y.; He, J.; Yang, C. Information Entropy-Based Intention Prediction of Aerial Targets under Uncertain and Incomplete Information. Entropy 2020, 22, 279. [Google Scholar] [CrossRef]
- Jianzhi, X. Research on Hierarchical Clustering Algorithm for Target Grouping of Anti-ship Missiles. Tactical Missile Technol. 2008, 3, 76–79. [Google Scholar]
- Verma, S.; Verma, P.; Bhatnagar, V.S. Virtual Split Dictionary for Search Optimization. U.S. Patent Application, No. 14/314,032, 28 July 2020. [Google Scholar]
- Fan, Z.; Zhang, D.; Wang, X.; Zhu, Q.; Wang, Y. Virtual dictionary based kernel sparse representation for face recognition. Pattern Recognit. 2018, 76, 1–13. [Google Scholar] [CrossRef]
- Ivanisevic, J.; Benton, H.P.; Rinehart, D.; Epstein, A.; Kurczy, M.E.; Boska, M.D.; Gendelman, H.E.; Siuzdak, G. An interactive cluster heat map to visualize and explore multidimensional metabolomic data. Metabolomics 2015, 11, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- Lahari, K.; Supriya, M. Parallelized Heat Map Algorithm Using Multiple Cores. In ICDSMLA 2019: Proceedings of the 1st International Conference on Data Science, Machine Learning and Applications; Springer: Singapore, 2020; pp. 602–610. [Google Scholar]
- Nahir, Y.A. The trihedral angle. Int. J. Math. Educ. Sci. Technol. 1998, 29, 65–82. [Google Scholar] [CrossRef]
- Qu, C.; Guo, Z.; Xia, S.; Zhu, L. Intention recognition of aerial target based on deep learning. Evol. Intell. 2024, 17, 303–311. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Fang, L.; Peng, C.; Wang, W.; Xiong, H. Efficient Blockchain-Assisted Distributed Identity-Based Signature Scheme for Integrating Consumer Electronics in Metaverse. IEEE Trans. Consum. Electron. 2024, 70, 3770–3780. [Google Scholar] [CrossRef]
- Wang, W.; Han, Z.; Gadekallu, T.R.; Raza, S.; Tanveer, J.; Su, C. Lightweight Blockchain-Enhanced Mutual Authentication Protocol for UAVs. IEEE Internet Things J. 2024, 11, 9547–9557. [Google Scholar] [CrossRef]
- Xie, Q.; Jiang, S.; Jiang, L.; Huang, Y.; Zhao, Z.; Khan, S.; Wu, K. Efficiency optimization techniques in privacy-preserving federated learning with homomorphic encryption: A brief survey. IEEE Internet Things J. 2024, 11, 24569–24580. [Google Scholar] [CrossRef]
Index | t | Unit | ||
---|---|---|---|---|
1 | 0.63 | 0.35 | 56 | J16-01E |
2 | 0.46 | 0.57 | 60 | *-01E |
3 | 0.35 | 0.36 | 35 | J16-02E |
4 | 0.32 | 0.54 | 50 | J16-03E |
5 | 0.94 | 0.25 | 59 | S25-02E |
6 | 1.14 | 0.99 | 92 | J16-04E |
7 | 0.92 | 0.65 | 135 | S25-01E |
8 | 0.88 | 1.64 | 178 | S25-03E |
9 | 1.39 | 0.58 | 84 | *-02E |
10 | 1.42 | 0.70 | 181 | J16-06E |
11 | 1.30 | 0.61 | 134 | J16-07E |
12 | 1.44 | 1.12 | 140 | S25-04E |
13 | 1.39 | 1.30 | 1794 | S25-05E |
14 | 1.48 | 1.29 | 185 | *-03E |
15 | 1.56 | 1.21 | 175 | S25-07E |
16 | 1.37 | 1.19 | 181 | S25-08E |
17 | 0.82 | 0.35 | 325 | J16-08E |
18 | 0.98 | 0.39 | 291 | S25-09E |
19 | 1.30 | 0.31 | 46 | T15-01E |
20 | 0.60 | 1.57 | – | B11-01E |
Index | Unit | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.71 | 0.58 | 0.67 | 0.56 | 0.44 | 0.56 | 0.68 | 0.74 | 0.73 | 0.35 | J16-01E |
2 | 0.27 | 0.32 | 0.42 | 0.37 | 0.66 | 0.35 | 0.27 | 0.28 | 0.37 | 0.26 | *-01E |
3 | 0.47 | 0.64 | 0.36 | 0.58 | 0.26 | 0.27 | 0.53 | 0.34 | 0.28 | 0.55 | J16-02E |
4 | 0.37 | 0.59 | 0.68 | 0.63 | 0.71 | 0.72 | 0.72 | 0.35 | 0.66 | 0.73 | J16-03E |
5 | 0.92 | 0.22 | 0.88 | 0.15 | 0.84 | 0.10 | 0.89 | 0.12 | 1.04 | 0.15 | S25-02E |
6 | 1.15 | 0.87 | 1.16 | 0.77 | 1.17 | 0.69 | 1.17 | 0.57 | 1.18 | 0.46 | J16-04E |
7 | 0.98 | 0.58 | 1.02 | 0.53 | 1.09 | 0.47 | 1.14 | 0.54 | 1.20 | 0.47 | S25-01E |
8 | 0.93 | 1.64 | 1.03 | 1.63 | 1.10 | 1.61 | 1.23 | 1.62 | 1.31 | 1.62 | S25-03E |
9 | 1.30 | 0.49 | 1.19 | 0.61 | 1.12 | 0.48 | 1.30 | 0.49 | 1.47 | 0.48 | *-02E |
10 | 1.39 | 0.85 | 1.22 | 0.79 | 1.35 | 0.71 | 1.48 | 0.85 | 1.29 | 0.87 | J16-06E |
11 | 1.34 | 0.76 | 1.44 | 0.65 | 1.47 | 0.85 | 1.09 | 0.84 | 1.10 | 0.60 | J16-07E |
12 | 1.30 | 1.04 | 1.21 | 1.11 | 1.39 | 1.22 | 1.30 | 1.17 | 1.21 | 1.01 | S25-04E |
13 | 1.57 | 1.27 | 1.60 | 1.44 | 1.46 | 1.39 | 1.26 | 1.30 | 1.31 | 1.44 | S25-05E |
14 | 1.54 | 1.34 | 1.61 | 1.26 | 1.62 | 1.36 | 1.40 | 1.21 | 1.63 | 1.30 | *-03E |
15 | 1.52 | 1.35 | 1.47 | 1.03 | 1.35 | 1.08 | 1.22 | 1.03 | 1.27 | 1.17 | S25-07E |
16 | 1.55 | 1.21 | 1.59 | 1.33 | 1.45 | 1.44 | 1.61 | 1.44 | 1.48 | 1.35 | S25-08E |
17 | 0.78 | 0.27 | 0.81 | 0.42 | 0.89 | 0.53 | 1.05 | 0.54 | 0.94 | 0.67 | J16-08E |
18 | 1.11 | 0.49 | 1.21 | 0.58 | 1.03 | 0.51 | 0.88 | 0.40 | 0.71 | 0.41 | S25-09E |
19 | 1.26 | 0.27 | 1.22 | 0.22 | 1.09 | 0.57 | 0.93 | 0.53 | 1.03 | 0.45 | T15-01E |
20 | 0.60 | 1.57 | 0.60 | 1.57 | 0.60 | 1.57 | 0.60 | 1.57 | 0.60 | 1.57 | B11-01E |
Index | (°) | (°) | (°) | Unit Number |
---|---|---|---|---|
1 | 0.97 | 1.23 | 285 | J16-01U |
2 | 0.56 | 1.11 | 345 | J16-02U |
3 | 0.63 | 1.21 | 226 | J16-03U |
4 | 1.19 | 0.76 | 232 | J16-04U |
5 | 1.16 | 0.55 | 46 | J16-05U |
6 | 1.30 | 1.43 | 274 | J16-06U |
7 | 1.33 | 1.01 | 92 | J16-07U |
8 | 0.90 | 0.94 | – | HQ5-01U |
9 | 1.23 | 1.19 | – | HQ5-02U |
10 | 0.44 | 1.48 | – | HQ5-03U |
Formation Operation | Single Operation | ||||
---|---|---|---|---|---|
Empirical radius | 15 km | Suspected air attack distance | 20 km | ||
Suspected ground attack distance | 12.5 km | ||||
Suspected
return distance | 7.5 km | ||||
Deviation threshold | 8 km | Angle threshold | |||
Formation decision threshold | 3 | n | Number of forward search points | 5 | |
Fixed interval | 7 km |
Suspected Formations | ||||||||
---|---|---|---|---|---|---|---|---|
Formation information | ||||||||
[S25-04E, S25-05E, *-03E, S25-07E, S25-08E] | [1.26,1.62, 1.04,1.44] | [J16-01E, *-01E, J16-02E, J16-03E] | [0.27,0.72, 0.27,0.73] | |||||
Solving parameters | 5 | 4 | ||||||
Result of formation recognition | ||||||||
Our units in the area | [HQ5-02U] | Nothing | ||||||
Result of intention recognition at current time t | 4—Ground Attack | 1—Assemble for standby | ||||||
Result of intention parameter at current time t | Attack: [HQ5-02U] | Zone: [1.26,1.62,1.04,1.44] |
Suspected Formations | ||||||||
---|---|---|---|---|---|---|---|---|
Formation information | ||||||||
[*-02E, J16-06E, J16-07E] | [1.10,1.47, 0.48,0.86] | [J16-08E, S25-02E, S25-09E] | [0.81,1.04, 0.12,0.58] | |||||
3 | 2 | |||||||
Spatiotemporal consistency | Satisfied | Satisfied | Satisfied | Not satisfied | ||||
Result of formation recognition | ** | ** | ||||||
Our units in the area | [J16-04U, J16-05U] | ** | ||||||
Result of intention recognition at current time t | 3—Air Attack | ** | ||||||
Result of intention parameter at current time t | Attack: [J16-04U, J16-05U] | ** |
The Air Targets of Single Operation | |||||
---|---|---|---|---|---|
S25-02E | J16-04E | S25-01E | S25-03E | ||
Solving parameters | [60.3, 56.3] | [95.7, 94.8] | [128.7, 130.6] | [174.3, 180.0] | |
1.30 | 3.7 | 6.3 | 3.6 | ||
2.7 | 2.7 | 4.4 | 2.0 | ||
4.0 | 0.9 | 1.9 | 5.6 | ||
Stable straight flight state | Enter | Enter | Enter | Enter | |
Forward search points | 1-st | [22,7] | [26,24] | [20,16] | [19,37] |
2-nd | [23,8] | [26,25] | [19,17] | [17,37] | |
3-rd | [24,10] | [26,27] | [18,18] | [16,37] | |
4-th | [24,11] | [26,28] | [17,19] | [14,37] | |
5-th | [25,12] | [26,29] | [16,20] | [13,37] | |
The sensitive units in VGD | Nothing | [HQ5-02U, J16-01U, J16-07U] | [HQ5-01U] | [B11-01E] | |
Result of intention recognition at current time t | 6—Maneuvering | 3—Air Attack | 4—Ground Attack | 2—Retreat and return | |
Result of intention parameter at current time t | path point: | Attack: J16-01U, J16-07U | Attack: HQ5-01U | Return: B11-01E |
The Air Targets of Single Operation | ||||
---|---|---|---|---|
J16-08E | S25-09E | T15-01E | ||
Solving parameters | [258.7, 63.4] | [222.0, 217.6] | [51.3, 45.0] | |
66.3 | 69.0 | 5.3 | ||
261.6 | 73.4 | 1.0 | ||
195.2 | 4.4 | 6.3 | ||
Stable straight flight state | Not Enter | Not Enter | Enter | |
Forward search points | 1-st | ** | ** | [30,8] |
2-nd | ** | ** | [31,9] | |
3-rd | ** | ** | [32,10] | |
4-th | ** | ** | [33,11] | |
5-th | ** | ** | [34,12] | |
The sensitive units in VGD | ** | ** | Nothing | |
Result of intention recognition at current time t | 7—Other | 7—Other | 5—Combat support | |
Result of intention parameter at current time t | – | – | path point: |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Yang, J.; Zhou, Y.; Ling, Y.; Zhang, J. A Rule-Based Agent for Unmanned Systems with TDGG and VGD for Online Air Target Intention Recognition. Drones 2024, 8, 765. https://doi.org/10.3390/drones8120765
Chen L, Yang J, Zhou Y, Ling Y, Zhang J. A Rule-Based Agent for Unmanned Systems with TDGG and VGD for Online Air Target Intention Recognition. Drones. 2024; 8(12):765. https://doi.org/10.3390/drones8120765
Chicago/Turabian StyleChen, Li, Jing Yang, Yuzhen Zhou, Yanxiang Ling, and Jialong Zhang. 2024. "A Rule-Based Agent for Unmanned Systems with TDGG and VGD for Online Air Target Intention Recognition" Drones 8, no. 12: 765. https://doi.org/10.3390/drones8120765
APA StyleChen, L., Yang, J., Zhou, Y., Ling, Y., & Zhang, J. (2024). A Rule-Based Agent for Unmanned Systems with TDGG and VGD for Online Air Target Intention Recognition. Drones, 8(12), 765. https://doi.org/10.3390/drones8120765