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The excedance set of a permutation π = π1π2 · · ·πn is the set of indices i for which
πi > i. We give a formula for the number of permutations with a given excedance
set and recursive formulas satisfied by these numbers. We prove log-concavity of
certain sequences of these numbers and we show that the most common excedance
set among permutations in the symmetric group Sn is �1; 2; : : : ; �n/2��. We also
relate certain excedance set numbers to Stirling numbers of the second kind, and
others to the Genocchi numbers. © 2000 Academic Press

1. INTRODUCTION

The theory of permutation statistics has a long history and has grown at a
rapid pace in the last few decades. Two among the classical statistics are the
number of descents and the number of excedances in a permutation. They
were first studied by MacMahon [17] 100 years ago, and they still play an
important role in the field. Of these, the number of descents has received
the most attention, perhaps because the definition of descent generalizes
to an arbitrary Coxeter group. Moreover, the descent set of a permutation
has intriguing algebraic properties [1, 12, 22], as well as being a beautiful
example of the theory of lattice path enumeration; see the work of Gessel
and Viennot [13].
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Although the concepts of excedance and descent are closely related and
can be considered as mirror images of each other, the story is quite different
when it comes to descent sets versus excedance sets. The descent set of a
permutation π = π1π2 · · ·πn is the set of indices i for which πi > πi+1,
whereas the excedance set is the set of indices i for which πi > i.

In this paper we study enumerative properties of the excedance set. Fol-
lowing the technique used in [8], we encode subsets of the set �1; : : : ; n− 1�
as words in the letters a and b. This provides an effective notation to study
the cardinalities of excedance sets. Thus, for example, the word baaba cor-
responds to the set �1; 4�, regarded as a subset of �1; 2; 3; 4; 5�. To de-
note the number of permutations in S6 with this excedance set we write
�baaba� or �ba2ba� for short. Using this notation we give recursive formu-
las for the number of permutations with a given excedance set and we also
obtain an explicit inclusion–exclusion formula.

We also determine the most frequent excedance set among permutations
in Sn, that is, for which word w the bracket �w� is maximized. The analogous
problem for descent sets has raised a lot of interest [4, 18, 21]. The most
recent method comes from relating the problem to the cd-index of the
Boolean algebra, see [8, 20]. For recent developments of the cd-index of
the Boolean algebra, see [2, 9, 19].

Furthermore, we determine the maximum for �w� among all words w
with a fixed number of runs, that is, a fixed number of maximal contiguous
sequences of b’s. The solution to the corresponding problem for descent
sets was conjectured by Gessel and recently proved by Ehrenborg and Ma-
hajan [7].

We hope that this paper will stimulate interest in the excedance set and
that further research will be done in exploring the properties of this set-
statistic. Especially, we would like to see an affirmative answer to the four
inequalities in Conjecture 5.3.

The paper is organized as follows. In Section 2 we obtain the basic prop-
erties of the excedance statistic. In Sections 3 and 4 we discuss maximizing
problems of the statistic over different sets. In Section 5 we prove that the
sequence �wak� is log-concave. We also state Conjecture 5.3, which can
be viewed as a general log-concavity property. In Section 6 we prove the
inclusion–exclusion formula. We use the fact that the bracket �·� can be
viewed as a linear functional from the ring ��a; b� to the integers. In the
last section we discuss some further research related to Genocchi numbers.

2. PRELIMINARIES

Let Sn denote the symmetric group on n elements, that is, all permuta-
tions of the elements 1; : : : ; n. Let π = π1 · · ·πn be a permutation in Sn.
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An excedance in π is an index i such that πi > i. The excedance set of π is
the set E�π� = �i x i is an excedance in π�. Observe that E�π� is a subset
of �1; : : : ; n− 1� since the index n is never an excedance.

A convenient way to encode the subsets of a set is by words. Let a and
b be non-commuting variables. For S a subset of �1; : : : ; n− 1� define uS
to be the word u = u1 · · ·un−1 where ui = a if i does not belong to S and
ui = b if i belongs to S. For n = 1 we set uZ = 1. For π a permutation in
Sn let the excedance word w�π� be the word uE�π� = u1 · · ·un−1. Observe
that ui = b if and only if i is an excedance in π. Denote the number of
permutations in Sn with excedance word w by the bracket �w�.

As an example, w�3241� = bab and �bab� = 3 because there are exactly
three permutations in S4 with excedance set �1; 3�, namely, 3241, 2143,
and 3142. Also observe that �1� = 1 since there is exactly one permutation
in S1 with excedance set Z.

Proposition 2.1. Let v and w be ab-words. Then

�vbaw� = �vabw� + �vbw� + �vaw�:

Proof. Let S be the set �π ∈ Sn x w�π� = vbaw�. We partition S into
three sets and show that those sets are in a one-to-one correspondence with
sets of cardinality �vabw�, �vbw�, and �vaw�, respectively.

Suppose the length of v is k− 2. Let π = π1 · · ·πk−2 x y πk+1 · · ·πn be
a permutation in S with w�π� = vbaw and thus y ≤ k ≤ x. Then π must
satisfy exactly one of the following conditions:

(i) x > k and y = k,

(ii) x = k and y < k,

(iii) x > k and y < k.

The permutations in S satisfying (i) are in a one-to-one correspondence
with the permutations in Sn−1 with excedance word vbw. Namely, removing
the letter y from π and reducing by 1 each remaining letter in π that is
larger than k gives a permutation in Sn−1. It is straightforward to check
that the excedances in the resulting permutation are the same as those in
π. The permutations so obtained are thus counted by �vbw�.

By a similar argument, now removing x instead of y, the permutations in
S satisfying (ii) are in one-to-one correspondence with the permutations in
Sn−1 with excedance word vaw.

Finally, suppose π satisfies (iii). Transposing x and y to get the permu-
tation

τ = π1 · · ·πk−2 y x πk+1 · · ·πn
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defines a bijection to the set of permutations in Sn whose excedance word
is vabw.

For an ab-word u = u1u2 · · ·un, define the dual word u′ by u′ =
u
′
n · · ·u

′
2u
′
1, where u

′
i = b if ui = a and u

′
i = a if ui = b.

Lemma 2.2. For any ab-word w we have that �w′� = �w�.
Proof. Given a permutation π = π1π2 · · ·πn, define a permutation τ =

τ1τ2 · · · τn by setting τi = n+ 1− πn−i for i < n and τn = n+ 1− πn. This
amounts to a bijective correspondence of Sn with itself. Then we have τi > i
if and only if πn−i < �n− i+ 1�, which is equivalent to πn−i ≤ �n− i�. Thus,
i is an excedance in τ if and only if n− i is a non-excedance in π.

In what follows we will refer to the identity in Lemma 2.2 as duality.

Lemma 2.3. For all words w, we have �aw� = �wb� = �w�.
Proof. A permutation π ∈ Sn+1 with w�π� = wb must have πn = �n+

1�. Such permutations are in one-to-one correspondence with the permuta-
tions in Sn with excedance word �w�; simply remove the letter �n+ 1� from
position n in π. By duality, �aw� = �w′b� = �w′� = �w�, which completes
the proof.

The following curious fact now follows from Proposition 2.1.

Corollary 2.4. For any word w, �w� is odd.

Proof. By Proposition 2.1, �w� can be written in terms of three words,
two of which are shorter than w and one of which has the same letters
as w but where one of the a’s has been moved closer to the beginning of
the word. Since �akbm� = �1� = 1, this implies by induction that for any
word w the quantity �w� can be written as the sum of an odd number of
ones.

Proposition 2.5. We have

�bnaw� =
n∑
i=0

(
n+ 1
i

)
�biw� and �wban� =

n∑
i=0

(
n+ 1
i

)
�wai�:

Proof. The proof of the first identity is by induction on n. By Lemma 2.3
we have �aw� = �w�. This proves the induction case n = 0. Assume now
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that the statement is true for n. Using Proposition 2.1 and applying the
inductive hypothesis to �bnabw� and to �bnaw� we have

�bn+1aw� = �bnbaw� = �bnabw� + �bnbw� + �bnaw�

=
n∑
i=0

(
n+ 1
i

)
�bibw� + �bn+1w� +

n∑
i=0

(
n+ 1
i

)
�biw�

=
n+1∑
i=1

(
n+ 1
i− 1

)
�biw� +

n+1∑
i=0

(
n+ 1
i

)
�biw�

=
n+1∑
i=0

[(
n+ 1
i− 1

)
+
(
n+ 1
i

)]
�biw�

=
n+1∑
i=0

(
n+ 2
i

)
�biw�;

as desired. The second identity follows by duality.

3. UNIMODALITY OF �bkan−k�

A sequence of positive real numbers a0; a1; a2; : : : is said to be unimodal
if, for some integer k with 0 ≤ k ≤ n, we have a0 ≤ a1 ≤ · · · ≤ ak ≥ ak+1 ≥
· · · ≥ an. We say that the sequence has a peak at the integer k. Observe
that a unimodal sequence can have several peaks. In this section we are
interested in the unimodality of the sequence �bkan−k�, k = 0; : : : ; n. This
sequence is symmetric, that is, by duality we have �bkan−k� = �bn−kak�.

Theorem 3.1. The sequence �bkan−k�, k = 0; : : : ; n, is unimodal with
peak(s) at k = �n/2� and k = �n/2�.

Proof. Let m = n − k. By symmetry it is enough to prove that if 1 ≤
k ≤ m ≤ �n/2� then �bk−1am+1� < �bkam�. We prove this by induction on
n. The base case is straightforward.

The induction step is as follows. We wish to show that �bkam� >
�bk−1am+1� or, equivalently, that �bkam� − �bk−1am+1� > 0. By Proposi-
tion 2.5 we have [

bkam
]
= 1+

k∑
i=1

(
k+ 1
i

)[
biam−1

]
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= 1+
k−1∑
i=0

(
k+ 1
i+ 1

)[
bi+1am−1

]
;

[
bk−1am+1

]
=

k−1∑
i=0

(
k

i

) [
biam

]
:

The difference is given by[
bkam

]
−
[
bk−1am+1

]
= 1+

k−1∑
i=0

((
k+ 1
i+ 1

)[
bi+1am−1

]
−
(
k

i

) [
biam

])

≥ 1+
k−1∑
i=0

((
k

i

)[
bi+1am−1

]
−
(
k

i

) [
biam

])

= 1+
k−1∑
i=0

(
k

i

)
·
([
bi+1am−1

]
− [biam]) :

By the induction hypothesis we know that �bi+1am−1� − �biam� ≥ 0, ex-
cept for the case when k = m and i = k − 1. But in this case we have
that �bi+1am−1� = �bkak−1� = �bk−1ak� = �biam�. Hence we conclude that
�bkam� − �bk−1am+1� ≥ 1 and the induction step is proved.

Corollary 3.2. Among all words w of length n, the maximum of �w� is
attained for w = bkan−k, where k = �n/2�.

Proof. By Proposition 2.1 we have that �ubav� > �uabv�. That is, trans-
posing ab in uabv to get ubav increases the bracket. Thus, among all words
of length n and with exactly k b’s, the maximum for the bracket is reached
by bkan−k. By Theorem 3.1, �bkan−k� is maximized when k = �n/2�.

4. WORDS WITH EXACTLY k RUNS

A descent-run in a permutation π = π1π2 · · ·πn is a maximal set �k; k+
1; : : : ; k+m�, where m > 0, such that πk > πk+1 > · · · > πk+m. An ascent-
run in π is defined similarly, with > replaced by <. Gessel conjectured that
the most common descent set among permutations in Sn with exactly r
descent-runs and r ascent-runs is, roughly speaking, the set corresponding
to the word an/kbn/kan/kbn/k · · · , where k = 2r. The exact rounding of
the exponents is formulated in the conjecture. This conjecture was recently
proved by Ehrenborg and Mahajan [7].

We will in this section consider the analogous question for the excedance
set.
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Definition 4.1. A run in an ab-word is a maximal contiguous subword
consisting solely of b’s.

As an example, the word bbabaabbba has three runs, of lengths 2, 1, and
3, respectively.

Proposition 4.2. Among the ab-words of length n with exactly r + 1 runs,
the bracket �·� is maximized by bm�ab�rap, where �p/2� = �m/2� and m +
p = n− 2r. In particular, if n is even then m = p.

Proof. By duality, we may restrict our attention to words with at least
as many b’s as a’s. Moreover, by Lemma 2.3 it suffices to consider words
that begin with b and end with a. We first show that among the words of
length n with exactly r + 1 runs and exactly s b’s, the bracket is maximized
by bs−r�ab�rap (where p = n− s − r).

Let w = vabtuas, where we assume t > 1. Then �w� < �vbabt−1uas�, by
Proposition 2.1, and thus we can “move” the first b in a run of length t > 1
successively leftwards until it is “absorbed” by the preceding run, always
increasing the bracket. As an example,

�babbaabbbaa� < �babbababbaa� < �babbbaabbaa�:
Repeating this process will move all b’s but one from each run all the way
left to the first run of the word, increasing the bracket and preserving the
number of runs. Similarly, moving all a’s but one from each contiguous
string of a’s to the end of the word will increase the bracket and preserve
the number of runs. This proves the claim.

It remains to be shown that among all words of the form bm�ab�rap,
where m + p = n − 2r, the bracket reaches its maximum when �p/2� =
�m/2�. By duality, �bm�ab�rap� = �bp�ab�ram�, so we may take m ≤ p and
then it suffices to show that

�bm�ab�rap� − �bm−1�ab�rap+1� ≥ 0:

Note that this will prove that the sequence �bm�ab�rak−m�, indexed by m,
is unimodal with peak “in the middle.” We now proceed by induction on r,
assuming this to be true for all r ≤ k. The basis step is r = 0, which follows
from Theorem 3.1. Now, by Proposition 2.5, we have[

bm�ab�k+1ap
]
−
[
bm−1�ab�k+1ap+1

]
=
[
bmab�ab�kap

]
−
[
bm−1ab�ab�kap+1

]

=
[
b�ab�kap

]
+

m∑
i=1

(
m+ 1
i

)[
bi+1�ab�kap

]
−
m−1∑
i=0

(
m

i

)[
bi+1�ab�kap+1

]
:
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Since
(m+1

i

) ≥ ( m
i−1

)
we need only show that[
bi+1�ab�kap

]
≥
[
bi�ab�kap+1

]
:

But this is covered by the inductive hypothesis, except in the case when
i = m = p. In that case we have, by duality,[

bi+1�ab�kap
]
=
[
bp�ab�kai+1

]
=
[
bi�ab�kap+1

]
;

as desired.

5. LOG-CONCAVITY RESULTS

A sequence of (real) numbers a0; a1; a2; : : : is said to be log-concave if,
for any k > 0, we have ak−1 · ak+1 ≤ a2

k. It is straightforward to verify that
this is equivalent to ak · am ≤ ak+i · am−i, for 0 ≤ i ≤ m− k. Moreover, for
finite positive sequences log-concavity implies unimodality.

In this section we prove the following result.

Proposition 5.1. For any word w, the sequence ��wak��k≥0 is log-
concave.

In order to prove this proposition we need the following lemma.

Lemma 5.2. Let a0; a1; a2; : : : be a log-concave sequence of non-negative
real numbers. Then the sequence

An =
n−1∑
i=0

(
n

i

)
ai

for n = 1; 2; : : : is log-concave.

Proof. We need to show that Dn = A2
n − An−1An+1 ≥ 0. For i ≤ j,

let Ci;j be the coefficient of aiaj in Dn. For convenience of notation, set
Ci;j = 0 if i > j. Let Sk =

∑
i Ci;k−i · aiak−i. Then we have

Dn =
∑
i;j

Ci;j · aiaj =
∑
k

Sk;

so it suffices to show that Sk ≥ 0 for all k.
We prove this in two steps. First, we show that

∑
i Ci;k−i =

(
n−1
k−n+1

)
:

We then demonstrate that for each k and for m ≤ k/2, the sequence
C0;k; C1;k−1; : : : ; Cm;k−m, has the property that all of its terms are non-
negative after a certain point, say Cj;k−j , and non-positive before that.
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But, by log-concavity of the sequence a0; a1; a2; : : : , we have that a0ak ≤
a1ak−1 ≤ a2ak−2 ≤ · · ·, so

Sk =
∑
i

Ci;k−i · aiak−i ≥ ajak−j
∑
i

Ci;k−i:

Since ajak−j ≥ 0, it suffices to know that
∑
i Ci;k−i is non-negative.

Observe that An = −an +
∑n
i=0

(
n
i

)
ai. Now, Ci;k−i is the coefficient to

aiak−i in

Dn = A2
n −An−1An+1

=
[
−an +

n∑
i=0

(
n

i

)
ai

]2

−
[
−an−1 +

n−1∑
i=0

(
n− 1
i

)
ai

]
·
[
−an+1 +

n+1∑
i=0

(
n+ 1
i

)
ai

]
;

so we have∑
i

Ci;k−i =
∑
i

[(
n

i

)(
n

k− i
)
−
(
n+ 1
i

)(
n− 1
k− i

)]

−
(
n

n

)(
n

k− n
)
−
(

n

k− n
)(
n

n

)(
n+ 1
n+ 1

)(
n− 1

k− n− 1

)

+
(

n+ 1
k− n+ 1

)(
n− 1
n− 1

)

=∑
i

[(
n

i

)(
n

k− i
)
−
(
n+ 1
i

)(
n− 1
k− i

)]

− 2
(

n

k− n
)
+
(

n− 1
k− n− 1

)
+
(

n+ 1
k− n+ 1

)
:

The following identity is a special case of the Vandermonde convolution; see
for instance [15, p. 174].∑

i

(
n+ 1
i

)(
n− 1
k− i

)
=∑

i

(
n

i

)(
n

k− i
)
=
(

2n
k

)
:

Thus we have∑
i

Ci;k−i = − 2
(

n

k− n
)
+
(

n− 1
k− n− 1

)
+
(

n+ 1
k− n+ 1

)
;
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which, by a straightforward manipulation, equals
( n−1
k−n+1

)
as claimed.

It remains to be shown that for some m the sequence Ci;k−i is non-
positive for i ≤ m and non-negative for i > m.

We have

C�i; k− i� = 2
(
n

i

)(
n

k− i
)
−
(
n+ 1
i

)(
n− 1
k− i

)
−
(
n+ 1
k− i

)(
n− 1
i

)
;

except when i ≥ n − 1 or k − i ≥ n − 1. These two latter cases are easily
treated.

When k ≤ n, we have

C�0; k� =
[(
n

k

)
−
(
n− 1
k

)]
−
[(
n+ 1
k

)
−
(
n

k

)]

=
(
n− 1
k− 1

)
−
(

n

k− 1

)
= −

(
n− 1
k− 2

)
< 0:

When k > n we have, for i = k− n, that

C�i; k− i� = C�k− n; n� = −
(
n+ 1
k− i

)(
n− 1
i

)
< 0:

Now, apart from the above mentioned exceptions, we have

C�i; k− i� = �n− 1�!2

i! · �k− 1�! · �n− i+ 1�! · �n− k+ i+ 1�!A�i; k�;

where

A�i; k� = 2n2�n− i+ 1��n− k+ i+ 1�

−�n+ 1��n− k+ i��n− k+ i+ 1� − �n+ 1��n− i+ 1��n− i�:
Clearly the sign of C�i; k− i� is the same as that of A�i; k�. The derivative
of A�i; k� with respect to i is 2�k − 2i��1 + n + n2� so, as a function of
i, A�i; k� has its only critical point at i = 2/k. The cases where k ≤ 2
are easily checked. When k > 2, this means that the only critical point of
A�i; k� lies in the interval �0; 1�, so A�i; k� changes sign at most once in
the interval of interest to us. As it must be positive somewhere, and it is
negative for the smallest relevant value of i, A�i; k� must eventually be
positive.

Proof of Proposition 5.1. The proof is by induction on the length of w.
The base case is w = 1 (the empty word), which is trivial, since �ak� = 1 for
all k ≥ 0. For the induction step, assume the statement to hold for the word
v and we show that it then also holds for w = va and w = vb, which covers
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all possibilities. In the case w = va, the sequence ��wak��k≥0 coincides with
��vak��k≥1, and so is log-concave. If w = vb we have, by Proposition 2.5,

�wak� = �vbak� =
n∑
i=0

(
n+ 1
i

)
�vai�:

But by Lemma 5.2 this implies that the sequence ��wak��k≥0 is log-concave.

As a generalization of Proposition 5.1 we conjecture the following.

Conjecture 5.3. For any three words u, v and w the following four in-
equalities hold:

�uvw� · �uavaw� ≤ �uavw� · �uvaw�;
�uvw� · �uavbw� ≥ �uavw� · �uvbw�;
�uvw� · �ubvaw� ≥ �ubvw� · �uvaw�;
�uvw� · �ubvbw� ≤ �ubvw� · �uvbw�:

Observe that the first and fourth inequalities are equivalent by duality.
Moreover, the first inequality implies Proposition 5.1.

One consequence of this conjecture is that the sequence �ubkvan−kw�,
for k = 0; 1; : : : ; n, is unimodal. The argument is as follows. Let αi;j =
�ubk+ivan−k+jw� for i+ j ≤ 2. Conjecture 5.3 implies that

α0;0 · α0;2 ≤ α2
0;1; α0;0 · α2;0 ≤ α2

1;0; and

�α0;1 · α1;0�2 ≤ �α0;0 · α1;1�2:
Multiplying these three inequalities together and canceling terms, we obtain
α0;2 ·α2;0 ≤ α2

1;1. This inequality implies that the sequence �ubkvan−kw�, for
k = 0; 1; : : : ; n, is log-concave, and hence unimodal.

6. AN INCLUSION–EXCLUSION FORMULA FOR �w�

Recall that the excedance set of a permutation π is E�π� = �i x π�i� >
i�: Abusing notation, define the excedance set of a word u = u1u2 · · ·un−1
to be E�u� = �i x ui = b�. Thus, if π is a permutation with w�π� = w,
then E�w� = E�π�.

Let

w = an1ban2ban3b · · · ankbank+1
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and set n�w� = �n1; n2; : : : ; nk+1�. Note that a pair of consecutive b’s in w
will correspond to a zero coordinate in the vector n�w�. As an example,
n�babbaaba� = �0; 1; 0; 2; 1�.

We wish to compute �w�, but first we determine the number of permuta-
tions whose excedance set is contained in the excedance set of w.

Lemma 6.1. Let w be a word and suppose n�w� = �n1; : : : ; nk+1�. Then
we have∣∣�π ∈ Sn x E�π� ⊆ E�w��

∣∣ = 1n1+1 · 2n2+1 · 3n3+1 · · · �k+ 1�nk+1+1:

Proof. We wish to count the number of permutations in Sn whose ex-
cedance set is contained in E�w�. We do this in two steps. First we choose
the entries π�i� of the permutation π for i not in E�w�. That is, these en-
tries are non-excedances of the permutation π, so we need π�i� ≤ i. Then
we choose the remaining entries of π. Since they may or may not be ex-
cedances, there are no restrictions on them and they can thus be chosen
freely.

To choose π�i� such that π�i� ≤ i for all i 6∈ E�w�, and such that all
entries are distinct, is equivalent to choosing a rook placement on a Ferrers
board of width n − k − 1 = n1 + · · · + nk+1, where the set of heights is
E�w� = �λ1 < · · · < λn−k−1�. By the same counting technique as in [14]
(see also [23, Theorem 2.4.1]) this can be done in

n−k−1∏
j=1

�λj − j� = 1n1 · 2n2 · · · �k+ 1�nk+1

different ways.
As for the places in π corresponding to b’s in w, these are allowed to be

either excedances or non-excedances. Hence, the remaining letters in π can
be placed in any order. There are k such places, corresponding to the k b’s,
and there is also the last hidden position of π which does not correspond
to a letter in the word w. The letters in these remaining k + 1 positions
can be ordered in �k+ 1�! different ways. All in all, then, the permutation
π can be constructed in 1n1+1 · 2n2+1 · · · �k+ 1�nk+1 ways.

The bracket �w� is defined on ab-monomials. By linearity we can ex-
tend the bracket to the ring ��a; b� of polynomials in the non-commuting
variables a; b over �. We now reformulate Lemma 6.1 in this setting.

Lemma 6.2. For any vector �n1; : : : ; nk+1� we have

�an1 · �a+ b� · an2 · �a+ b� · · · �a+ b� · ank+1� =
1n1+1 · 2n2+1 · · · �k+ 1�nk+1+1:
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Observe that having an �a + b� in position i means that we can either
have an excedance or a non-excedance at position i. Hence Lemma 6.2
follows directly from Lemma 6.1.

We now give an explicit formula for �w�, where w is an ab-word. This
can be done either by Lemma 6.1, together with the principle of inclusion
and exclusion, or we can use Lemma 6.2 and a change of basis. We do the
latter here.

Consider the ab-word w = an1 · b · an2 · b · an3 . By writing b = �a+ b� − a
and expanding, we can write w as a linear combination of monomials in
the letters a and �a+ b�. In our example,

an1 · b · an2 · b · an3

= an1 · �a+ b� · an2 · �a+ b� · an3 − an1 · �a+ b� · an2 · a · an3

−an1 · a · an2 · �a+ b� · an3 + an1 · a · an2 · a · an3

= an1 · �a+ b� · an2 · �a+ b� · an3 − an1 · �a+ b� · an2+1+n3

−an1+1+n2 · �a+ b� · an3 + an1+1+n2+1+n3 :

Applying the bracket, which is a linear map, to the above equation we
obtain

�an1 · b · an2 · b · an3� = 1n1+1 · 2n2+1 · 3n3+1 − 1n1+1 · 2n2+1+n3+1

−1n1+1+n2+1 · 2n3+1 + 1n1+1+n2+1+n3+1

= 1n1+1 · 2n2+1 · 3n3+1 − 1n1+1 · 2n2+1 · 2n3+1

−1n1+1 · 1n2+1 · 2n3+1 + 1n1+1 · 1n2+1 · 1n3+1:

Let Rk = �r = �r1; : : : ; rk+1� x r1 = 1; ri+1 − ri ∈ �0; 1��. Thus, each r-
vector r = �r1; : : : ; rk+1� in Rk has r1 = 1 and increases by at most one at
each coordinate. We say that i is a horizontal step in r = �r1; : : : ; rk+1� if
ri = ri+1. Let h�r� be the number of horizontal steps in r. We have that
h�r� = k+ 1− rk+1. In particular, if h�r� = 0, then r = �1; 2; : : : ; k+ 1�.

Let now 1 = �1; 1; : : : ; 1�, and set

rn�w�+1 = rn1+1
1 · rn2+1

2 · · · rnk+1
k :

A straightforward argument, following the example after Lemma 6.2,
proves the following theorem.

Theorem 6.3. Let w be an ab-word with exactly k b’s. Then

�w� = ∑
r∈Rk
�−1�h�r� · rn�w�+1:
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Example 6.4. Let w = babbaa. Then n�w� = �0; 1; 0; 2� and n�w� +
1 = �1; 2; 1; 3�, so

�w� = 1 · 22 · 3 · 43 − 1 · 22 · 3 · 33 − 1 · 22 · 2 · 33 − 1 · 12 · 2 · 33

+1 · 22 · 2 · 23 + 1 · 12 · 2 · 23 + 1 · 12 · 1 · 23 − 1 · 12 · 1 · 13

= 261:

Proposition 6.5. The bracket evaluated on the word bkam is given by[
bkam

]
=

k+1∑
i=1

�−1�k+1−i · S�k+ 1; i� · i! · im;

where S�k+ 1; i� denotes the Stirling number of the second kind.

Proof. Let Rk;i be the set �r ∈ Rk x rk = i�. Then the cardinality of
Rk;i is given by

(
k
i

)
. Let r be an element of Rk;i. For 1 ≤ q ≤ i let aq be

the number of entries in r that are equal to q. That is, aq = ��j x rj = q��.
Now aq ≥ 1 and a1 + · · · + ai = k+ 1. That is, �a1; : : : ; ai� is a composition
of the integer k+ 1. We now have∑

r∈Rk;i
r1 · · · rk =

∑
1a1 · 2a2 · · · iai

= S�k+ 1; i� · i!;
where the second sum ranges over all compositions a1 + · · · + ak = k+ 1,
and the last equality is by Exercise 16 in [23, Chap. 1].

Observe that n�bkam� = �0; : : : ; 0;m�. Hence by Theorem 6.3 we have[
bkam

]
= ∑

r∈Rk
�−1�h�r� · rn�w�+1

=
k+1∑
i=1

∑
r∈Rk;i
�−1�h�r� · r1 · · · rk−1 · rk · im

=
k+1∑
i=1

�−1�k+1−i · S�k+ 1; i� · i! · im:

The identity in Proposition 6.5 can be inverted to yield the following
corollary.

Corollary 6.6. Let c�n; k� be the signless Stirling number of the first
kind, that is, the number of permutations in Sn with exactly k cycles. Then for
n ≥ 1

n−1∑
k=0

c�n; k+ 1� · �bkam� = n! · nm:
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This corollary is equivalent to

��b+ 1� · · · �b+ n− 1� · am� = n! · nm;

which may be proven directly.

7. SOME REMARKS ON GENOCCHI NUMBERS

Finally we mention that the number of permutations in S2n+1 with al-
ternating excedances, that is, permutations with excedance word �ba�n =
baba · · · ba, is equal to the Genocchi number G2n+1. This follows by com-
paring our Theorem 6.3 with Proposition 1 in [5].

It may also be interesting to note that studying the excedance set of a
permutation π is equivalent to studying the descent bottoms set of π, defined
by

Desbot�π� = �πi x πi−1 > πi�;

in the following sense: There are several bijections from Sn to Sn in the
literature taking a permutation with excedance set S to a permutation with
descent bottoms set S. This is essentially a property of the “fundamental
transformation” of Foata and Schützenberger [11]. See also, for instance,
[3]. Thus, all our results can be translated into results about permutations
with given descent bottom sets. Only some of these translations, however,
will yield any interesting information.

As an example, the Genocchi numbers, which count the permutations
with alternating excedances, can also be seen to count the permutations for
which πi−1 > πi if and only if πi is odd (and πi < n).

We treat this relationship in a forthcoming paper [10], where we study
the distribution of permutations with alternating excedances according to
the first letter of each permutation and deduce their relations to the Seidel
triangle for the Genocchi numbers [6] and to recent work of Kreweras [16].
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