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Abstract. One of the necessary components to perform

catastrophe risk modelling is information on the buildings

at risk, such as their spatial location, geometry, height, occu-

pancy type and other characteristics. This is commonly re-

ferred to as the exposure model or data set. When modelling

large areas, developing exposure data sets with the relevant

information about every individual building is not practica-

ble. Thus, census data at coarse spatial resolutions are often

used as the starting point for the creation of such data sets,

after which disaggregation to finer resolutions is carried out

using different methods, based on proxies such as the popu-

lation distribution. While these methods can produce accept-

able results, they cannot be considered ideal. Nowadays, the

availability of open data is increasing and it is possible to ob-

tain information about buildings for some regions. Although

this type of information is usually limited and, therefore,

insufficient to generate an exposure data set, it can still be

very useful in its elaboration. In this paper, we focus on how

open building data can be used to develop a gridded expo-

sure model by disaggregating existing census data at coarser

resolutions. Furthermore, we analyse how the selection of

the level of spatial resolution can impact the accuracy and

precision of the model, and compare the results in terms of

affected residential building areas, due to a flood event, be-

tween different models.

1 Introduction

The estimation of potential losses that can occur due to nat-

ural hazards, commonly referred to as catastrophe risk mod-

elling, is essential in supporting risk management decision-

making processes, be it by governmental agencies or insur-

ance and reinsurance companies (Grossi et al., 2005).

Risk is generally understood as the probability that a

certain loss will occur, and is a function of three compo-

nents: hazard, exposure and vulnerability (e.g. Kron, 2002;

Stephenson, 2008). When analysing physical risk, the expo-

sure component consists of the exposed physical assets, such

as buildings and infrastructure. In order to perform catastro-

phe risk modelling for a set of buildings, the exposure data

set should include different information, such as their esti-

mated value, spatial location, geometry, height, occupancy

type as well as other characteristics that can vary depending

on the hazard. As an example, in the case of earthquake risk,

having information on the buildings’ structural system is es-

sential, as this feature has a large influence on how the build-

ings will behave and, consequently, on how damaged they

might be, given a certain level of ground shaking. Similarly,

when analysing risk due to other types of perils, knowledge

about different building characteristics may be required in

order to correctly estimate damage.

When performing risk modelling on a large region, be it a

country or even a large municipality, it is seldom possible to

use exposure data sets with the necessary information about

every single building in the area, as the development of such

data sets entails difficulties related with limited resources

or privacy issues, among others (Dell’Acqua et al., 2012).

The information about buildings that is generally used as

the starting point for the development of exposure data sets

is typically available at relatively coarse resolutions, which

can vary from municipality to district units, depending on

the region or country. In the case of residential buildings, the

source of this kind of information is usually census data. In
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Europe, for example, censuses are identified by UNECE as

the main source of such information for dwellings and hous-

ing facilities (UNECE, 2007).

The low resolution at which the exposure data mentioned

above are normally available is not compatible with the level

of detail necessary to accurately model risk. Hazards are usu-

ally modelled with high spatial resolutions, meaning there is

a spatial mismatch between hazard and exposure data. Disag-

gregating an exposure data set to finer resolutions cannot be

carried out by simply assuming that the assets in a coarse ad-

ministrative unit are evenly distributed, since in reality peo-

ple – and therefore, buildings – tend to be concentrated in set-

tlements. Such an approach would thus introduce error in the

exposure model and, consequently, in the results of the risk

model. It is important to note that the impact on the latter also

depends on the properties of the hazard itself. In fact, losses

estimated for events with typically large, regularly shaped

footprints, such as earthquakes, are less sensitive to the reso-

lution of the exposure model than events with narrower and

more irregular footprints, such as hailstorms or floods (Chen

et al., 2004; Thieken et al., 2006).

It is thus important to perform the disaggregation of the

exposed assets in a more sensible way. In order to do so, dif-

ferent techniques have been applied and are documented in

the literature. For example, the disaggregation of the building

stock at parish level performed by Silva et al. (2014) in the

earthquake risk assessment for mainland Portugal is based

on the population distribution on a 30 arcsec grid according

to LandScan, which in turn is based on road proximity, slope,

land cover and night-time lights (Dobson et al., 2000). An-

other instance is the disaggregation of municipal data car-

ried out by Thieken et al. (2008) in the development of a

flood loss estimation model for the private sector, based on

CORINE land cover data with the help of a dasymetric map-

ping approach (Gallego and Peedell, 2001).

Using population distribution to disaggregate building

data available at coarser scales is a very reasonable approach,

since there is an obvious correlation between the two. It is

therefore not surprising that this method is frequently used

in risk modelling. However, there are limitations. The dis-

tribution of the buildings according to their characteristics

(such as number of storeys, structural type, age, etc.), which

is known at the administrative unit resolution from census

data, cannot accurately be disaggregated into a finer resolu-

tion grid by solely using the population in each of the grid

cells, since without additional data, the shape of that distri-

bution has to be kept, scaled by the percentage of population

estimated for each cell, and this approach can lead to errors

in the estimation of losses. This issue is further described in

the next section.

Ideally, building exposure data sets at the necessary reso-

lutions would be based on actual building information, rather

than relying on population distribution and/or other proxy

variables to perform disaggregation. However, obtaining de-

tailed information about every individual building in a large

region is, as already mentioned, not practicable. Neverthe-

less, for some regions, building vector data sets are publicly

available, containing their spatial location as well as geome-

try in terms of footprint and height. These variables, while

evidently insufficient to generate an exposure data set on

their own, can be very useful in its development, as explained

further below.

The availability of this type of data is increasing. The best

example can probably be found in OpenStreetMap (OSM)

(https://www.openstreetmap.org/), which is a collaborative

effort to create an editable map of the world, containing a

large number of features, in which buildings are included.

The number of mapped buildings in OSM has been continu-

ously increasing in the last few years. At the same time, the

interest in 3-D city models has been growing, both among the

scientific community and the general public (Uden and Zipf,

2013). Thus, even though for now, height information is not

available for all the mapped buildings in OpenStreetMap, it

can be expected that their number will increase at a contin-

uously faster pace, potentially making OSM the most inter-

esting source of open data regarding building locations and

geometries. Other possible sources of this sort of informa-

tion are online public repositories maintained by national or

regional authorities. In the case of Italy, for example, the

Ministry of Environment (Ministero dell’Ambiente e della

Tutela del Territorio e del Mare) provides such a service,

named Geoportale Nazionale (http://www.pcn.minambiente.

it/GN/).

It is also worth noting that in terms of closed data, both

Google and Microsoft have developed algorithms which are

able to extract building footprints and heights from aerial im-

agery with very good results. An increasing number of cities

and respective buildings in 3-D can now be viewed using

these companies’ software (Parikh, 2012; Bing Maps Team,

2014). Even if the data cannot currently be extracted and used

for other purposes, the fact that these solutions are already

being implemented can be seen as an indicator that this type

of data will tend to become more widely available in the fu-

ture. Furthermore, the development of tools, such as BREC

(the built-up area recognition tool), that allow for the extrac-

tion of man-made structures, including heights, from aerial

or satellite high-resolution images (Gamba et al., 2009), sup-

port this trend.

In the present work, we propose a method that takes ad-

vantage of open building data in the development of exposure

data sets for physical risk modelling. The main advantage of

this approach is that instead of relying on proxies for the dis-

aggregation of census data at coarser resolutions, it uses ac-

tual information about the buildings in a certain administra-

tive unit, namely their locations, footprint areas and heights,

which in this context are not simply variables used for disag-

gregating census data, but consist in themselves of additional

data that are added to the process, resulting in more accu-

rate results. Moreover, it enables the possibility of creating

exposure data sets with higher levels of spatial resolution, al-

Nat. Hazards Earth Syst. Sci., 16, 417–429, 2016 www.nat-hazards-earth-syst-sci.net/16/417/2016/

https://www.openstreetmap.org/
http://www.pcn.minambiente.it/GN/
http://www.pcn.minambiente.it/GN/


R. Figueiredo and M. Martina: Open building data in the development of exposure data sets 419

Figure 1. Distribution of residential building footprint areas in the municipality of Pavia, according to structural material type (URM,

unreinforced masonry; RC, reinforced concrete; OT, others), number of storeys and year of construction.

though there are limitations, which are analysed. Finally, the

results obtained using models with different resolutions are

compared in terms of affected residential building areas due

to a hypothetical flood event.

2 Method

2.1 Description and application to a test case

In this section, the method developed for the production of

building exposure data sets, taking advantage of information

about building locations, footprint areas and heights, is de-

scribed. The required input data sets are reported, and an ex-

posure model that was developed for a selected test area is

presented; in this study, the municipality of Pavia, capital of

the province of Pavia, in the region of Lombardy, Italy, was

chosen.

As previously mentioned, at country level, the most con-

sistently available and reliable sources of information about

residential buildings are national censuses. Thus, they are of-

ten the cornerstone of the development of exposure models

for this type of building occupancy. In the present work, in-

formation on residential building areas for the municipality

of Pavia was obtained from Istat, the Italian National Institute

for Statistics (http://www.istat.it/). Since at the time of writ-

ing the required information was not available from the most

recent 2011 census, 2001 data are used in this study, more

specifically, the residential building floor areas distributed by

structural material type, number of storeys and year of con-

struction. In Fig. 1, these data are illustrated in the form of

two distributions.

The main motivation behind the development of the

method presented herein is the existence of shortcomings in

the procedures typically used to disaggregate building cen-

sus data to finer resolutions in the context of catastrophe risk

modelling. When doing so using a proxy variable such as

the population distribution, for example, there are three main

limitations.

1. No additional information about the buildings them-

selves is taken into account. When using population as

a proxy for disaggregation, the buildings can be dis-

tributed proportionally to the estimated population in

each grid cell, but the relative frequency of the build-

ing classes at municipality level cannot accurately be

changed at grid-cell level without considering addi-

tional data. This is a considerable flaw, as in reality, the

typology of buildings can change considerably between

different parts of a municipality.

2. While there is an obvious correlation between the num-

ber of dwellings in a certain zone and the number of

population that lives there, disaggregating building ar-

eas using the population as a proxy is based on the as-

sumption that the building floor area per inhabitant is

the same everywhere in the municipality, which is not

necessarily true.

3. The disaggregation is limited to the spatial resolution

at which the proxy variable is available. However, this

resolution can be suboptimal, especially in the case of

hazards with smaller or more narrowly shaped and ir-

regular footprints, as explained in the previous section.

Thus, when information about buildings is available, namely

their locations, footprints and heights, it can provide the

grounds for a much more accurate distribution of census val-

ues into a finer resolution grid. This procedure can be consid-

ered as more than a mere disaggregation, since the building

data used actually consist of another layer of information that

is integrated. A conceptual representation is shown in Fig. 2.

In the present work, the building vector data for the munic-

ipality of Pavia, from 2003, were obtained from the Italian

Ministry of Environment’s Geoportale Nazionale, through

the WFS service (http://wms.pcn.minambiente.it/ogc?map=

/msogc/wfs/Edifici.map) (Fig. 3).

In the census data, the total number of classes is 168,

which corresponds to all the possible combinations between

the classes in each of the three variables – structural material

type (three), number of storeys (eight) and year of construc-

www.nat-hazards-earth-syst-sci.net/16/417/2016/ Nat. Hazards Earth Syst. Sci., 16, 417–429, 2016

http://www.istat.it/
http://wms.pcn.minambiente.it/ogc?map=/ms ogc/wfs/Edifici.map
http://wms.pcn.minambiente.it/ogc?map=/ms ogc/wfs/Edifici.map


420 R. Figueiredo and M. Martina: Open building data in the development of exposure data sets

Figure 2. Conceptual representation of the method.

Figure 3. Left: building footprints for the municipality of Pavia. Right: highlight of a part of the municipality, with buildings classified by

height, from lower (light orange) to higher (dark orange).

tion (seven). On the other hand, from the data set containing

the building locations and geometries, it is only possible to

divide the buildings into height classes (number of storeys),

since there is no information on the two other variables. In

this case, because the material type and age of each individ-

ual building are not known, deriving a building-by-building

exposure model in a deterministic way is not viable. Thus, a

sensible approach is to develop a grid-based exposure model.

The fact that actual geographic and geometric building infor-

mation is used for disaggregating means that the resolution of

the grid can be high, but there are limits past which the results

are no longer meaningful, due to the fact that the area distri-

butions of some of the required variables are only known at

the resolution of the administrative unit. This issue is further

discussed in Sect. 3.

The first step in the application of the method consists of

assigning height classes, in terms of number of storeys, to

different height intervals, in such a way that a correspon-

dence can be established between information coming from

the census and the vector data sets. The definition of such in-

tervals, shown in Table 1, was carried out by combining data

on the number of storeys of about 1000 buildings in Pavia,

gathered through a field survey, with height information for

the same buildings, obtained from Geoportale Nazionale.

After this correspondence is set, the building footprint ar-

eas from the vector data set for each height class can be cal-

culated, both for the entire municipality (V fi) and for each

grid cell (vfi,k), by summing the footprint areas of the build-

ings inside those areas with heights within the range defined

for each of the classes.
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Table 1. Correspondence between height classes (census) and

height intervals (building vector data).

No. of storeys Height (m)

1 h≤ 5.00

2 5.00 < h≤ 8.80

3 8.80 < h≤ 12.30

4 12.30 < h≤ 15.40

5 15.40 < h≤ 19.30

6 19.30 < h≤ 22.00

7 22.00 < h≤ 24.70

8+ h > 24.70

Ideally, when developing a residential exposure data set, as

in the case of this study, only residential buildings from the

vector data set should be considered. However, this is almost

always impossible, due to the fact that open data sets con-

taining the occupancy type of every building in a region are

not commonly available. This does not preclude the applica-

tion of the method, since it is mass-preserving in terms of the

census areas, meaning that the total areas for the municipal-

ity are equal to the sum of the census areas in each grid cell

after disaggregation; nevertheless, the better the estimates of

V fi and vfi,k are, the more accurate the exposure model is,

because of how these variables are used in the process, as

presented further below.

In order to improve the accuracy in the estimation of res-

idential building footprint areas from vector data without

knowledge about the occupancy type of each building indi-

vidually, the adopted approach consists of considering all the

buildings in the data set except those that fall within certain

criteria in terms of area and location. Regarding the former,

a footprint area limit of 3200 m2 (calibrated using the build-

ing data set of Pavia) is defined, above which buildings are

considered not to be residential. With respect to the latter,

CORINE land cover maps (Bossard et al., 2000) are used to

exclude buildings located in areas classified as industrial or

commercial (Fig. 4).

The estimated floor areas Vi and vi,k , corresponding re-

spectively to the footprint areas V fi and vfi,k , are then de-

termined by multiplying the footprint areas of each class by

the respective number of storeys (s).

Vi = V fi · s (1)

On the side of the census data set, the residential building

floor areas for each height class C′i are calculated by aggre-

gating the other census variables, which in this case are the

structural material type and the year of construction.

C′i =
∑

j
Ci,j (2)

For the present case, the total building floor areas of each

height class from both sources are presented in Table 2. It

Figure 4. Municipality of Pavia – building footprints, 1 km2 grid

and CORINE areas of land cover class “Industrial or commercial

units” (in red). Buildings in blue are considered non-residential.

Table 2. Estimated floor areas of the buildings of each height class.

No. of Census data Vector data Ratio Ri

storeys

Area Relative Area Relative

(m2) area (m2) area

1 91 059.0 0.029 381 757.5 0.055 0.239

2 654 282.0 0.209 1 490 660.3 0.215 0.439

3 797 247.0 0.254 1 831 588.5 0.264 0.435

4 732 016.0 0.233 1 448 317.7 0.209 0.505

5 402 393.0 0.128 960 196.0 0.139 0.419

6 214 509.0 0.068 391 782.7 0.057 0.548

7 154 826.0 0.049 360 296.9 0.052 0.430

8+ 88 856.0 0.028 137 878.8 0.020 0.644

can be observed that the areas obtained from census data do

not match the ones derived from the building vector data set.

This difference is expected and has two main explanations.

First, the vector data set contains all the buildings in the mu-

nicipality; even after removing the ones located in industrial

and commercial zones or with footprint areas above a certain

threshold, many others of different occupancy types remain.

Second, the floor areas from the vector data set correspond

to the gross areas of the buildings, while the census areas are

internal. To tackle the issue, the next step of the method con-

sists of using the previously calculated areas, shown in Ta-

ble 2, to compute area ratios Ri for each height class, using

Eq. (3). These ratios, obtained from the areas at municipality

level, are then to be applied at grid-cell level using Eq. (4),

in order to “scale” the areas obtained from the building ge-

ometries inside each of the cells, which are known from the

vector data set. The areas calculated in this way are thus co-

herent with the census data set. The assumption behind this

step, which is unavoidable due to the nature of the building

data that can normally be obtained, is that the area ratios are
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the same at municipality level and grid-cell level.

Ri =
C′i

Vi

(3)

a′i,k = vi,k ·Ri (4)

It should also be noted that if a time gap exists between cen-

sus and building vector data sets (as in the Pavia case), it

can also contribute to the area differences seen in Table 2.

However, given the fact that urban structures do not usu-

ally change very dynamically, its impact is not significant,

especially when compared with the other factors mentioned

above.

Before proceeding, it is important to check whether the

data coming from the two sources – census and vector data

sets – are in agreement. This can be done by comparing the

distributions of the relative footprint areas of each height

class, in relation to the total footprint area of the respective

data set. For the municipality of Pavia, the histogram illus-

trating those distributions is shown in Fig. 5. The fact that the

distributions have similar shapes is a good indicator that the

data from both sources are valid and can be confidently used

as input for the method. It should be noted that even if there

was not such a good agreement between the distributions,

the method could still be applied due to its mass-preserving

nature, but caution should be exercised in doing so, as that

would indicate a likely problem with one or both of the data

sets.

The final step of the method consists of disaggregating the

building floor areas of each grid cell a′i,k into all the original

census classes. In order to do so, it is necessary to calculate,

for each height class, the fractions of the areas of the other

variables, at municipality level (e.g. fraction of floor area of

three-storey masonry buildings built between 1946 and 1961,

in relation to the total floor area of three-storey buildings).

Fi,j =
Ci,j

C′i
(5)

Finally, the disaggregated floor areas can be calculated for

each grid cell.

ai,j,k = a′i,k ·Fi,j (6)

Applying the fractions Fi,j , which are calculated at munic-

ipality level, to the grid-cell level, is based on the assumption

that for each height class, the distribution of the other vari-

ables is similar. The uncertainty introduced by this assump-

tion is analysed in Sect. 2.2. In Sect. 3, the impact that it

has on the level of spatial resolution up to which the gridded

exposure model can be taken is discussed more comprehen-

sively.

The method described in this section, which has been

coded in Python, is summarized in Fig. 6, in the form of a

flowchart.

Figure 5. Comparison of relative building footprint areas of each

height class between census and vector data sets.

2.2 Performance evaluation

As mentioned in the previous subsection, the proposed

method was applied in the development of a residential build-

ing exposure model for the municipality of Pavia. The per-

formance evaluation of the method was carried out using this

test case.

The validation of model results with observed data was

performed using a data set provided by the department of

territorial planning and management of the municipality of

Pavia, containing occupancy types and year of construction

classes on a building-by-building basis. Additionally, a sec-

ond exposure model based on population distribution was

elaborated, with the purpose of comparing results obtained

using the two approaches. This model was created by dis-

tributing the buildings among the grid cells proportionally to

the population, according to the 2011 GEOSTAT population

data set. This data set is associated with a 1 km2 grid, which

was also used for the vector-based model, as well as for ag-

gregating the observed building-by-building information, in

order to allow a comparison between the three (Fig. 7).

In Fig. 7, three grid cells are highlighted. These cells were

selected to illustrate the differences between the two expo-

sure models, due to the fact that the existing building typolo-

gies in terms of height in each of the cells are considerably

different. Grid cell 1 (GC1) corresponds to an area of the

municipality with a clear predominance of low-rise buildings

(Fig. 8a), while in GC2 the prevailing type of buildings are

high-rise (Fig. 8b). Finally, GC3 is located in a more densely

populated part of Pavia, in the historical centre of the city.

The variable used for comparison between the models is

the floor area per height class, with aggregated material type

and year of construction classes. The area distributions and

total areas are presented in Fig. 9 and Table 3, respectively.

In order to quantify the accuracy of the two models, the root

mean square deviations (RMSDs) and normalized RMSDs

between each of them and the real-world data set were com-

puted and are shown in Table 4.
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Figure 6. Flowchart of the method.

Figure 7. The 1 km2 grid adopted in the vector- and population-

based exposure models. Grid cells (GC) highlighted in red are used

to illustrate the differences between the two models.

The differences between the results obtained in the two ex-

posure models are considerable. As expected, the population-

based model is unable to capture the distribution of building

Table 3. Total residential building floor areas for cells GC1, GC2

and GC3.

Total floor areas in grid cell

(m2)

GC1 GC2 GC3

Observed data 57 076.3 135 789.3 484 032.6

Vector-based model 53 573.1 120 295.0 463 185.9

Population-based model 64 544.2 111 469.2 299 838.3

areas per height class in the different grid cells, as their rel-

ative frequencies do not change from municipality level. On

the other hand, since the vector-based model takes the build-

ing geometries in each cell into account, the shape of the dis-

tribution of floor areas per height class is coherent with what

can be observed on-site, leading to more accurate results. The

total floor areas obtained using the proposed method are also

considerably closer to reality, which is particularly evident in

the case of GC3.

In the analysis described above, the year of construction

variable is marginalized, as the year bands between the cen-

sus and municipality data sets are different and cannot be
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Figure 8. Bird’s eye images of two areas of the municipality of

Pavia with different predominant building typologies. Top: GC1,

mainly low-rise buildings; bottom: GC2, mainly high-rise build-

ings. Source: Bing Maps.

directly associated with each other. For this reason, the error

introduced by applying Fi,j at grid-cell level, using Eq. (6),

needs to be measured separately. In order to do this, we com-

pared, at grid-cell level, the real areas with the ones that

would be obtained by assuming the fraction distribution at

municipality level. Since the data set is compared against it-

self, the RMSDs computed in this way reflect that assump-

tion individually. The results are shown in Table 5. No data

on the material type variable are available, but it is reasonable

to assume a similar degree of accuracy.

3 Balance between model resolution and uncertainty

The application of the method presented in Sect. 2 enables

the possibility of creating grid-based exposure models with a

level of spatial resolution that is not constrained by the reso-

lution of the input data set, since it consists of actual building

footprints instead of gridded information, such as population

or land use.

However, given the limited nature of the information that

can be obtained from the building data set, the maximum res-

olution that the gridded exposure model should have is lim-

ited as well. The data set provides locations, footprints and

heights of each of the buildings in the municipality, but in-

formation on the other variables (in this case, material type

Table 4. Root mean square deviations (RMSDs) of the two models.

Height Population-based Vector-based

class model model

RMSD NRMSD RMSD NRMSD

(m2) (%) (m2) (%)

1 1213.1 16.30 1031.8 13.92

2 9930.0 15.28 6531.8 10.13

3 12 472.7 8.10 4244.4 2.91

4 13 289.1 9.03 5020.3 3.47

5 9349.6 10.06 7389.5 7.99

6 8283.8 11.73 3136.0 4.48

7 5202.2 13.96 1177.1 3.19

8+ 5980.8 12.94 3235.0 7.01

Overall 9021.6 5.86 4517.2 2.93

Table 5. Root mean square deviations (RMSDs) of the areas per

grid cell compared with the areas obtained by assuming the fraction

distribution at municipality level. NRMSD indicates the normalized

RMSD.

Age RMSD NRMSD

class (m2) (%)

1880 58 430.8 10.71

1913 8638.4 13.52

1935 13 001.6 12.99

1963 15 177.9 10.35

1975 38 895.7 14.14

1986 15 714.9 24.19

2007+ 7591.2 29.53

Overall 28 549.8 5.23

and year of construction) is only available at the resolution

of the administrative unit. Thus, when performing the spatial

disaggregation of census data, the distributions of those vari-

ables are kept regardless of the dimensions of the grid cells.

This procedure, however, can only be considered valid up to

a certain level of spatial resolution of the grid, which corre-

sponds to the limit of the assumption of representativeness of

the distributions. At higher resolutions, the grid cells become

so small and therefore contain so few buildings, that the floor

area distributions for each individual cell are meaningless.

In this section, we analyse the relation between resolution

and uncertainty in the development of a gridded exposure

model. In order to enable this analysis, the first step con-

sisted of generating grids with five different levels of spa-

tial resolution, other than the 1km×1km grid already shown

in the previous section. The selected grid-cell sizes were

750m×750m, 500m×500m, 250m×250m, 125m×125m

and 50m× 50m. Two of these grids are shown in Fig. 10.

For each of the six grids, at every grid cell, the fractions

of residential footprint areas of each height class were calcu-
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Figure 9. Residential building floor areas per height class, from the vector- and population-based exposure models, as well as the observed

data, for three grid cells with different predominant building typologies.

Figure 10. Grids with resolutions of 500m× 500m (left) and 125m× 125m (right).

lated in relation to the total residential footprint areas in the

same cell. The results are plotted in Fig. 11, together with the

census fractions at the level of the municipality.

The coefficient of variation of the root mean square devia-

tion (CV(RMSD)) of the relative height class areas, for each

grid resolution, was quantified in relation to the relative ar-

eas at municipality level. For buildings with one storey and

buildings with two storeys, the results are plotted in Fig. 12,

together with power law fits to the data. In this figure, it is

possible to observe that up to a certain level of resolution,

the increase in CV(RMSD) is gradual and relatively constant,

after which it becomes more abrupt, between 250m× 250m

and 500m× 500m. The results are shown for one- and two-

storey buildings as an example; a similar pattern is followed

for all the eight height classes.

Understandably, decreasing the size of the cells increases

the variability of the relative areas for each building class.

In Fig. 12, this is shown in terms of height classes. For this

variable, the distributions at each cell can be calculated re-

gardless of the resolution of the grid, since this information

is available from the building vector data set. However, as

mentioned above, the variables that are only known at munic-

ipality level cannot be disaggregated due to lack of informa-

tion, meaning that the original distributions have to be kept.

After a certain level of resolution, the dispersion in relative

areas of each building class is so high that the assumption
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Figure 11. Relative footprint areas of buildings of each height class in every grid cell, for grids with six different spatial resolutions. Red

rhombuses represent fractions at municipality level.

Figure 12. CV(RMSD) of the relative areas of one-storey (left) and two-storey (right) buildings, for six different levels of resolution of the

grid (50m× 50m, 125m× 125m, 250m× 250m, 500m× 500m, 750m× 750m and 1000m× 1000m), in relation to the relative areas at

municipality level, together with power law fits to the data.

that class distributions have similar shapes at municipality

and grid-cell levels is no longer reasonable.

If on the one hand, adopting an exposure model with larger

grid-cell size results in lower uncertainties in the building

class distributions on a cell-by-cell basis, on the other, it can

also lead to larger errors when calculating risk, especially in

the case of perils with narrowly shaped footprints. Thus, it is

paramount to find a good balance between these two aspects.

This issue is further analysed in Sect. 4, for a test case of a

flood scenario.

4 Influence of the model resolution on the estimated

impacts due to a flood scenario

In this section, we investigate the impact that the spatial res-

olution of the exposure data sets can have in the results of
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Figure 13. Flood zones A (green) and B (yellow) in the municipal-

ity of Pavia, according to the Po River Basin Authority map.

a risk model. In order to do so, a straightforward procedure

was adopted, based on the estimation of affected floor areas

of each building class for a hypothetical flood event in the

municipality of Pavia, using different exposure models.

In terms of hazard, the definition of the flood footprint was

based on the flood hazard maps produced by the Po River

Basin Authority (partially shown in Fig. 13), more specifi-

cally flood zone B (fascia B), which covers the areas at risk

in case of floods with a return period of 200 years (Autorità

di Bacino del fiume Po, 1999). Naturally, this does not mean

that a 200-year flood would necessarily affect all the area si-

multaneously, but for the purpose at hand, it is reasonable to

use it as an estimation of the flood footprint.

Assuming that the water depth of this hypothetical flood is

insufficient to reach the second storey of the buildings in the

flooded area, the affected floor areas for each of the building

classes were calculated, which was done in two steps. Firstly,

ai,j,k was divided by the number of storeys (s), in order to

obtain the ground-level floor areas corresponding to each of

the classes. These areas were then multiplied by the fraction

of the respective cells covered by the flood footprint (exclud-

ing water bodies), which is based on the premise that the as-

sets assigned to each grid cell are uniformly distributed in

space – an unavoidable procedure when using gridded mod-

els. However, that premise is not necessarily true, and this

is the fundamental reason why results obtained using grid-

ded exposure models with higher spatial resolutions contain

smaller errors and are closer to reality, especially when the

hazard in question has a narrowly shaped, irregular footprint,

as is the case of floods.

The affected areas referred to in the previous paragraph

are shown in Table 6 for the six vector-based gridded mod-

els mentioned in Sect. 3, as well as for a model based on

a uniform spatial distribution of the assets in the munici-

pality, without performing any kind of disaggregation. The

best estimates of the total affected building areas for this

case were also computed, which was done by applying the

same method, considering the flood footprint itself as one

cell. The relative differences of the results obtained using the

aforementioned models with relation to the best estimate are

shown as well.

Table 6. Estimated flooded floor areas using different exposure

models.

Model Resolution Affected Ratio

(m2) floor area

(m2)

Best estimate – 29 522.5 –

50× 50 31 917.4 1.08

Proposed method 125× 125 38 009.6 1.29

at different 250× 250 48 018.0 1.63

grid resolutions 500× 500 69 506.4 2.35

750× 750 90 692.9 3.07

1000× 1000 112 085.8 3.80

No disaggregation

(buildings uniformly – 131 797.4 4.46

distributed within

municipality)

As shown in Table 6, the estimation of the affected floor

areas is highly dependent on the resolution of the adopted

exposure model. Using models with lower resolutions led to

an overestimation of the areas when compared with the best

estimates using the actual flood footprint. These results are

coherent with what can be observed by overlapping the flood

map, grid and building locations. As it can be observed in

Fig. 13, in the majority of cases, buildings are located out-

side the parts of the grid cells covered by the flood extension,

meaning that the consideration of a uniform spatial distribu-

tion of buildings inside each cell tends to lead to an overes-

timation of the affected floor areas and, therefore, damages.

Understandably, this issue is exacerbated by using a coarser

grid, as a higher fraction of cells contain the boundaries of

the flood footprint. For other perils, this difference would ex-

pectably be lower. When modelling flood events in other ar-

eas using a gridded exposure model, a similar behaviour is

generally to be expected. This is because usually, buildings

tend to be more concentrated outside areas prone to flooding,

due to the existence of defences such as levees or as a result

of urban planning.

The selection of the spatial resolution has an influence not

only on the error in the estimation of flood risk, but also

on the uncertainty in the exposure model, as previously ex-

plained in Sect. 3. In an attempt to graphically represent the

balance that should exist between these two components, so

as to make this notion more evident and clear, firstly, a rescal-

ing was performed to bring the values of CV(RMSD) of the

eight height classes (Fig. 12) and the estimation errors of af-

fected building areas (Table 6) into the range of [0,1]. Re-

gression models were then fitted to the data using the least

squares approach, using a power law for the former and a

second-order polynomial model for the latter. The results are

shown in Fig. 14.
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Figure 14. Regression models fitted to the normalized CV(RMSD)

of the eight height classes (grey curves) and estimation errors of

affected building areas (black curve).

Conceptually, the obtained regression functions, shown in

Fig. 14, are intended to represent the cost of using differ-

ent exposure models in relation to their spatial resolution, in

terms of accuracy and precision of the building class distribu-

tions (represented by the grey curves) and of the errors in the

estimation of affected assets (black curve). The lowest total

cost – which should correspond to the optimal balance be-

tween these two aspects – is given by the intersection of the

former with the latter. In this case, its range is represented by

blue crosses in Fig. 14.

It should be highlighted that the main purpose behind car-

rying out this procedure was to conceptually demonstrate

the balance that should exist between the two components,

since their costs refer to different types of quantities and the

adopted scaling procedure has limitations. The normalization

performed in order to bring them into a common range of val-

ues is necessary, but ideally they should also be weighted so

as to reflect the importance of each of them in the quality of

the results of the risk model. This step is outside the scope of

the present study, and would be an interesting topic for future

research. Nevertheless, the adopted simplified approach can

be useful in providing an indication about the range of grid

resolutions that can lead to the most reliable results over-

all. Following this line of thought, it can be assumed that

for the case at hand – as well as in other cases with similar

characteristics in terms of hazard and exposure – adopting

a gridded model with a resolution between 250m× 250m

and 500m× 500m would likely ensure a sensible balance

between uncertainty in the exposure model and error in the

estimation of affected assets.

As a final remark, the discussion presented above is based

on the consideration that the exposure model is to be used

within a typical risk calculation framework, in which it is de-

fined beforehand, with a certain level of resolution and inde-

pendently from the spatial characteristics of the hazard. Even

though this is the widely adopted procedure for risk calcula-

tion, in the case of floods, given the significance of errors that

can derive from using coarse exposure models (as shown in

Table 6), it is pertinent to suggest and briefly discuss a few

potential alternatives, even if they are more complicated and

would be more onerous to implement in practical applica-

tions. A possible approach would be to use a higher resolu-

tion grid that could capture the shape of the hazard more ac-

curately, and then reaggregate the results into a coarser grid,

so that the number of buildings within each cell would be

enough to ensure representativeness of the class distributions

and, therefore, the accuracy of the cell-by-cell spatial distri-

bution of damages. This procedure, however, could be less

practical due to the need to post-process the results. Other

potentially interesting approaches would be to develop expo-

sure models using variable-resolution grids and/or irregularly

shaped cells, defined beforehand by taking the footprints of

the hazard maps into account.

5 Conclusions

The building exposure component of risk models is fre-

quently based on census data, which is often the most reliable

source of building information, but unfortunately is usually

only available at coarse resolutions. The disaggregation of

census data to a higher resolution grid has often been based

on proxies such as the population distribution; this approach,

however, is not ideal. In this paper, a method was proposed to

take advantage of open building data in order to disaggregate

census data in a more sensible way. The building distribu-

tions obtained using this method were shown to better cap-

ture reality, when compared to models based on population

distribution.

Given the incomplete nature of publicly available building

information that can generally be obtained, the exposure data

set cannot be generated on a building-by-building basis, and

thus using a grid is a sensible solution. While the resolution

of the grid is not limited to the resolution of a proxy variable,

there is another type of limitation related with the fact that

only some of the building characteristics are known. After

a certain point, the uncertainty in the building distribution

at each cell becomes too high and the results are no longer

meaningful. This issue was investigated.

A flood event was then simulated, and the results in terms

of affected building floor areas were compared, in order to

assess the level of error that is introduced by using exposure

models with different levels of resolution in the estimation of

impacts for this type of hazard. It was concluded that in the
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case of floods, lower resolutions of the exposure model will

in general lead to an overestimation of the affected buildings.

A balance should be achieved between, on the one hand,

the exposure model’s accuracy and precision, and on other,

the errors in the estimation of affected buildings. In order

to graphically represent this notion, functions were fitted to

each of the components, normalized and intersected; concep-

tually, these functions can be understood as cost functions,

and in this context, their intersections represent the lowest to-

tal costs, which correspond to the optimal resolutions. Even

if the procedure was carried out in a simplified manner, it pro-

vided a useful indication about the range of grid resolutions

to be adopted when applying the proposed method in the de-

velopment of exposure data sets for flood risk modelling.
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