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As plant-based diets gain traction, interest in theirimpacts on the gut
microbiome is growing. However, little is known about diet-pattern-specific
metagenomic profiles across populations. Here we considered 21,561
individuals spanning 5 independent, multinational, human cohorts to map
how differencesin diet pattern (omnivore, vegetarian and vegan) are reflected
ingut microbiomes. Microbial profiles distinguished these common diet
patterns well (mean AUC = 0.85). Red meat was a strong driver of omnivore
microbiomes, with corresponding signature microbes (for example,
Ruminococcus torques, Bilophila wadsworthia and Alistipes putredinis)
negatively correlated with host cardiometabolic health. Conversely, vegan
signature microbes were correlated with favourable cardiometabolic
markers and were enriched in omnivores consuming more plant-based foods.
Diet-specific gut microbes partially overlapped with food microbiomes,
especially with dairy microbes, for example, Streptococcus thermophilus,
and typical soil microbes in vegans. The signatures of common western diet
patterns can support future nutritional interventions and epidemiology.

Diet is inextricably linked to human health. Globally, poor diets low
inunprocessed, plant-based foods cause more deaths than any other
risk factor, with cardiovascular disease, cancers and type 2 diabetes as
the leading causes of diet-related deaths'. Unhealthy diets also carry a
wide range of negative environmental impacts®. Animal-based foods
contribute comparably more than plant-based foods to global environ-
mental change through their impact on climate, land and freshwater
use, and biodiversity*’. Consequently, there is increased interest in

diets with higher fractions of plant-based foods that decrease both
risk of disease and negative environmental impacts™*.

The gut microbiome plays an integral role in human health that
can be modified by diet’. For example, fermentation of otherwise
indigestible plant polysaccharides by gut microbes contributes to a
healthy, non-inflamed gut barrier and maintenance of gut homoeo-
stasis through the production of short-chain fatty acids (SCFAs) and
immune system crosstalk®. Moreover, plants contain polyphenols, the
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Fig.1|Alarge, integrated, metagenomic dataset with detailed dietary
information. a, Sample size for each diet pattern across the five cohorts
(logarithmicscale). b, Observed richness of each diet pattern's gut microbiome
within each of the five cohorts (n,, = 1,062 individuals, np; yx204 = 12,353,

Np3usaon = 7,931, n Tarallo et al. (2022)"2 = 118, n De Filippis et al. (2019)"* = 97).
Boxplots show the median, 25th and 75th percentiles, and whiskers extend to
1.5x the interquartile range. Asterisks denote significance level of Dunn’s tests
with BH correction (Methods and Supplementary Table 6); *P< 0.05,*P< 0.01,
***P < 0.001.c, Distribution of hPDI for each diet pattern within each of the

five cohorts (P1with 841 omnivores, 49 vegetarians and 10 vegans; P3 UK22A
with 11,289 omnivores, 610 vegetarians and 192 vegans; P3 US22A with 6,720

PCoA1 (18.0%)

PCoA1 (15.3%) PCoA1 (17.2%)

omnivores, 309 vegetarians and 346 vegans). Boxplot integrated into violin plots
have the same parameters as in b. Asterisks denote the same significance as in

b, but for Tukey contrasts for multiple comparisons following an ANOVA model
(Methods and Supplementary Table 3). d-h, Beta diversity of gut microbial
composition accounting for phylogenetic diversity using unweighted UniFrac
distances. Each dotin the principal coordinates analysis (PCoA) plots represents
anindividual. Ellipsesindicate 95% Cls. Statistical differences between diet
patterns were assessed via PERMANOVA, correcting for sex, age and BMI with 999
permutations. There is one PCoA plot per cohort: P1(d), P3 UK22A (e), P3 US22A
(), DeFilippis et al. (2019)" (g), Tarallo et al. (2022)"* (h).

products of plant secondary metabolism, that are known to promote
beneficial bacteriathat preventinflammation, enhance the gutbarrier
and hinder potential pathogens’.

By contrast, adiet rich in animal foods leads to increased protein
fermentation, which may result in aleaky mucosa, local and systemic
inflammation and reduced production of SCFAs®. For example, the
breakdown of certain animal proteins is linked to the synthesis of
gut microbial trimethylamine (TMA), which is oxidized in the liver
to trimethylamine N-oxide (TMAQ)®. TMAO has been implicated in
various (cardio)vascular diseases and is a potential contributing fac-
tor in colorectal cancer’. However, both dietary information and gut
microbiome composition are extremely variable and noisily surveyed,
and the current state-of-the-art in diet-gut microbiome links lacks a
large-scale, cross-country and cross-cohortapproach able to disentan-
gle more nuanced associations between particular dietary aspects and
individual gut microbes at the species level. Currently, health associa-
tions use the same basic datasets for vegans and omnivores, despite
large potential baseline differences and biases.

Results

Multicohort gut metagenomics with detailed dietary data

The aim of this study was to elucidate how prolonged dietary prefer-
ences affect the structure and function of the human gut microbiome
atboththe global and single-species level. To do so, we capitalized on
three cohorts from the ZOE PREDICT programme from the United
Kingdom (P1n =1,062individuals'®", P3 UK22A n =12,353) and from the
United States (P3 US22A n = 7,931; Methods). We further included two
additional, publicly available cohorts comprising Italian participants

(Tarallo et al. (2022)"* n =118 individuals and De Filippis et al. (2019)"
n=97individuals; Fig.1a). Each participant of the five cohorts reported
their nutritional habits as being either ‘omnivore’ (including meat,
dairyand vegetables), ‘vegetarian’ (excluding meat) or ‘vegan’ (exclud-
ing both meat, dairy and other animal products) and donated stool
samples that underwent shotgun metagenomic sequencing. In total,
656 vegans, 1,088 vegetarians and 19,817 omnivores were considered
(Fig. 1a).In addition to participants’ overall dietary habits, the ZOE
PREDICT cohorts included data on habitual consumption of over 150
single foods perindividual, obtained from validated quantitative food
frequency questionnaires (FFQs; Methods). Dietary patterns were
partially confirmed by DNA-based detection of food in the stool micro-
biome' which, however, would require greater sequencing depth to
be used for this goal (Methods).

To quantify the consumption of plant-based foods, we considered
the plant-based dietindex (hPDI), which gives higher scores to healthy
plantfoods and reverse scores to less healthy plant and animal foods”
(Methods). Within each of the three PREDICT cohorts, hPDI signifi-
cantly differed between diet patterns as expected (analysis of variance
(ANOVA), P< 0.001across all PREDICT cohorts; Fig. 1c and Supplemen-
tary Table 1), with significantly higher hPDI in vegans compared with
vegetarians and similarly for vegetarians compared with omnivores
(Tukey P < 0.01; Supplementary Tables 2 and 3).

Gut microbial diversity and composition across diet patterns

Gut microbial richness differed significantly according to diet pat-
ternsinthe PREDICT cohorts (Kruskal-Wallis, P < 0.05; Supplementary
Table 4), with a lower observed richness in vegans (median between
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Fig. 2| Highly accurate classification of individual diet patterns based on gut
microbial features. Average ROC curves and AUCs showing the discrimination
between all pairs of the three diet patterns (omnivores vs vegetarians; omnivores
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AUC omnivore-vegan

False positive rate False positive rate

=11 AUC vegetarian-vegan

vs vegans; and vegetarians vs vegans) per cohort using random forest
classifiersin a hybrid cross-LODO (Methods) approach. Shaded areas
correspond to 95% Cls.

209 and 266 species-level genome bins (SGBs)) and vegetarians (median
201-269) compared with omnivores (median 217-299; Fig. 1b and Sup-
plementary Table 5), but no significant differences between vegans and
vegetarians (Dunn’stest, P> 0.05; Supplementary Tables 6 and 7). This
highlights that alpha diversity might correlate with diet patterns that
are potentially more diverse.

Overall gut microbial composition also differed significantly
according to diet pattern (permutational multivariate analysis of var-
iance (PERMANOVA) on unweighted UniFrac distances, R* = 0.002-
0.028; P< 0.05 for all five cohorts; Fig. 1d-h and Supplementary
Table 8 with additional distance metrics; Methods), with the variation
in beta diversity explained by diet pattern aligning with previous
studies’. Inaddition, diet patterns were highly distinguishable based
on quantitative gut microbial profiles when using machine learning
classifiers”. By evaluating the performance of the model trained
in a variant of cross validation in which training folds are merged
with external cohorts (cross-validation leave-one-dataset-out, that
is, cross-LODO; Methods)'®, we obtained a mean area under the
receiver operating characteristic (ROC) curve (AUC) across all diet
patternsand across all five cohorts of 0.85. The highest predictabil-
ity was obtained when separating vegans from omnivores (mean
cross-LODO AUC = 0.90), followed by separating vegetarians from
vegans (0.84), and finally vegetarians from omnivores (0.82; Fig. 2
and Supplementary Table 9). Similar results were achieved when
using the LODO approach that does not consider any training folds
from the target cohort (Supplementary Table 9). Because we did
not log when diet patterns may have been switched, we hypothesize
that the non-perfect classification might be due to individuals who
switched diet patterns recently, and some associations may actu-
ally be stronger than what we observed. Altogether, these results
warranted further investigation into the specific microbiome com-
ponents responsible for these differences.

Gut microbe signatures of vegans, vegetarians and omnivores
To explore whichmicrobes are associated with the different gut micro-
bial compositions between vegans, vegetarians and omnivores, we
performed a meta-analysis across the five cohorts on the differential
relative abundance of each SGB within eachindividual and their respec-
tive diet pattern (Methods). In total, 488 SGBs were significantly differ-
entially abundantin omnivores compared with112 SGBs in vegetarian
microbiomes; 626 SGBs were significantly differentially abundantin
omnivores compared with 98 SGBs in vegans; and 30 SGBs were sig-
nificantly differentially abundant in vegetarins compared to 11 SGBs
invegans (Supplementary Tables10-12). When focusing on the top 30
microbial markers, the majority of these strongest associations were
linked to the least restrictive diet pattern (Figs. 3b,h and 4b).

Knowledge of the predicted functions of the SGBs linked to the
various diet patterns revealed potential dietary-specific niches. Several
SGBsincreased inomnivore microbiomes are linked to meat consump-
tion by aiding in its digestion through for example, protein fermen-
tation (Alistipes putredinis), utilizing amino acids and via bile-acid
resistance (Bilophila wadsworthia®), or are mucolytic indicators of
inflammation that have been linked to inflammatory bowel diseases
(Ruminococcus torques®™”; Fig. 3b,h). In contrast, several SGBs over-
represented in vegan microbiomes are known butyrate producers
(Lachnospiraceae?, Butyricicoccus sp.”>** and Roseburia hominis®*)
and are highly specialized in fibre degradation (Lachnospiraceae’;
Figs. 3h and 4b). In addition, Streptococcus thermophilus, a common
dairy starter and component?, had the highest effect size in vegetarian
versus vegan gut microbiomes with a standardized mean difference
(SMD) of -0.67 and second highest effect size in omnivore versus vegan
gut microbiomes (SMD = -0.62). Thus, when a major differentiating
characteristic between diet patterns lies in dairy consumption, the
SGB with the greatest ability to differentiate between those diets is
abundantly foundin cheese and yogurt products. This was supported
by other dairy-linked SGBs associated more with omnivore and veg-
etarian than vegan diets such as Lactobacillus acidophilus, Lactoba-
cillus delbrueckii, Lactococcus lactis, Lacticaseibacillus paracasei and
Lacticaseibacillus rhamnosus®*. On the basis of these findings, we
next explored the links between these diet pattern-specific microbes
and the major food groups that distinguish the diet patterns.

Gut microbial diet signatures are linked to major food groups
We further investigated the role of major food groups, such as red
and white meat, dairy, fruits and vegetables, in differentiating the
gut microbial profiles across diet patterns (Methods and Supplemen-
tary Table 13). The amount of meat (either red or white) ingested by
omnivores was positively correlated with the vast majority of SGBs
linked to an omnivorous diet versus a vegetarian (23 out of 25 SGBs;
Fig.3c) or veganone (16 of out 19 SGBs; Fig. 3i). In addition, compared
with omnivore gut microbiomes, meat negatively correlated withall 5
SGBs strongly associated with vegetarian gut microbiomes and with
10 out of the 11 SGBs strongly associated with vegan gut microbiomes.
The SGBs strongly associated with omnivore gut microbiomes cor-
related more strongly with red than with white meat consumption.
Red and white meat correlated with the same SGBs in all but one case:
‘Candidatus Avimicrobium caecorum’, found in human gut microbi-
omes and assembled from chicken caecum?’, which positively cor-
related with white meat consumption in omnivore gut microbiomes
versus vegetarian and vegan ones (Fig. 3¢,i).

In contrast, fruits and vegetables were positively correlated with
3 of out 5 SGBs overrepresented in vegetarian (Fig. 3¢) and in 10 out
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Fig. 3| Gut microbial signatures of an omnivore vs vegetarian and vegan diets.
Top panels: omnivore vs vegetarian diet. Bottom panels: omnivore vs vegan
diet. a, Prevalence of the top 30 signature SGBs (with their respective SGB IDs in
parentheses) in omnivore (left) and vegetarian (right) gut microbiomes.

b, Meta-analysed correlations between SGB relative abundance and diet pattern
(omnivore n=19,817 in pink vs vegetariann =1,088 in purple). The top 30 SGBs
with the largest absolute SMD are reported, with upper and lower confidence
intervals. Smaller shapes are per-cohort correlations (black indicates Wald g-
value < 0.1, grey indicates Wald g-value > 0.1). The black horizontal bar indicates
the separation between the correlations with omnivores vs vegetarians for ease
ofvisualization only. ¢, Meta-analysed pooled effect sizes with upper and lower
confidence intervals from correlations between SGB relative abundance and
consumption of five major food groups (meat: n,, = 841individuals, n,, = 843,
Np3ukaza = 11,533, Np3usaan = 7,228; dairy: np; = 890, np, = 843, Np3 yxaoa = 12,156,
Np3usaan = 7,558; fruits/vegetables: ny, = 900, np, = 843, np3 yaon = 12,353,

Pooled
effect size

o

0.3 -0.2 0 02 0 05 1.0
Rank

AUC

Pooled
effect size
Npsusaon = 7,931). d, Meta-analysed pooled effect sizes with upper and lower
confidence intervals from correlations between SGB relative abundance and
hPDIwithin omnivores (11, = 841, Ny, = 843, N3 yxaon = 11,289, Np3yszon = 6,720)
and vegetarians (1p; = 49, Np3 yxaon = 610, Np3 usaon = 309). €, ZOE MB health ranks
of each signature SGB. Values closer to zero indicate positive CMH outcomes,
closer to one indicate negative CMH outcomes®. f, Machine learning predictions
(random forest cross-LODO AUC; Methods) of the presence of each of the
signature microbes between omnivores and vegetarians based on FFQs.

g, Prevalence of the top 30 signature SGBs (with their respective SGB IDs in
parentheses) in omnivore (left) and vegan (right) gut microbiomes. h, Same

asb, except between omnivores (n=19,817 in pink) and vegans (n = 656 in green).
i, Same as ¢, except between omnivores and vegans. j, Same as d, except

between omnivores and vegans (vegans: 1p; = 10, Nps yxooa = 192, Npsysaan = 346).
k,Same as e, except between omnivores and vegans. I, Same as f, except between
omnivores and vegans.

of 11 SGBs overrepresented in vegan versus omnivore gut microbi-
omes (Fig. 3i). The majority of these correlations were more greatly
associated with vegetables than with fruits. There were no cases of
negative correlations between fruits and vegetables and the SGBs

most strongly associated with vegetarian or vegan gut microbiomes.
Conversely, any SGB strongly linked to an omnivore gut microbiome
that correlated with fruits or vegetables showed negative and not
positive correlations.
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Fig. 4| Gut microbial signatures of a vegetarian vs vegan diet. a, Prevalence
of the top 30 signature SGBs (with their respective SGB IDs in parentheses)
invegetarian (left) and vegan (right) gut microbiomes. b, Meta-analysed
correlations between SGB relative abundance and diet pattern (n,egerarian = 1,088
in purple vs ng,, = 656 ingreen). The top 30 SGBs with the largest absolute
SMD are reported. Smaller shapes are per-cohort correlations (black indicates
Wald g-value < 0.1, grey indicates Wald g-value > 0.1). The black horizontal bar
indicates the separation between the correlations with vegetarians vs vegans for
ease of visualization only. ¢, Meta-analysed pooled effect sizes with upper and
lower confidence intervals from correlations between SGB relative abundance
and consumption of five major food groups (meat: iy, = 841individuals,

Np, =843, Np3ukaon = 11,533, Npsysaan = 7,228; dairy: np, = 890, np, = 843,

Np3ukaza = 12,156, Nps saon = 7,558; fruits/vegetables: ny, = 900, n;, = 843,

Np3ukaon = 12,353, Np3usaon = 7,931). d, Meta-analysed pooled effect size with

upper and lower confidence intervals from correlations between SGB relative
abundance and hPDI within vegetarians (1, = 49, Np; ukaan = 610, N3 ysaoa = 309)
and vegans (1, = 10, Nps ykaoa = 192, Npsysaon = 346). €, ZOE MB health ranks of each
signature SGB. Values closer to zero indicate positive CMH outcomes, closer to
oneindicate negative CMH outcomes. f, Machine learning predictions (random
forest cross-LODO AUC; Methods) of the presence of each of the signature
microbes between vegetarians and vegans based on FFQs.

When considering dairy, which differentiates vegans from vegetar-
iansand contributes to the difference betweenavegan and an omnivore
diet, SGBs that differentiate vegetarian from vegan gut microbiomes
showed positive correlations with dairy in vegetarians and negative
ones in vegans (Fig. 4c). Similarly, SGBs that differentiate omnivore
fromvegan gut microbiomes showed positive associations with dairy
inomnivores and negative ones in vegans (Fig. 3i). Thus, the gut micro-
bial signatures of these three diet patterns are linked to the inclusion
or exclusion of major food groups.

Plant-based food diversity shapes the microbiome across diets
While the three diet patterns differed significantly in their hPDIscores
(Fig.1c), we next aimed to understand whether their correlations with
the SGBrelative abundance were consistent across diet patterns usinga
meta-analyticalapproach (Methods). Regardless of which diet patterns
were compared, there was concordance in the correlations between
hPDIand the SGB signature of each diet pattern (Figs. 3d,j and 4d). This
means thatifhPDIwas correlated (either positively or negatively) with
asignature SGB in omnivore gut microbiomes, it would show similar
correlations in vegetarians and vegans as well. Thus, overall dietary
factors may transcend diet patterns, suggesting that omnivores could
share beneficial gut microbial signatures with other diet patterns if they
also incorporate similar diversity of plant-based food items in their
diets. In practice, however, omnivores generally ingest significantly
less healthy plant-based foods than vegetarians or vegans (Fig. 1c).

Cardiometabolic health s linked to gut microbial diet patterns
To investigate the gut microbial links between the three diet patterns
and human health, we employed the ZOE Microbiome Ranking 2024
(Cardiometabolic Health), ZOE MB Health ranks for short®®, which
assigns anumeric ranking to SGBs found to significantly correlate with
cardiometabolic markers (Methods). We found that rankings of SGB
signatures of omnivore microbiomes were statistically less favourable

(mean rank = 0.53 and 0.58) when compared with vegetarian (mean
rank = 0.44, two-sample t-test, P= 0.040, t(197) = 2.07) and vegan ones
(mean rank = 0.38, two-sample t-test, P < 0.001, £t(230) = 5.59; note
that values closer to zero indicate positive CMH outcomes, whereas
values closer to one indicate negative CMH outcomes; Extended Data
Fig.1). When comparing rankings of SGB signatures of vegan versus
vegetarianmicrobiomes, vegan-associated SGBs had more favourable
rankings (mean rank = 0.33) than vegetarian-associated ones (mean
rank = 0.54, two-sample t-test, P= 0.028, t(30) = 2.30; Extended Data
Fig.1). These patterns were reflected when considering the 30 SGBs
most distinguishable between the diet patterns. The majority of the
ranked SGB signatures of an omnivore gut microbiome were associ-
ated with worse cardiometabolic health (CMH) compared with both
vegetarian and vegan gut microbiomes, with the opposite being true
for vegetarian and vegan gut microbiomes (Fig. 3e, k). When compar-
ing vegetarian with vegan gut microbiomes, the latter again showeda
majority of signature SGBs to be associated with positive CMH, whereas
the pattern for the former was more split, with just under half of the
vegetarian signature SGBs linked with more favourable CMH (Fig. 4€).
Thus, omnivore signature microbes are associated with less favourable
CMH, whereas signature vegan microbes are associated with more
favourable CMH.

Entire diet profiles can predict specific gut species

Moving from major food groups to the entire set of food items in the
FFQs, we next tested the extent to which habitual-diet information is
linked to the presence or absence of each SGB of relevance for the three
diet patterns (Methods'®). The most diet-linked SGBs were those that
most differentiate between omnivore and vegan gut microbiomes,
in particular S. thermophilus, predictable from whole FFQ items at
AUC=0.72, R. torques (0.63), several Lachnospiraceae SGBs (all 0.65)
and Lawsonibacter asaccharolyticus (0.78; Figs. 3f,| and 4f, and Supple-
mentary Tables14-16), which s strongly tied to coffee consumption'®?.,
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Fig. 5| Contribution of food microbes to the gut microbiome across diet
patterns. a, Cumulative relative abundance (log,,) and b, number of food SGBs
(either meat, dairy, or fruits and vegetable-derived SGBs) within each individual’s
gut microbiome, coloured by diet pattern (omnivores: np; yxaon = 11,533, Np3usaon =
7,228; vegetarians: Nps yxaa = 623, Np3usza = 330; vegans: Np; yyaon = 197,

Np3usa = 373) and grouped by cohort (either P3 UK22A or P3 US22A; for all
cohorts, see Extended Data Fig. 2). Asterisks denote significance level of
BH-corrected Dunn’s tests; **P < 0.01, ***P < 0.001 (Supplementary Tables 18

and 19). Boxplot parameters the same as in Fig. 1b. ¢, Prevalence of the 20 most

common food SGBs (with their respective SGB IDs in parentheses) per diet
patternacross all n=>5 cohorts. Hashtags denote the number of cohorts (out of
the three that were tested: P1, P3 UK22A, P3 US22A; Methods) in which two-sided
chi-squared tests showed significant differences in SGB prevalence across all
three diet patterns (Supplementary Table 17). d, Prevalence (log,,) of the 20 most
common food SGBs across three major food categories (meat, dairy, fruits and
vegetables) to indicate which food group each SGBiis likely a signature of. White/
blank boxes indicate that SGB was not prevalent in that particular food category.

This demonstrates the role that other foods may play in influencing
this analysis based on entire FFQs versus highlighting only major food
groups of interest. When comparing vegetarian with vegan gut microbi-
omes, the signature vegetarian microbes with the highest predictability
arethose linked with dairy consumption, for example, S. thermophilus
(AUC=0.72), L. rhamnosus (0.66), L. delbrueckii (0.70), L. paracasei
(0.62), L. lactis (0.65) and L. acidophilus (0.68; Fig. 4f), aligning with
our results thus far. These AUCs show that there exists anon-random,
albeit mild, link between ingested food and the presence of specific
species, suggesting causal links and potential transfer of microbes
from food to gut.

Diet-dependent gut microbiome contribution of food
microbes
Until now, our results suggest the potential for diet patterns to select
for gut microbes, but gut microbes might be derived directly from
food itself*?, as may be the case for S. thermophilus, a common dairy
component® that we found to be one of the most differentiating
SGBs between diet patterns that differ in dairy consumption (Figs. 3h
and 4b). To establish how many SGBs in each diet pattern’s gut micro-
biome may be derived from food, we searched for food SGBs collated
in ‘curatedFoodMetagenomicData’ (cFMD)*? across our five cohorts
and found 260 to be present (Methods). We found that the number of
distinctfood SGBs differed according to diet pattern, with significantly
fewer food SGBsin vegan (zero-inflated negative binomial mixed model,
[ =-0.36, P<0.001; Fig. 5b and Methods) compared with omnivore
and vegetarian (8 = 0.35, P < 0.001) microbiomes, but not between
vegetarians and omnivores (5 =-0.004, P< 0.686).

When labelling these food SGBs as signatures of meat, dairy, and/
or fruits and vegetables if they had a prevalence >0.1% across these
food groups, the effect of food group was significant and larger than

the effect of diet pattern, with agreater number of food SGBs found for
dairy (8=0.73, P<0.001), followed by fruits and vegetables (8= 0.47,
P<0.001). Thus, the largest factor impacting food-to-gut species
sharing is the food group that SGBs are derived from, with greatest
sharing from dairy products and lowest from meat. The number of
food-associated SGBs was greatest in omnivores and vegetarians who
both eat foods from the groups with the highest transmission (dairy,
fruits and vegetables), and lowest in vegans who exclude meat and,
more importantly here, dairy products, thus probably minimizing
food-to-gut transmission rates.

We further found that the cumulative relative abundance of food
SGBs in vegetarian gut microbiomes was significantly higher thanin
both omnivore (zero-inflated linear mixed-effects model, f=0.38,
P<0.001) and vegan (8= 0.51, P< 0.001) gut microbiomes, and signifi-
cantly lower in vegans compared with omnivores (8=-0.12, P= 0.026;
Fig.5a). This again highlights the minimal food-to-gut species sharing
invegans. The fact that vegetarians had a greater cumulative relative
abundance of food SGBs than omnivores but a similar number of dis-
tinct food SGBs may reflect the similar richness of food SGBs ingested
(especially since meat-derived SGBs play aninferior role compared with
SGBs derived from dairy and fruits and vegetables), but also the greater
amountof fruits and vegetablesingested by vegetarians (Fig.1c) instead
of meat, whichin turndrives a higher cumulative relative abundance of
food SGBs. To summarize, dietary choices are linked to changesin the
gut microbiome via not only potential selection but also food-to-gut
acquisition.

Food-gut shared microbes differ across diet patterns

We then identified 20 food SGBs with the highest prevalence across
the five cohorts (Fig. 5¢) and which major food groups these SGBs
were signatures of (Fig. 5d). As expected, S. thermophilus was among
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them, showing the greatest prevalence in dairy and significantly lowest
prevalencein vegans (chi-squared tests; Methods, Fig. 5c and Supple-
mentary Table 17). Similar patterns were observed for common dairy
SGBs, for example, L. acidophilus, L. delbrueckii, L. lactis, L. paraca-
sei and L. rhamnosus”***—all SGBs that we found to be most greatly
differentiated between vegan and non-vegan diet patterns. To lend
more support to this hypothesis, we assessed omnivore and vegetarian
frequency of dairy consumption (milk, yogurt, cheese, butter, other
dairy) according to FFQs. We found that 96% of omnivores and 90%
of vegetarians consume dairy at least once per week (Extended Data
Fig.3) with similar fractions (90% and 84% respectively) when restrict-
ing to fermented dairy products (yogurt and cheeses; Extended Data
Fig.3). Thus, we conclude that, while some microbe signatures of diets
thatinclude dairy could be selected to help digest dairy, others could
be presentin the gut microbiome as transient members derived from
dairy foods themselves.

Severalfood SGBs witha high prevalence in vegans, such as Entero-
bacter hormaechei**, Citrobacter freundi, Raoultella ornithinolytica®
and Klebsiella pneumoniae®*® are members of the soil microbiome
and/or nitrogen-fixing bacteria. Among them, E. hormaechei promotes
growth in tomato and sweet pepper plants®**’, while some strains of
K. pneumoniae are nitrogen fixers and thus used as plant-growth pro-
motersinwheat and soybeans®”*®, This supports previous findings that,
aside frommore obvious possible sources of food-to-gut transmission
suchas cultured dairy products, agricultural practices could also play a
role*®. However, there is considerable phenotypic variation in these soil
microbes, some of which may be opportunistic pathogens in humans
and animals, hence theirrolein healthstill needs to be explored®***,

Plant- and meat-specific microbial pathways and diet patterns
Since our results pointed towards gut microbial configurations seem-
ingly adapted to the ingestion of major food groups, we explored
this hypothesis by looking at the diet patterns’ gut microbial func-
tional potential (Methods). This revealed an array of plant-associated
microbial pathways that were enriched in vegetarian and vegan diets
compared withan omnivorous one. These included the conversion of
simple carbohydrates (for example, D-galactose degradation pathway
6317) and of bioactive compounds (Extended Data Figs. 4-6 and Sup-
plementary Tables 21-23). Among the latter, we identified the myo-,
chiro- and scillo-inositol degradation pathway 7237, whose molecules
(thatis, the bioactive forms of inositol/vitamin B,) represent the most
abundantand accessible carbon and energy sourcesin plant-associated
environments*. This pathway is particularly widespread across soil
and rhizosphere bacteria and may provide a competitive advantage
for growth and substrate utilization to microbes in plant-associated
niches*, such as those of a vegan or vegetarian gut microbiome. Also
enrichedinvegan and vegetarian gut microbes were pathways for the
biosynthesis of chorismate (ARO and 6163), anintermediatein the pro-
duction of various essential metabolites (for example, some aromatic
amino acids, vitamins E and K, and ubiquinone*). These enzymatic
routes are of note because they are shared among prokaryotes, includ-
ing plant endosymbiotic cyanobacteria®, as well as several eukaryotes,
including ascomycete fungi*®. This underscores yet again the enrich-
ment of functions associated with plant ecological niches in vegan and
vegetarian gut metagenomes.

In contrast, pathways overrepresented in omnivore gut micro-
biomes are involved in the breakdown of animal-derived foods and
amino acid metabolism (Extended Data Figs. 4-6 and Supplemen-
tary Tables 20-22). These include the superpathway of L-threonine
(THRESYN), and of L-serine and glycine biosynthesis (SER-GLYSYN),
whose substrates are commonly found in red and white meat, and
in dairy products*”*8, Moreover, we found that omnivore microbi-
omes displayed the enzymatic machinery necessary for the salvage
of essential cofactors that are abundant in foods of animal origin*.
These cofactors included adenosylcobalamin (vitamin B;,) and folate

(vitamin B,) from dietary precursors (for example, cobinamide in the
COBALSYN pathway and 10-formyl-tetrahydrofolate in the ICMET2
pathway, respectively’*™"). The former is of particular note, since its
precursors are derived from animal sources absentin vegan diets, mak-
ing vitamin B, supplementation necessary for vegans®. In summary,
gut microbial functional potential reveals diet-specific niches related
to the metabolism of animal- or plant-derived foods, supporting the
role of dietanditsinclusion or exclusion of major food groupsinshap-
ing the gut microbial landscape both taxonomically and functionally.

Discussion

Following diets thatinclude or exclude major food groups such as meat,
dairy, fruits and vegetables leaves its mark on the gut microbiome,
which we characterized here by leveraging an integrated, multina-
tional, metagenomic cohort of unprecedented size (21,561 individu-
als) with self-reported diet patterns. We found strong microbiome
configurations for vegans, vegetarians and omnivores with several
characteristic microbes that confirm and expand upon several previ-
ous findings. Among the 488 microbial signatures of an omnivore gut
microbiome, we found species such as A. putredinis, B. wadsworthia
andR. torques, that were generally linked to meat (especially red versus
white meat) consumption. These species have been previously impli-
cated in inflammatory diseases such as inflammatory bowel disease,
colorectal cancer and an overall decrease in SCFAs, and were more likely
to be associated with negative cardiometabolic health outcomes™ 2",
In contrast, signature microbes of a vegan gut microbiome, such as
Lachnospiraceae, Butyricicoccus sp. and R. hominis, were linked to
the consumption of fruits and vegetables, for example, due to their
specialized role in fibre degradation, and are commonly described
as producers of SCFAs?* %, These observations were also reflected by
more signature vegan microbes associated with favourable cardiometa-
bolic healththan signature omnivore microbes and were parallelled by
pathway-level microbiome characterization (Extended Data Figs.4-6).
Interestingly, we did not identify species in the Segatella copri (previ-
ously Prevotella copri) complex™ as a strong signature of vegetarian or
vegan diets (Supplementary Table 10), despite its hypothesized role
in non-westernized populations characterized by fibre-rich diets®.

Diets with high dairy components showed strong signatures of
corresponding food microbes, in particular S. thermophilus and sev-
eral lactic acid bacteria (for example, L. acidophilus, L. paracasei and
L. lactis?****), which are generally seen as health-associated gut micro-
bial members. Vegan gut microbiomes had the highest prevalence of
microbes shared with fruits and vegetables. In particular, we observed
gutmicrobes thatare shared with plant and soil microbiomes and have
agricultural usein promoting plant growth through nitrogen fixation,
such as E. hormaechei and some strains of K. pneumoniae**~>°, These
results are supported by previous findings*® and provide evidence for
an intriguing and yet-to-be-explored role of soil microbes in human,
andin particular vegan, gut microbiomes.

Dietary factors within each diet pattern, such as the amount of
healthy plant-based foodsin one’s diet, generally transcend theimpact
of overall diet patterns on the gut microbiome and areimportant for gut
health. Inparticular, omnivores can modulate the fraction of gut micro-
bial signatures shared with other diet patterns by adding plant-based
food items in their diets (Fig. 1d,j). Since our data showed that omni-
vores on average ingest significantly fewer healthy plant-based foods
than vegetarians or vegans, optimizing the quality of omnivore diets
by increasing dietary plant diversity could lead to better gut health.

In summary, our work reinforces how humans can shape their
owngut microbiomes, and by extension their health, directly through
simple dietary choices as well as more indirectly through agricultural
and food production practices. These diet pattern signatures will be
important toinform experiments onspecificinteractions between sin-
glemicrobes (or genes) and food components, and are of potential use
inanumber of areasincludingimproving (clinical) intervention studies
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of different diet patterns and epidemiology studies where gut samples,
butnotdetailed diet data, are available. Further researchis still needed,
forexample at the strainlevel, to deduce food-to-gut transmission and
explore microbes shared between human gut and food sources and to
explore healthy practices within the three major diet patterns.

Methods
Analyses were conducted using the R statistical language (v.4.2.2)
unless otherwise stated.

The ZOE PREDICT cohorts and two Italian datasets

This study encompassed two published, publicly available datasets
(Taralloetal. (2022)?with 118 individuals and De Filippis et al. (2019)"
with 97 individuals) along with three ZOE PREDICT datasets: P1,a90%
UK/10% US cohort with 1,062 individuals; P3 UK22A, a UK cohort with
12,353 individuals; and P3 US22A, a US cohort with 7,931 individuals.
Both P3 plus P2 clinical trials were registered at https://www.clinicaltri-
als.gov (clinical trial identifier for P3: NCT04735835; P2: NCT03983733)
and ethics approval was obtained (P3 US protocol number (IRB):
Pro00044316; P3 UK ethics review reference: HR-23/24-28300; P2 IRB:
Pro00033432). Participants of P1, P2, P3 US22A and P3 UK22A all gave
informed study consent either written or electronically. Inaddition, P3
US22A and P3 UK22A participants gave product research consent dur-
ingthe course of product purchase at ZOE Ltd. Only the US subset of P1
received modest direct financial compensation for their participation.
All other participants did not receive direct financial compensation
beyond reimbursement of expenses incurred. Individuals reported
their dietary pattern (omnivore, vegetarian or vegan) and donated stool
samples for shotgun metagenomic sequencing. In total, 656 vegans,
1,088 vegetarians and 19,817 omnivores were sampled. When possible,
we alsoincluded samples from the ZOE PREDICT 2 (P2) cohort, which
encompassed only omnivores from the United States (843 individuals),
thuslimitingits usability in this analysis. For this reason, most analyses
presented here donotinclude P2 unless explicitly stated and any men-
tion of ‘the five cohorts’ refersto all cohorts except P2. Detailed habitual
dietaryinformation from participantsin all four ZOE PREDICT cohorts
was obtained from quantitative food frequency questionnaires.

To further support the FFQs, we tested the Metagenomic Esti-
mation of Dietary Intake (MEDI) tool™, which uses food DNA in gut
metagenomes to estimate and quantify food consumption (https://
github.com/Gibbons-Lab/medi). We assessed how a MEDI-based clas-
sification of diet patterns would perform versus an FFQ-based clas-
sification, using what participants self-reported as the ground truth
(only participants from P1, P3 22UKA and P3 22USA were considered,
since these are the only cohorts with FFQs and all three diet patterns).
To do so, we classified any sample in which MEDI found animal DNA
as a non-vegan sample and any sample in which no animal DNA was
found as avegan sample. Similarly, we classified any sample whose FFQ
reported the consumption of any animal product as anon-vegan sam-
pleandviceversa.Indeed, we found alower prevalence of animal DNA
among vegans vs non-vegans using the MEDI classification (Extended
Data Fig. 7 and Supplementary Table 23), which highlights this tool’s
potential applicationinstudies lacking dataonoverall dietary patterns.
Compared with FFQs, however, we found MEDI unable to perform
similarly well in predicting participants’ diet patterns (chi-squared
test, P< 0.001). While accurate thresholding of MEDI-derived statis-
tics could improve performance, a deeper sequencing depth may be
needed to substantially increase the tool’s reliability by capturing a
greater amount of food DNA, which is generally sparse in faecal sam-
ples. Since FFQs remain the gold standard and given the focus of our
work onlongversus short-termdietary patterns, we opted to base any
analyses using food consumption data on FFQs, which have been exten-
sively validated over time and in publications'®", and refer researchers
toadopt aMEDI-based approach for studies lacking proper FFQs or as
an additional validation tool.

FFQs were used to calculate hPDI values. Eighteen food groups
were derived from and combined on the basis of the FFQ, segregated
into quintiles and assigned positive or reverse scores>*. Ascore of 5was
givento participants with anintake exceeding the largest positive score
quintile and a score of 1 was given to those below the smallest quin-
tile. Reverse scores received a reverse value. A final score was derived
by summarizing the scores of each participant. Healthy plant-based
foods received positive scores, whereas less healthy or unhealthy
plant-based and animal-based foods received areverse score. An hPDI
value was able to be calculated for 900 individuals from P1 (841 omni-
vores, 49 vegetarians and 10 vegans), 12,091 from P3 UK22A (11,289
omnivores, 610 vegetarians and 192 vegans) and 7,375 from P3 US22A
(6,720 omnivores, 309 vegetarians and 346 vegans). To compare hPDI
values betweenthe three diet patterns withineach of the three PREDICT
cohorts, we fitan ANOVA model to explain hPDIwith diet pattern, sex,
age (scaled) and BMI (scaled). This was followed by multiple com-
parisons using Tukey contrasts with a sandwich estimator to provide
aheteroskedasticity-consistent estimator.

DNA extraction, amplification and sequencing

P1samples were extracted and sequenced as previously described and
published'. P2 sample extraction and sequencing followed a similar
protocol: samples were stored in Zymo buffer until DNA extraction at
QIAGEN Genomic Services using DNeasy 96 PowerSoil Pro. P2 samples
were sequenced on the lllumina NovaSeq 6000 platform using the S4
flow cell, targeting 7.5 Gbp per sample. Similarly, samples from both
P3 cohorts were also stored in Zymo buffer until DNA extraction at
Zymo using ZymoBIOMICS-96 MagBead DNA kit. P3 samples were
sequenced on the lllumina NovaSeq 6000 platform using the S4 flow
cell, targeting 3.75 Gbp per sample.

Metagenome preprocessing and taxonomic profiling

We profiled all microbiome samples using MetaPhlAn 4 (v.4.beta.2,
databasev.Jan21_CHOCOPhIANSGB_202103, with default parameters)
to compute microbial relative abundances (Supplementary Code 1).
These microbes were organized into SGBs that represent not only
known species (for which reference genomes exist), but also unknown
species currently described only by metagenome-assembled genomes
(MAGs), thus expanding the resolution of taxonomic profiling™*°,

Alphadiversity

We calculated observed richness using MetaPhlAn’s ‘calculate_diver-
sity’ script (v.4.0.0)>. We considered all observations outside the 95%
confidence intervals (Cls) to be outliers, which removed 22 samples.
We tested for significant differences in alpha diversity between diet
patterns within each of the five cohorts separately using Kruskal-Wal-
lis rank sum tests with a significance level of 0.05, followed by Dunn’s
tests for multiple comparisons with P values adjusted using the Ben-
jamini-Hochberg (BH) method. In addition and to use acomplemen-
tary, yet alternative approach, we fit a linear mixed model to predict
observedrichness with diet pattern, sex, age (scaled) and BMI (scaled)
using the ‘nlme’ package (v.3.1.162). The modelincluded cohortas aran-
domeffect. Themodel'sintercept corresponded to diet pattern = omni-
vore, BMI =0, age = 0 and sex = female. Confidence intervals (95%) and
Pvalues were computed using a Wald ¢-distribution approximation
(Supplementary Code 1). Observed richness differed significantly
according to diet patterns, with a lower observed richness in vegans
and vegetarians compared with omnivores (intercept corresponding to
omnivoresat271.30,95% C1[245.57,297.04], t(21,549) = 20.66, P < 0.001;
Buegetarian = —21.09, 95% C1 [-25.26, -16.93], £(21,549) = -9.93, P< 0.001;
Buegan = —21.20,95% C1[-26.58,-15.82], £(21,549) = 7.73, P< 0.001; mar-
ginal R?=0.08; Fig. 1b and Supplementary Table 7). To also compare
vegetarians with vegans, we then built the same model with vegansin
the intercept instead of omnivores. Thus, the model’s intercept cor-
responded to diet pattern = vegan, BMI =0, age = 0 and sex = female.
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All other parameters remained the same. Using this model, there
were no significant differences in observed richness between vegans
and vegetarians (intercept corresponding to vegan at 250.10, 95% CI
[223.99,276.21],£(21,549) =18.77,P < 0.00L; B,cgetarian = 0-11, 95% CI1[-6.47,
6.68], £(21,549) = 0.03, P= 0.975; Fig. 1b).

Beta diversity

We calculated weighted and unweighted UniFrac, Aitchison and
Bray-Curtis distances using MetaPhlAn’s ‘calculate_diversity’ script
(v.4.0.0)%. We tested for differences in beta diversity using the ‘vegan’
package (v.2.6.4) to run one PERMANOVA per cohort and per distance
matrix with sex, age (scaled), BMI (scaled) and diet pattern (in that
order) as explanatory variables and using adonis2 default settings
(999 permutations, terms assessed sequentially). Beta diversity was
plotted using principal coordinates analysis (PCoA) generated using
the ‘ape’ package (v.5.7; Supplementary Code 1).

Machine learning approaches

To link the participants’ diet patterns to their microbiome com-
munity structure across P1, P3 UK22A, P3 US22A, De Filippis et al.
(2019)" and Tarallo et al. (2022)" cohorts, we employed a machine
learning approach: metAML" based on the random forest (RF) clas-
sification algorithm (scikit-learn Python library, v.0.22.2). The algo-
rithm used was based on 1,000 estimator trees, 10 samples per leaf,
no maximum depth, Gini impurity criterion and 10% of the total fea-
tures’ number in each tree. We performed two types of validation: (1)
leave-one-dataset-out (LODO), which consisted of a training which
encompasses all cohorts but one and was tested on the left-out cohort
(anditeratively done for all cohorts); and (2) a hybrid approach named
cross-LODO, which corresponded to a per-cohort (10-times, 10-fold)
cross-validation, in which the rest of the cohorts were added to each
training set as a support (Supplementary Code 1). First, we ran LODO
and cross-LODO RF models on diet pattern pairs, using microbial SGB
relative abundances as features. We also performed a set of experi-
ments running LODO on SGB relative abundances as features together
with sex, age and BMIto test the microbiome’s ability in distinguishing
dietary habits when accounting for human interpersonal variability
(Supplementary Table 9 and Supplementary Code 1). To test for poten-
tial dataleakage and overfitting, we randomly swapped the diet pattern
labels inacross-LODO experiment, which, as expected, did not result
in AUCs above 0.51.

Moreover, we performed per-cohort cross-validations on the
cohorts P1,P2,P3US22A and P3 UK22A to predict the presence of those
SGBs found at a prevalence between 10% and 90%, using the partici-
pants’ dietary composition as features estimated by their FFQs. The
average predictability of each SGB’s presence based on FFQs was then
computed by meta-analysing the four AUCs (see following section).
Final AUCs in each case were computed as an average over 100 tests
(cross-validation and cross-LODO) and an average over 10 tests (LODO).
Cross-LODO ROC curves were plotted as a linear interpolation (scipy
v.1.11.4) over the 100 tests, with 95% confidence intervals computed
on the basis of the bootstrap standard error under the assumption of
at-distribution.

Meta-analysis approaches

Several statistical association measures were computed on each
cohort separately and then pooled via inverse-variance weighting
(meta-analysis) of the relevant coefficients. To determine differen-
tially abundant microbes between the diet patterns, for each of the
five main cohorts analysed in this study, we built linear models to
assess the differentially abundant SGBs between diet pairs (‘omnivore
Vs vegetarian’, ‘omnivore vs vegan’ and ‘vegetarian vs vegan’). Lin-
ear models were fit to each diet pair (as a categorical variable) on the
arcsin-square-root-transformed SGB’s relative abundance to compen-
sate for the proportions variance instability, and were adjusted by sex,

age and BMI. The corresponding mean abundance difference in the two
diets was transformed into a standardized mean difference (adjusted
Cohen’s d). The pooled estimate of effect sizes from linear models
implements arandom-effects meta-analysis with DerSimonian-Laird
heterogeneity (Supplementary Code 1 and Code availability state-
ment). Inan additional meta-analysis, the cross-validation AUCs result-
ing fromthe RF done on FFQs to predict the presence/absence of SGBs
(see section above) were meta-analysed over all the ZOE PREDICT
cohorts, including P2, using the same Python script just described with
the AUC standard error computed by metAML.

To determine the links between major food groups and SGB rela-
tive abundance, the partial Spearman’s correlation (adjusted by sex,
age and BMI) between each SGB’s relative abundance and the individual
intake of meat (white and red), dairy products, fruits and vegetables,
was computed after having summed the total intake of single FFQitems
belonging to each group, for all the ZOE PREDICT cohorts, including
P2.Correlations were calculated using individuals from diets that con-
sumed that particular food group; for example, correlations between
SGB abundances and meat were calculated using only omnivores, while
correlations concerning fruits and vegetables were calculated using
individualsfromallthree diet patterns. An additional meta-analysis was
conducted on the partial Spearman’s correlation between each SGB’s
relative abundances and hPDI. In these cases, the pooled estimates of
correlations were computed using the meta packageinR (v.7.0-0) and
were based onthe standard error of the Fisher Zcorrelation transforma-
tion. For all meta-analyses, Wald test Pvalues and correlation Pvalues
forall SGBs evaluated were adjusted for false discovery rate (BH) in each
cohort separately and in each meta-analysis. Statistical significance
was defined as a g-value < 0.1 (Supplementary Code 1).

ZOE MB Health ranks

The ZOE Microbiome Ranking 2024 ranks SGBs that significantly corre-
late with aset of cardiometabolic markers such as BMI, blood pressure
and lipoproteins, and was defined on the basis of five ZOE PREDICT
studies (P1, P2, P3 US21, P3 UK22A and P3 US22A) and ~35,000 indi-
viduals®. We searched for these ranked SGBs across our multicohort
dataset and compared mean ranks of SGB signatures of the various
diet patterns (as determined by the meta-analysis described above)
by conducting two-sample t-tests with equal variance (determined
using Levene’s test, P> 0.05 for all diet pattern pairs) on the ranks for
the statistically significant differentially abundant SGBs between each
diet pattern pair.

Food microbiome

To determine how many and which SGBs in each diet pattern’s gut
microbiome may be derived from food, we used the cFMD database
of metagenomes sampled from various food sources, which defined
food SGBs as those found with a relative abundance >0.1% in >4 food
samples from taxonomic profiles®. This resulted in 816 food SGBs,
which we then searched for across our five cohorts. We found 263 of
these 816 food SGBs to be present across our whole dataset. We con-
sidered these food SGBs to be signatures of meat, dairy, and/or fruits
and vegetablesif they had a prevalence of >0.1% across food samples
belonging to the three aforementioned food groups. To establish
whether the number of food SGBs present in gut microbiomes differs
accordingto diet pattern or food group they are a signature of (meat,
dairy, or fruits and vegetables), we fit a zero-inflated negative binomial
mixed model estimated by maximum likelihood from the ‘NBZIMM’
package (v.1.0) to predict the number of food SGBs per sample with
diet pattern, food group, sex, age and BMI. The modelincluded cohort
asarandom effect with conditional R* = 0.10, marginal R*= 0.08, and
intercept corresponding to omnivore microbiomes and meat SGBs
at 0.77, P< 0.001. To also compare vegetarians with vegans, we then
built the same model with vegans in the intercept instead of omni-
vores. All other parameters remained the same. Similarly, to establish
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whether the cumulative relative abundance of food SGBs in gut micro-
biomes differs according to diet pattern or food group, we fitanother
zero-inflated linear mixed model estimated by maximum likelihood
with the same model structure as above. The model’s intercept corre-
sponded to omnivore microbiomes and meat SGBs at-0.41, P< 0.001,
with conditional R* = 0.05 and marginal R* = 0.05. Again, vegans were
moved to theinterceptinafollowing model with the same parameters.
In addition and using a slightly different approach, we tested for dif-
ferences in the number of food SGBs and in their cumulative relative
abundance between the diet patterns and within each food group and
within each cohort using Dunn’s tests coupled with a BH correction
for multiple testing.

To establish whether there were any significant differences in
the prevalence of the 20 most common food SGBs between the three
diet patterns, we ran a chi-squared test on the number of omnivore,
vegetarian and vegan microbiomes in which each of the SGBs was
present versus absent with the option to compute P values by Monte
Carlo simulation (99,999 replicates). The tests were run for the larger
cohorts separately, namely, for P1, P3 UK22A and P3 US22A.

Gut microbial functional potential

To generate gut microbial functional potential, we ran HUMAnN
(v.3.6)* with default parameters (Supplementary Code 1). We focused
on the pathway abundance output and removed any unmapped or
unintegrated pathways, as well as pathways with a prevalence of <0.05
across samples of at least one diet pattern and a coverage of <0.2.
This left us with 87 pathways in P1, 85 pathways in P3 UK22A and 87
pathways in P3 US22A. We then measured the statistical association
between the relative abundances of these pathways and each diet
pattern pair, which we first computed on each of the three PREDICT
cohortsseparately and then meta-analysed as described in detail above
(Supplementary Code1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The publicly available datasets used in this work are available from
their respective publicationsinrefs.12,13. Raw metagenomic samples
are provided for all participants of the ZOE PREDICT studies. Specifi-
cally, PREDICT 1 has already been made publicly available as reported
previously' under the NCBI-SRA bioproject ID PRJEB39223, whereas
PREDICT 2 is deposited in EBl under accession number PRJEB75460,
and PREDICT 3 cohortsunder EBlaccession numbers PRJEB75463 and
PRJEB75464. Sex, age, BMI, country and the quantitative taxonomic
profiles are available for each sample within the curatedMetagen-
omicData package’®. The ZOE Microbiome Rankings for the full list
of species are made available (and kept up-to-date) at https://zoe.
com/our-science/microbiome-ranking. ZOE is the owner of the pseu-
donymized dataand metadataand researchersinterested in follow-up
studies requiring additional specific metadata information should
fill out a research request proposal at https://zoe.com/our-science/
collaborate that will be evaluated by a subpanel of the ZOE Scientific
Advisory Board once per month for their priority, relevance and in
compliance with privacy and data protection regulations.

Code availability

The code for the analyses conducted here is provided in Supplemen-
tary Code 1. The pooled estimate of effect sizes from linear models
was computed on the basis of the pipeline in GitHub at https://github.
com/waldronlab/curatedMetagenomicDataAnalyses/blob/main/
python_tools/metaanalyze.py. An importable meta-analysis Python
library is also freely available in GitHub at https://github.com/
Segatalab/inverse_var_weight/blob/main/meta_analyses.py.
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significantly differentially abundant between each diet pattern pair (Methods), with * 0.05>p <0.01and *** p < 0.001.
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Extended Data Fig. 2| Microbial food-to-gut transmission across the diet Tarallo etal.'?; Supplementary Tables 19, 20). Boxplots show the median, 25th
types and major food categories. Cumulative relative abundance (in %, log,, and 75th percentiles, and whiskers extend to 1.5 times the interquartile range.
scale; upper panels) and prevalence, that is, count, (lower panels) of food SGBs omnivores: 1p; =991, N3 yiaoa = 11,533, M3 ysaon = 7,228, Npepitippis = 23, Araraiio = 40;
(either meat, dairy, or fruits and vegetable-derived SGBs) within each individual, vegetarians: r1p; =59, Np3 yaza = 623, Mp3 uszan = 330, Mperitippis = 38, Mraranio = 38; vegans:
colored by diet pattern (pink = omnivore, purple = vegetarian, green = vegan) Np; =10, Np3 4204 = 197, Np3us22a = 373, Mpe itippis = 36, Nrarao = 40 individuals.

and grouped by cohort (P1, P3 UK22A, P3 US22A, DeFilippisetal., and
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Extended Data Fig. 3 | Frequency of dairy consumption across omnivores
and vegetarians in P3 UK22A and P3 US22A according to FFQs. a Percentage
(y-axis) of omnivores and vegetarians (x-axis) that consume dairy products

(milk, yogurt, cheese, butter, or other dairy) between ‘two or more times per day’

to ‘irregularly’. The consumption frequency categories were given by the FFQs.
Percentages within the bar plotsindicate the dairy consumption prevalence of
that diet pattern in that consumption category. b Same asin a, but considering
only fermented dairy products (yogurt and cheeses).
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Extended Data Fig. 4 | Potential microbial functional signatures of omnivore
and vegetarian gut microbiomes. a Prevalence (in %) of each functional
pathway (y-axis) in omnivore (pink, left bars) and vegetarian (purple, right
bars) gut microbiomes. b Meta-analyzed correlations between pathway relative
abundance and diet pattern (omnivore vs vegetarian) for the top 30 pathways
with the largest absolute standardized mean difference, upper and lower
confidence intervals. Purple dots to the right indicate pathway-associations
with vegetarians, while pink dots to the left indicate pathway-associations with

omnivores. Also showninsmaller shapes are the per-cohort correlations, with
shapes filled in black indicating a Wald g-value < 0.1and those filled in gray
indicating a Wald g-value > 0.1. The black horizontal bar indicates the separation
between the correlations with omnivores vs vegetarians for ease of visualization
only. Shown are only the pathways with a prevalence of less than 0.05 across
samples of at least one diet pattern, a coverage less than 0.2, and which were
significant at q < 0.1. Pomivores = 19,817, Nyegerarians = 1,088.
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Extended Data Fig. 5| Potential microbial functional signatures of
omnivore and vegan gut microbiomes. a Prevalence (in %) of each functional

pathway (y-axis) inomnivore (pink, left bars) and vegan (green, right bars)

gut microbiomes. b Meta-analyzed correlations between pathway relative
abundance and diet pattern (omnivore vs vegan) for the top 30 pathways with
the largest absolute standardized mean difference, upper and lower confidence
intervals. Green dots to the right indicate pathway-associations with vegans,
while pink dots to the left indicate pathway-associations with omnivores.

g-value > 0.1. The black horizontal bar indicates the separation between the
correlations with omnivores vs vegans for ease of visualization only. Shown are
only the pathways with a prevalence of less than 0.05 across samples of at least
onediet pattern, a coverage less than 0.2, and which were significantat q<0.1.
Nomnivores = 19,817, Nyegans = 656.
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Extended Data Fig. 6 | Potential microbial functional signatures of vegetarian
and vegan gut microbiomes. a Prevalence (in %) of each functional pathway
(y-axis) in vegetarian diet (purple, left bars) and vegan (green, right bars)

gut microbiomes. b Meta-analyzed correlations between pathway relative
abundance and diet pattern (vegetarian vs vegan) for the top 30 pathways with

Also shown in smaller shapes are the per-cohort correlations, with shapes filled
inblackindicating a Wald g-value < 0.1and those filled in gray indicating a Wald
g-value>0.1. The black horizontal bar indicates the separation between the
correlations with vegetarians vs vegans for ease of visualization only. Shown are
only the pathways with a prevalence of less than 0.05 across samples of at least

onediet pattern, a coverage less than 0.2, and which were significantat q <0.1.
nvege(arians = 1,088, nvegans =656.

the largest absolute standardized mean difference, upper and lower confidence
intervals. Green dots to the right indicate pathway-associations with vegans,
while purple dots to the left indicate pathway-associations with vegetarians.
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(Supplementary Table 24).
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LODO machine learning was applied, in which case a per-cohort (ten-times, ten-folds) cross-validation was performed, in which the rest of the

cohorts is added to each training set as a support.
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