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and materials with reconfigurable quantum 
processors
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Simulations of quantum chemistry and quantum materials are believed 
to be among the most important applications of quantum information 
processors. However, realizing practical quantum advantage for such 
problems is challenging because of the prohibitive computational cost 
of programming typical problems into quantum hardware. Here we 
introduce a simulation framework for strongly correlated quantum systems 
represented by model spin Hamiltonians that uses reconfigurable qubit 
architectures to simulate real-time dynamics in a programmable way. Our 
approach also introduces an algorithm for extracting chemically relevant 
spectral properties via classical co-processing of quantum measurement 
results. We develop a digital–analogue simulation toolbox for efficient 
Hamiltonian time evolution using digital Floquet engineering and 
hardware-optimized multi-qubit operations to accurately realize complex 
spin–spin interactions. As an example, we propose an implementation 
based on Rydberg atom arrays. In addition, we show how detailed spectral 
information can be extracted from the dynamics through snapshot 
measurements and single-ancilla control, enabling the evaluation of 
excitation energies and finite-temperature susceptibilities from a single 
dataset. To illustrate the approach, we show how to use the method to 
compute key properties of a polynuclear transition-metal catalyst and 
two-dimensional magnetic materials.

A major thrust of quantum chemistry and material science involves the 
quantitative prediction of electronic structure properties of molecules 
and materials. Although powerful computational techniques have 
been developed over the past decades, especially for weakly correlated 
systems1–4, the development of tools for understanding and predicting 
the properties of materials that feature strongly correlated electrons 
remains a challenge5–7. Quantum computing is a promising route to 
efficiently capturing such quantum correlations8–10, and algorithms for 

Hamiltonian simulation and energy estimation11 with good asymptotic 
scaling have been developed. However, existing methods for simulating 
large-scale electronic structure problems are prohibitively expensive 
to run on near-term quantum hardware12, highlighting the need for 
more efficient approaches.

One approach to capturing the complexity of strongly correlated 
systems utilizes model Hamiltonians13, such as the generalized Ising, 
Heisenberg and Hubbard models, which describe the interactions 
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S (no hat) throughout the paper). Hamiltonians of this form can capture 
the effects of many processes arising in physical compounds, including 
super-exchange, spin–orbit coupling, ring exchange and more29. In 
our approach, spin-S variables are encoded into the collective spin of 
2S qubits, such that the ith spin in equation (1) is rewritten as

̂S
α
i =

2Si
∑
a=1

̂sαi,a, (2)

where ̂sαi,a are the spin-1/2 operators of the ath qubit in the ith spin. 
Valid spin-Si states live in the symmetric subspace with maximum total 
spin per site ⟨(Ŝi)

2
⟩ = Si(Si + 1). While several alternate approaches to 

encoding spins with hardware-native qudits have been proposed 
recently47–50, the cluster approach introduced here uses the same con-
trols as qubit-based computations, ensuring compatibility with exist-
ing setups51, and naturally supports simulation of models with mixed 
on-site spin.

The core of our protocol involves applying a K-step sequential 
evolution under simpler interaction Hamiltonians Hi = ∑g∈Gihi,g, i = 1, 
…, K, acting on disconnected groups Gi of a few qubits each. The com-
bined sequence realizes an effective Floquet Hamiltonian HF that 
approximates equation (1). To controllably generate effective Hamil-
tonians, we use the average Hamiltonian approach. In the limit of small 
step sizes τ ≪ 1/K, the evolution is well approximated by H (0)

F = 1
K
∑K
i=1 Hi 

to leading order, and contributions from higher-order terms are 
bounded52.

In general, the performance of this approach will be limited by 
simulation errors, characterized by the difference between HF and the 
target Hamiltonian H, and gate errors, determined by the hardware 
overhead required to implement individual evolutions e−ihi,gτ. To miti-
gate the leading sources of error, we next develop Hamiltonian engi-
neering protocols that leverage multi-qubit spin operations to realize 
equation (1) with short periodic sequences.

Dynamical projection with digital Floquet 
engineering
Our Hamiltonian engineering approach is based on the cluster encod-
ing equation (2). The key idea is to first generate interactions in the 
full Hilbert space using a spin-1/2 (qubit) version HI of equation (1) and 
then dynamically project back onto the encoding space. We select HI 
such that projection recovers the target Hamiltonian, by mapping 
each n-body large spin interaction in equation (1) onto an equivalent 
n-body qubit interaction acting on representatives from the n-clusters 
(Methods and Fig. 2a). We further decompose HIinto D non-overlapping 
groups HI,j, such that each term can be applied sequentially.

While this generates the target interactions between spin clusters, 
it also moves encoded states out of the symmetric subspace. There-
fore, to prevent evolution under HI from destroying the encoding, we 
alternately apply evolution under

HP = λ∑
i
(1 − P[(Ŝi)]) , (3)

composed of projectors P[(Ŝi)] onto the symmetric spin states, by 
applying multi-qubit gates within spin clusters. The symmetric states 
are zero-energy ground states of HP, and non-symmetric states are 
separated by an energy gap λ. Alternating HI and HP enables Trotter 
simulation of the static Hamiltonian HI + HP. For λ ≫ Jij, the system is 
effectively projected into the ground space of HP at low energies, real-
izing H. However, accurate Trotter simulation in this regime, by alter-
nating HI and HP, requires two separations of timescale between the 
step size and the target interactions τ≪ λ−1 ≪ J−1ij , leading to a large 
number of gates.

Instead, we develop an approach that enables projection of HI onto 
the ground state of HP with substantially fewer gates, using ideas 

between the active degrees of freedom at low temperatures. Like other 
coarse-graining or effective Hamiltonian approaches14, model param-
eters can be computed from an ab initio electronic structure problem 
using a number of classical techniques15–20. Furthermore, model Hamil-
tonians exhibit features such as low-degree connectivity that simplify 
implementation, making them particularly promising candidates for 
quantum simulation21–26. Although approximate, simplified model 
Hamiltonians have proved valuable in analysing strongly correlated 
problems27–29 for small system sizes, where accurate but costly classical 
methods can be applied. However, as the system size increases, classi-
cal numerical methods struggle to reliably solve strongly correlated 
model systems, as the relevant low-energy states often exhibit a large 
degree of entanglement. In this Article, we focus on the program-
mable quantum simulations of spin models. These correspond to 
a class of Hamiltonians that describe compounds where unpaired 
electrons become localized at low temperatures and can therefore be 
represented as effective local spins with S ≥ 1/2. These include many 
polynuclear transition metal compounds and materials containing 
d- and f-block elements, which play a central role in chemical catalysis 
and magnetism20,28,29.

Recent advances in quantum simulation30,31 have enabled the 
study of paradigmatic model Hamiltonians with local connectivity. 
In particular, experiments have probed non-equilibrium quantum 
dynamics32–34, exotic forms of emergent magnetism35–38 and long-range 
entangled topological matter39–41 in regimes that push the limits of 
state-of-the-art classical simulations42. The model Hamiltonians 
describing realistic molecules and materials, however, often con-
tain more complex features, including anisotropy, non-locality and 
higher-order interactions29, demanding a higher degree of programma-
bility18. Although universal quantum computers can, in principle, simu-
late such systems, standard implementations based on local two-qubit 
gates require large circuit depths23 to realize complex interactions and 
long-range connectivity. Thus, for optimal performance in devices with 
limited coherence, it is essential to utilize hardware-efficient capabili-
ties to simulate such systems.

Here, we introduce a framework to simulate model spin Hamil-
tonians (Fig. 1) on reconfigurable quantum devices. The approach 
combines two elements. First, we describe a hybrid digital–analogue 
simulation toolbox for realizing complex spin interactions, which 
combines the programmability of digital simulation with the efficiency 
of hardware-optimized multi-qubit analogue operations. Then, we 
introduce an algorithm, dubbed many-body spectroscopy that lever-
ages time dynamics and snapshot measurements to extract detailed 
spectral information of the model Hamiltonian in a resource-efficient 
way43. We describe in detail how these methods can be implemented 
using Rydberg atom arrays32,41 and discuss its applicability to other 
emerging platforms that can support multi-qubit control and dynamic 
programmable connectivity44, such as the ion quantum charge-coupled 
device (QCCD) architecture45,46. Finally, we illustrate potential applica-
tions of the framework on model Hamiltonians describing a prototypi-
cal biochemical catalyst and two-dimensional (2D) materials.

Engineering spin Hamiltonians
The general Hamiltonian we consider is

H = ∑
i,α
Bαi ̂S

α
i + ∑

ij,αβ
J αβij ̂S

α
i ̂S

β
j

+ ∑
ijk,αβγ

Kαβγijk
̂S
α
i ̂S

β
j ̂S

γ
k + higher order,

(1)

where ̂S
α
i ,α = x, y, z are spin-Si operators of the ith spin (Si ≥ 1/2 can vary 

between sites), and the interaction coefficients ( J αβij , Kαβijk  and so on) 
are potentially long range ( ̂S represents a quantum mechanical oper-
ator. We distinguish between the spin operator ̂S and the spin number 
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inspired by dynamical decoupling53,54. This is achieved by using 
large-angle rotations e−iτHP, where τλ ≈ 1, to generate a time-dependent 
phase on the parts of HI that couple encoded states to non-symmetric 
states. These phases cancel out on average, leaving the symmetric part 
which commutes with HP (see the ‘High-spin Hamiltonian engineering 
with dynamical Floquet projection’ section in the Methods for details).

This approach provides important benefits in simulating complex 
spin models, where the number of overlapping terms in H grows rapidly 
with parameters such as the spin size S, number of interactions per spin 
d and interaction weight nmax. In this regime, a Trotter decomposition 
of H into non-overlapping terms hi,g would require a sequence of length 
K ≥ d(2S)nmax−1, where d measures the number of interactions each spin 
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Fig. 1 | Model Hamiltonian approach to quantum simulation of strongly 
correlated matter. a, The procedure starts with a description of the target 
molecule or material structure, whose electronic structure problem is reduced 
using classical computational chemistry techniques to a simpler effective 
Hamiltonian that captures the relevant low-energy behaviours. b, Here, we study 
problems that are modelled by spin Hamiltonians with potentially non-local 
connectivity and generic on-site spin S ≥ 1/2, where each spin is composed of 
localized, unpaired electrons in the original molecule. The key simplification 
comes from capturing charge fluctuations perturbatively, which is a good 
approximation in certain contexts. c, Programmable quantum simulation is then 

used to calculate properties of the model Hamiltonian. We develop a simulation 
framework, based on encoding spins into clusters of qubits, that can be readily 
implemented on existing hardware. The toolbox enables efficient generation 
of complex spin interactions by leveraging dynamical reconfigurability and 
hardware-optimized multi-qubit gates (Figs. 2 and 3). The quantum simulator 
performs time evolution under the spin Hamiltonian for various simulation 
times t, and each qubit is projectively measured to produce an set of snapshots. 
Subsequent classical processing extracts properties such as the low-lying 
excitation spectrum and magnetic susceptibilities, all from the same dataset 
(Figs. 4–6).
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Fig. 2 | Hardware-efficient implementation with neutral-atom tweezer 
arrays. a, Our protocol for programmable simulation of generic spin 
Hamiltonian is based on applying sequences of interactions between non-
overlapping few-qubit groups. Here, we illustrate an implementation of a 
complex spin model using the dynamical projection approach. Spin-Si variables 
are encoded in the collective spin of a cluster of 2Si qubits within a blockade 
radius RB. Then, interactions between spins are generated by evolving pairs of 
qubits from each cluster under an interaction Hamiltonian HI. Second-order 
interactions Jij act on two qubits, while higher-order interactions act on multiple 
qubits, such as the fourth-order coefficient Liijk of ̂S

α
i ̂S

β
i ̂Sj ̂Sk. Then, interactions are 

dynamically projected into the symmetric encoding space within each cluster by 
evolving under Hamiltonian HP. The target large spin Hamiltonian H is simulated 
by alternately evolving under HI and HP. This protocol can be realized in any 
reconfigurable quantum processor. Here, we present an implementation for 
Rydberg atom arrays, which has two long-lived qubit states |0⟩ , |1⟩, and an excited 

Rydberg state |r⟩ with strong interactions. The interaction connectivity is 
dynamically changed by moving optical tweezers41, and interactions are 
generated using all-to-all Rydberg blockade interactions within each cluster and 
simultaneous global driving of the qubit Ωq(t) and Rydberg Ωr(t) transitions. b, 
Fast and efficient multi-qubit spin operations US and UP are identified using 
optimal control to optimize pulse sequences. Gate times are measured in units of 
the Rydberg driving frequency ΩT, where the two-qubit CZ gate from ref. 51 takes 
ΩT/2π ≈ 1.2. The alternating ansatz (solid lines) decomposes the target 
operations into symmetric diagonal gates and single-qubit rotations, which can 
be are individually optimized (Methods). Simultaneous (dual) driving of both 
transitions (dotted lines) enables even faster realization of approximate US and UP 
gates with noise-free error rates below ~10−3. c, We compare against 
decomposition of US and UP into a two-qubit gate set composed of CPhase gates 
and single-qubit rotations. Such a decomposition rapidly becomes very costly as 
the cluster size grows, in contrast to the optimized hardware-native operation.
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Si is involved in. Instead, the projection approach produces decomposi-
tions of H into sequences of length K = (nmax + 1)⌈

d
2S
⌉, leading to per-

formance improvements of several orders of magnitude for models 
with large spins and higher-order interactions.

Similar tools can also be used realize a large class of spin circuits, by 
generating different evolutions HF,i during each cycle. This effectively 
implements discrete time-dependent evolution

Ucirc =
T
∏
i=1
e−iτiHF,i . (4)

Variational optimization can be further used to engineer 
higher-order terms in HF, enabling the generation of more complex 
spin gates at no additional cost (Extended Data Fig. 1). Although the 
classical variational optimization procedure is limited to small circuits, 
Hamiltonian learning protocols could be used to perform larger-scale 

optimization on a quantum device directly55. Such circuits can be 
used for operations besides Hamiltonian simulation, including state 
preparation21.

Hardware-efficient implementation
The digital Hamiltonian engineering sequence can, in principle, be 
realized on any universal quantum processor, but it is especially well 
suited for reconfigurable processors with native multi-qubit 
interactions41,44,46,56. Neutral atom arrays are a particularly promising 
candidate for realizing these techniques, for which we develop a 
detailed implementation proposal. In this platform, two long-lived 
atomic states encode the qubit degree of freedom {|0⟩ , |1⟩}, which can 
be individually manipulated with fidelity above 99.99% (ref. 57). Strong 
interactions between qubits are realized by coupling to a Rydberg state 
|r⟩ (ref. 58), which enables parallel multi-qubit operations57, with 
state-of-the-art two-qubit gate fidelities exceeding 99.5% (ref. 51). Fur-
ther, qubits can be transported with high fidelity by moving optical 
tweezers41, to realize arbitrary groupings Gi. By placing atoms suffi-
ciently close together, atoms within a group can undergo strong 
all-to-all interactions, while interactions between groups can be made 
negligible by placing them far apart.

The key ingredient required for efficiently implementing HI and 
HP are hardware-efficient multi-qubit spin operations. We show how 
these can be realized by using pulse engineering to transform the native 
Rydberg-blockade interaction into the desired form. We illustrate this 
on two families of representative spin operations

US(θ) = e
−iθ( ̂Si

2/2S), UP(θ) = e
−iθP[ ̂Si

2
] , (5)

where ̂Si
2

 is the total-spin operator for a cluster of 2Si atoms, and P[ ̂Si
2
] 

are the projectors appearing in equation (3).
One approach to engineering these operations is based on an 

ansatz that naturally extends ref. 51, where US and UP are found by 
optimizing an alternating sequence of diagonal phase gates and 
single-qubit rotations. As in prior works51,59, the pulse profiles gener-
ating symmetric diagonal operations can be obtained with numerical 
optimization via gradient ascent pulse engineering (GrAPE)60. For this 
alternating ansatz, we find a roughly linear scaling of total gate time Tgate 
with size of the cluster (Fig. 2b). Similar gates can also be implemented 
in ion-trap architectures, where coupling to collective motional modes 
can be used to implement diagonal phase gates61,62.

However, Rydberg atom arrays offer additional control, which 
allows us to go beyond the alternating ansatz. Specifically, we consider 
simultaneously driving the qubit transition Ωq(t) in addition to the 
usual Rydberg transition Ωr(t). We find that this dual driving enables 
substantially faster realizations of US and UP. After optimizing with 
GrAPE to identify approximate gates with noise-free simulated fideli-
ties above 99.9% (that is, assuming no experimental error), we find total 
gate times below ΩTgate/2π = 6.0 up to cluster sizes n = 8 and nearly 
constant scaling with n (Fig. 2b and Methods). The fact that the evolu-
tion is so short implies that these gates generate complex interactions 
in a very hardware-efficient way, making them ideal for accelerating 
spin-Hamiltonian simulations. Finally, we develop optimized decom-
positions of target spin operations into two-qubit gates and find they 
are still orders of magnitude more costly than the hardware-efficient 
implementation (Fig. 2c).

In Fig. 3, we illustrate the performance of this method on four 
representative examples that lie within the family of Hamiltonians 
(equation (1)). To quantify the performance of the simulation, we 
present heuristic estimates of the accessible coherent simulation time, 
measured in units of the target Hamiltonian’s local energy scale. We 
leverage access to multi-qubit spin operations of the form e−i∑nθnŜ

n
 

and estimate gate errors (arising from experimental imperfections) 
based on the physical evolution time necessary to realize the target 
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Fig. 3 | Efficiency of Hamiltonian simulation framework. Estimates of the 
quantum simulation’s coherence time Tsc, in the target Hamiltonian’s units 
∣∣HT∣∣local for various models. We consider Hamiltonian simulation implemented 
using the dual driving gates from Fig. 2b and assume a depolarizing error 
probability proportional to the gate time, such that ΩT/2π = 1 incurs an error of 
0.1%, which is projected to be achievable with neutral atoms51,87,88. Analogous 
estimates can be performed straightforwardly for different hardware-dependent 
error rates using equation (32), which rescales Tsc but does not change the trend. 
In all cases, we compare against an implementation using two-qubit CPhase gates 
with fidelity 99.9% and perfect single-qubit rotations (see Methods for detailed 
descriptions of the heuristic estimation procedure). a, The first two two models 
are (i) the spin-1/2 Kagome Heisenberg model and (ii) two interacting spin-5/2's 
with Heisenberg and Dzyaloshinskii–Moriya (DM) terms, both of which are 
composed of only two-qubit interactions. In (i), a speed-up is achieved by 
utilizing three-qubit multi-qubit gates e−iτŜ2, which more efficiently generates 
Heisenberg interactions and reduces the period of the Floquet cycle from K = 4 to 
K = 2. In (ii), improvement is achieved using dynamical projection, which reduces 
K from 2S to 2 but at the cost of additional multi-qubit gates. b, Two complex spin 
models which include spin interactions up to (iii) bi-quadratic interactions 
J1(Ŝi ⋅ Ŝj) + J2(Ŝi ⋅ Ŝj)

2
 and (iv) bi-quartic interactions (Ŝi ⋅ Ŝj)

4
. These correspond 

to four-body and eight-body qubit interactions, respectively. In (iii), the dramatic 
speed-up originates from using dynamical projection to reduce the Floquet 
period, as well as the hardware efficiency of a native four-qubit gate. The 
individual contribution to the speed-up from both sources is also analysed in 
Methods. In (iv), the speed-up arises fully from the hardware efficiency of native 
eight-qubit operations.
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operation. The step size τ is chosen to to maximize coherent simulation 
time, balancing simulation and gate errors (Methods). In the repre-
sentative examples, we find the combination of dynamical projection 
and optimized multi-qubit gates outperforms a similarly constructed 
implementation based on Trotterized interactions and two-qubit gate 
decomposition. Our approach substantially extends the available 
simulation time (up to two orders of magnitude) and enables much 
more efficient generation of complex spin Hamiltonians.

Spectral information from dynamics
Having described a toolbox for implementing a large class of spin cir-
cuits, enabling time evolution and state preparation, we next present 
a general-purpose algorithm for calculating chemically relevant infor-
mation. The approach, dubbed many-body spectroscopy, leverages 
dynamical snapshot measurements and classical co-processing43 to 
compute a wide variety of spectral quantities including low-lying states 
and finite-temperature properties. The procedure, combining insights 
from statistical phase estimation63–66 and shadow tomography67, is 
noise resilient and sample efficient, making it especially promising 
for near-term experiments.

Specifically, the quantity we extract is an operator-resolved den-
sity of states

DA(ω) = ∑
n
⟨n|A |n⟩δ(ω − ϵn), (6)

where ϵn and |n⟩ are the energies and eigenstates of the evolution Ham-
iltonian H, and A denotes an arbitrary operator. Spectral functions like 
equation (6) can be used to access detailed information about the 
properties of H: the location of peaks provides information about 
energies63,65,66, and properties of eigenstates can be computed by choos-
ing A appropriately64. For example, we can compute total-spin of an 
eigenstate using A = (∑iŜi)

2
 or the local spin polarization with A = Ŝi.

The output of the quantum computation are projective measure-
ments (snapshots), produced by the circuit depicted in Fig. 4a. First, 
we initialize a system of N qubits and apply a state preparation proce-
dure to prepare a reference state |S⟩ = S ||0N⟩ . Next, we use a 
single-ancilla qubit in the |+⟩ state to apply a controlled perturbation, 
preparing an entangled superposition of |0⟩ |S⟩ and a probe state |1⟩ |R⟩ 

where |R⟩ = R |S⟩. The system is then evolved under H for time t (see 
also equation (34)). Finally each qubit is projectively measured, produc-
ing a sequence of N + 1 bits—a snapshot. By measuring the ancilla in the 
X or Y basis, this circuit effectively performs an interferometry experi-
ment between the reference and probe states. The resulting snapshot 
measurements enable parallel estimation of two-time correlation 
functions of the form CO,R(t) = ⟨S| eiHtOe−iHtR |S⟩ for all 2N operators O 
that are diagonal in the measurement basis. Crucially, DA(ω) can be 
determined from the same set of snapshots for various A and ω, by 
changing the classical processing.

To estimate the spectral function DA(ω), we use a hybrid 
quantum-classical computation based on the expression

DA(ω) = ̃𝔼𝔼R∼ℛ∫dt
⏟⎵⎵⏟⎵⎵⏟
circuit average

eiωt∑s ⟨S|R†AOse−iHt |S⟩⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
classical processing

× ⟨S| eiHtOse−iHtR |S⟩⏟⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏟
quantumevolution (Fig.4)

.
. (7)

For this to be formally equivalent to equation (6), the distribution 
over perturbations ℛ and ensemble of observables {Os} must couple 
uniformly to all eigenstates, to ensure unbiased estimation (Methods). 
For example, given a polarized reference state |0⟩⊗N, X-basis measure-
ments are sufficient.

To realize the distributional average and time integral, the quan-
tum circuit has to be executed (Fig. 4a) for randomly sampled perturba-
tions R and evolution times t. To efficiently evaluate the classical part 
of equation (7), we require efficient classical representations of |R⟩ and 
e−iHt |S⟩. A good choice is to select |S⟩ to be a known eigenstate of H, 
such that the time evolution is trivial, and preferentially sample |R⟩ to 
maximize the overlap with relevant target states. By contrast, the 
quantum part of equation (7) includes the time evolution of |R⟩, which 
has overlap with unknown eigenstates, and often includes large 
amounts of entanglement. Therefore, this is estimated from snapshot 
measurements produced by quantum simulation (Methods).

As an example, consider two interacting spin-3/2 particles, 
described by H2 = JS1⋅S2. We prepare a polarized reference eigenstate 
|S⟩ = |0⟩⊗6, and sample perturbations R from an ensemble of random 
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Fig. 4 | Many-body spectroscopy of model Hamiltonians. a, A schematic 
quantum circuit diagram for the algorithm. The first step is to apply a state-
preparation circuit S to prepare a reference state |S⟩ = S |0⟩, followed by an 
ancilla-controlled perturbation R preparaing a superposition of |S⟩ and the probe 
state |R⟩ = R |S⟩. This superposition is time-evolved by the target Hamiltonian, 
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the procedure for various evolution times t, different perturbations R and 
potentially different measurement bases, this setup provides access to detailed 
information about the spectrum of H. b, Consider a spin Hamiltonian H2 with two 
anti-ferromagnetically coupled spin-3/2 particles. We simulate 20,000 snapshot 
measurements and classical processing to calculate the density of states D�(ω) 
(black line) and total-spin resolved versions DPS (ω) (coloured lines). The vertical 
dashed lines correspond to exact energies, and the coloured regions represent 
95% confidence intervals. The peaks are broadened due to finite (coherent) 

simulation time JTsim = 0.26, which sets the spectral resolution. Hardware-
efficient simulation schemes, which extend the simulation time (for example, 
Fig. 3), are favourable because they improve spectral resolution. Many-body 
spectroscopy further improves the effective spectral resolution, by leveraging 
multiple observables to distinguish overlapping peaks. Here, we see that spin 
resolution sparsifies the signal, enabling accurate peak detection and energy 
estimation, while the bare spectrum D�(ω) is too broad to resolve all states. c, 
The magnetic susceptibility χ, can also be computed from snapshot 
measurements using Sz-resolved density of states (here, JTsim = 1.04). For these 
calculations, it is important to prevent exponential amplification of shot noise. 
We therefore use a simple empirical truncation procedure that introduces a small 
amount of bias (Methods) but enables rapid convergence with number of 
snapshots to the ideal value (black line).
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single-spin rotations. This corresponds to a trivial state-preparation 
circuit and a simple controlled-perturbation composed of two-qubit 
gates in Fig. 4. Next, we measure the system in the X basis, which provides 
access to the full spectrum for this choice of |S⟩ (Methods). Finally, dur-
ing classical processing, the bare density of states is obtained by choos-
ing A = � and evaluating equation (7). The result contains peaks at 
frequencies ω associated with eigenstates of H2 (Fig. 4b). Further, we 
can isolate individual contributions of total spin sectors by instead 
choosing A = PS, the projectors onto S = 0, 1, 2 and 3. This not only allows 
us to identify the total spin of the eigenstates but also increases the 
effective spectral resolution in the presence of noise as it sparsifies the 
signal. Finite-temperature response functions68, such as the z compo-
nent of the zero-field magnetic susceptibility χ(T) = 1

Z
Tr[ 1

T
(Sz)

2e−H/T], 
can also be computed from the same dataset, by integrating the 
Sz-projected density-of-states DSz (ω) (Methods). To illustrate this, the 
magnetic susceptibility is extracted from the same dataset and shown 
in Fig. 4c. The algorithm is especially promising for near-term devices, 
having favourable resource requirements quantified by the number of 
snapshots (sample complexity) and maximum evolution time 

(coherence) required for accurate spectral computation (see Methods 
for further discussion).

Application to transition metal clusters and 
magnetic solids
As an illustration of a relevant computation in chemical catalysis, we 
consider the Mn4O5Ca core of the oxygen-evolving complex (OEC), a 
transition metal catalyst central to photosynthesis that is still not fully 
understood69,70. Classical chemistry calculations have been used to fit 
model Heisenberg Hamiltonians, containing three spin-3/2 sites and 
one spin-2 site27,28 (Fig. 5a). While this spin representation cannot directly 
capture chemical reactions, it can capture the ground and low-lying 
spin states, that is, the spin ladder, which are important in catalysis 
because reaction pathways depend critically on the spin multiplicity71. 
We simulate our framework applied to the S2H-1b structural model from 
ref. 28, by first computing the bare density of states D�(A)  (Fig. 5b). 
Then, we identify a low-lying cluster of eigenstates and compute 
spin-projected densities DPs (A) to resolve the spin ladder (Fig. 5c). The 
spin ladder can also be measured experimentally, providing a way to 
evaluate candidate models of reaction intermediates. To highlight this, 
we simulate the Heisenberg model for an alternate pathway (S2H-2b)28 
and observe the modification reverses the ordering of the spin ladder, 
indicating that S2H-1b is more consistent with measurements (Fig. 5d).

The framework can also be applied to study low-energy properties 
of extended systems, including strongly correlated materials. We 
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Fig. 5 | Application to the OEC. Our programmable quantum simulation 
framework can be used to compute detailed model spin Hamiltonian properties. 
a, Here, we illustrate the procedure on the OEC, an organometallic catalyst with 
strong spin correlations. In particular, we simulate model spin Hamiltonians for 
two structures S2H-1b and S2H-2b, which have three spin-3/2 and one spin-2 Mn 
(purple) active sites (reproduced from ref. 28 with permission from the Royal 
Society of Chemistry). Model Heisenberg coefficients for both hypothetical 
structures have been computed from broken-symmetry DFT28. b, A density of 
states D�(ω) calculation is simulated for the S2H-1b model spin Hamiltonian. 
Here, we use a polarized reference state |S⟩ = |0⟩⊗13 a probe states |R⟩ generated 
by random single-site rotations and an evolution time t. We select 50,000 circuits 
with independently chosen |R⟩ , t  pairs and draw ten snapshots from each circuit. 
c, Focusing on the lowest-lying states, we see three distinct peaks in D�(ω). 
However, by evaluating spin-resolved quantities DPs (ω) on the same set of 
measurements, we identify three additional peaks, whose energies and total-spin 
match exact diagonalization results (vertical dotted lines). d, This information is 
known as the spin ladder and can be computed using many-body spectroscopy 
for both the 1b and 2b states. Importantly, the spin ladder can also be measured 
experimentally (Exp.) and, therefore, can be used to help determine which 
structure appears in nature. In this example, experimental measurements 
indicate a spin-5/2 ground state and spin-7/2 first excited state. However, the 
ordering of low-energy states is flipped in the 2b configuration, indicating that 
the S2H-1b hypothesis is more likely28. We note that quantities beyond total spin 
can also be readily evaluated in low-lying eigenstates by inserting different 
operators A (Methods).
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materials can also be investigated using our quantum simulation  
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(J > 0) Heisenberg model H2D = −J∑⟨ij⟩ ŝi ⋅ ŝj. By preparing the polarized 
ground state |S⟩ = |0⟩⊗N , applying a single-site perturbation R = X0 on the 
central site and measuring the system in the X basis after time evolution, we 
can estimate the single-particle Green’s function G(r, t) = ⟨S|Xr(t)X0 |S⟩. 
Therefore we select O = Xr for various positions r as the observables in 
equation (7), all of which are diagonal in the measurement basis. We  
visualize the real part of G(r, t), where the plotted intensity and colour 
denotes the magnitude and sign, respectively, at Jt = 0, 0.5 and 1.0. b, The 
structure of excited states is extracted by classical processing of these 
measurements. Even though the spectrum is continuous, additional 
structure can be identified by computing the momentum-resolved  
density of states DPk (ω), where Pk is a projector onto plane-wave states 
(Methods). Restricting to ky = 0 and evolving to maximum time  
JTmax = 8.0, we see DPk (ω) forms a band-like structure, from which a  

peak ω can be estimated for each k (black line). c, This peak extraction  
allows us to directly estimate the single-particle dispersion ω(k) across  
the 2D Brillouin zone.
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illustrate this on the ferromagnetic, square lattice Heisenberg model 
(Fig. 6). For such large systems, we envision utilizing an approximate 
ground-state preparation method for |S⟩, so that low-energy properties 
can be accessed in a noise resilient manner via local controlled perturba-
tions R. Then, local Green’s functions—two-point operators at different 
positions and times—can be measured to access properties of low-lying 
quasi-particle excitations, such as the dispersion relation of 
single-particle excitations (see ‘Two-dimensional Heisenberg calcula-
tions’ section in Methods for details).

Outlook
These considerations indicate that reconfigurable quantum processors 
enable a powerful, hardware-efficient framework for quantum simu-
lation of problems from chemistry and materials science, illustrating 
potential directions for the search for useful quantum advantage. Spe-
cifically, in addition to the OEC, other organometallic catalysts could 
be studied with this approach, including iron–sulfur clusters23,72, for 
which bi-quadratic terms appear in the model Hamiltonian to capture 
higher-order perturbative charge fluctuation effects73. Another promis-
ing direction involves quantum simulation of low-energy properties of 
2D and three-dimensional frustrated spin systems, including model Ham-
iltonians for Kitaev materials74–76 and molecular magnets77,78. The ability 
to realize non-local interactions further opens the door to simulation of 
spin Hamiltonians defined on non-Euclidean interaction geometries79,80.

The efficiency of the Hamiltonian engineering approach origi-
nates from co-designing Floquet engineering and hardware-specific 
multi-qubit gates. Extending this approach to larger classes of 
strongly correlated model Hamiltonians is an outstanding and excit-
ing frontier. In particular, it would be especially interesting to further 
develop the toolbox to incorporate charge transport and electron–
phonon interactions. This could enable simulation of more complex 
model Hamiltonians, such as the t–J, Hubbard and Hubbard–Holstein 
models, and expand the class of accessible chemistry problems9,81. 
Application to other settings, including lattice gauge theories50 and 
quantum optimization problems82, is also of interest. Incorporation 
of error mitigation and correction into the Hamiltonian simulation 
should be considered; specifically, the present method can poten-
tially be generalized to control logical, encoded degrees of freedom 
in a hardware-efficient way83.

Finally, characterization and development of the model Hamil-
tonian approach itself is an interesting and challenging problem. Key 
challenges include development of efficient schemes to compute 
parameters for higher-order interactions73, estimation of corrections 
arising from coupling to states outside the model space84 and valida-
tion of the model Hamiltonian approximation19. Feedback between the 
classical and quantum parts of the computation is an important part 
of these developments25,85,86. For these reasons, the large-scale simula-
tion of model Hamiltonians on quantum processors will be invaluable 
for testing approximations by comparing simulation outputs with 
experimental measurements. Hence, the approach proposed in this 
work facilitates exciting directions in computational chemistry and 
quantum simulation, aiming towards constructing a novel ab initio 
simulation pipeline that utilizes hybrid quantum-classical resources.
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Methods
Hamiltonian engineering
The Hamiltonian engineering toolbox introduced here is based on the 
average Hamiltonian approach. This approach uses the fact that, in the 
high-frequency limit, the effective Floquet cycle period Kτ is much 
smaller than the inverse local energy scales of Hi,j(p), and the Floquet 
Hamiltonian HF can be well approximated by expanding in a small 
parameter Kτ

||H(p)||local
 (ref. 52). The leading contribution is the average 

Hamiltonian

H (0)
F = 1

K

K−1
∑
k=0

H(k). (8)

The second order term also takes a simple form

H (1)
F = τ

2K ∑
k<k′

[H(k),H(k′)] . (9)

The results presented in the main text involve engineering the 
average Hamiltonian H (0)

F  to reproduce the target (equation (1)). In the 
setting where θp is constant, one can apply the results of ref. 54 to 
construct an alternative asymptotic expansion, where each term in the 
Floquet Hamiltonian commutes with HP, implying the encoding is 
preserved to exponentially long times eO(||H(p)||local/K). However, in this 
setting, the second order term is non-zero and generates simulation 
errors at order O(τ). It can be cancelled by selecting time-reversal sym-
metric sequences of length 2K, where the second half of the pulse is 
defined by Θk = ΘK−1−k. This reduces simulation errors to order O(τ2) but 
might potentially alter the prethermal properties of the Floquet 
Hamiltonian54, which is an interesting problem for further research.

Going beyond average Hamiltonian engineering is also possible 
by optimizing the Floquet sequence89–91. We demonstrate engineering 
of higher-order terms for a small system composed of two interacting 
spin-3/2 particles, to controllably engineer up to bi-cubic terms (Ŝi ⋅ Ŝj)

3
 

using only two- and three-qubit operations in Extended Data Fig. 1 and 
Supplementary Information section 1.

High-spin Hamiltonian engineering with dynamical Floquet 
projection
Our goal is to Floquet engineer the Hamiltonian H = HI + HP, in the limit 
λ ≫ Jij, where the system is effectively projected into the symmetric 
ground space of HP. Our approach relies on implementing the com-
bined evolution

UF =
Np
∏
p=1

(e−iθpλ−1HP
D
∏
j=1
e−iτHI, j)

=
Np
∏
p=1

D
∏
j=1
e−iτHI, j(p) = e−iKτHF ,

(10)

where K = NpD is the full length of the sequence and θpλ−1 and τ param-
eterize the evolution times. To analyse this sequence, we transform 
into an interaction picture such that intermediate terms are evolved 
by HP with a cumulative phase Θp = ∑p′<pθp′; for the rotating frame to 
be periodic, we require ΘNp+1 (mod 2π) = 0.

Then, the transformed interactions can be written as

HI, j(p) = eiϴpλ
−1HPHI, je−iϴpλ

−1HP

= H (0)
I, j⏟

symmetric

+ (
nmax
∑
n=1

einϴpH (n)
I, j + h.c.)⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟

symmetry violating

. (11)

Here, h.c. denotes the Hermitian conjugate, and H (n)
I, j  captures 

unwanted terms that change the total spin on n sites, while the sym-
metric terms comprise the target Hamiltonian ∑jH

(0)
I, j = HT.

To compute the form of the interaction Hamiltonian in the rotated 
frame HI(p) = ∑jHI,j(p) as used in equation (11), let us consider a single 
spin-1/2 particle belonging to a spin-Si cluster and define projectors 
Pi = P[Ŝ2i ] onto the symmetric space and Qi = � − Pi onto its complement. 
The spin-1/2 term can be split into four parts

ŝi,1 = Piŝi,1Pi +Qiŝi,1Qi⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
symmetric

+Piŝi,1Qi +Qiŝi,1Pi⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
non-symmetric

, (12)

where the first two terms preserve the on-site total spin and the second 
two change the on-site total spin. Since HP acts as 1 − Pi on the ith spin, 
we label terms by how they change the expectation value of (1 − Pi)

ŝ(0)i,1 = Piŝi,1Pi +Qiŝi,1Qi (13)

ŝ(+1)i,1 = Qiŝi,1Pi (14)

ŝ(−1)i,1 = Piŝi,1Qi. (15)

This decomposition ensures that each term transforms under 
conjugation by HP, as in equation (11), by picking up a global phase. 
Specifically, using the following

e−iθPi Pi = Pie−iθPi = e−iθPi (16)

e−iθQi Pi = Pie−iθQi = Pi (17)

e−iθPiQi = Qie−iθPi = Qi (18)

e−iθQiQi = Qie−iθQi = e−iθQi (19)

one can show that

eiθλ−1HP ŝ(n)i,1 e
−iθλ−1HP = eiθnŝ(n)i,1 . (20)

This rule can be extended to higher-weight operators. For exam-
ple, two-spin interactions between clusters hij = ŝi,1 ⋅ ŝj,1  decompose 
into five parts h(n)ij ,n = −2, −1,0, 1, 2,

hij = ŝ(0)i,1 ⋅ ŝ(0)j,1 + ŝ(+1)i,1 ⋅ ŝ(−1)j,1 + ŝ(+1)i,1 ⋅ ŝ(−1)j,1⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
h(0)ij

(21)

+ (ŝ(+1)i,1 ⋅ ŝ(0)j,1 + ŝ(0)i,1 ⋅ ŝ(+1)j,1 )⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
h(+1)ij

+h.c. (22)

+ (ŝ(+1)i,1 ⋅ ŝ(+1)j,1 )⏟⎵⎵⎵⏟⎵⎵⎵⏟
h(+2)ij

+h.c., (23)

corresponding to the different ways to change the expectation value of 
Qi + Qj. The n-spin interactions will have terms running from h(−n) to h(+n). 
Therefore, in the rotating frame, the Hamiltonian terms transform as

h(n)ij (p) = e
iϴpλ−1HPh(n)ij e

−iϴpλ−1HP (24)

= eiϴpnh(n)ij (25)

hij(p) =
nmax
∑

n=−nmax
eiϴpnh(n). (26)
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We further choose a sequence of Θp such that only the h(0) contribu-
tion is non-zero on average. The simplest sequence that satisfies these 
conditions is a family of cyclic pulses of order P

ϴp =
2πi
P p p = 0,… ,P − 1, (27)

which satisfy the cancellation condition as long as nmax < P . In the 
two-body case, of the terms that contribute to h(0)ij , only ŝ(0)i,1 ⋅ ŝ(0)j,1  acts 
non-trivially in the symmetric subspace, so we focus on this term. An 
explicit form can be computed by decomposing ŝi,1  into its 
permutation-symmetric and orthogonal components

ŝi,1 =
1
2Si

∑
2Si
a=1 ŝi,a⏟⎵⎵⎵⏟⎵⎵⎵⏟

symmetric

+ (2Si − 12Si
ŝi,1 −

1
2Si

∑
2Si
a′=2 ŝi,a′ )⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

non-symmetric

. (28)

Therefore, the symmetric part ŝ(0)i,1 = 1
2Si

Ŝi  is proportional to the 
collective spin.

With this understanding, we can construct a spin-1/2 interaction 
Hamiltonian HI that recovers equation (1) under projection, by replac-
ing each n-site high-spin interaction with an analagous spin-1/2 one. 
For example, for n = 2, the replacement proceeds as

J αβij ̂S
α
i ̂S

β
j → Jij

αβ
̂sαi,a ̂sβj,b

Jij
αβ

= 4SiS j J
αβ
ij ,

(29)

where intra-cluster indexes a and b encode which representative from 
spins i and j is used to generate the interaction. The interaction strength 
is further boosted to Jij  to account for the 1

2S
 factor in equation (28). A 

straightforward calculation shows that, for higher-weight interactions 
(for example, nmax), the interaction should also be boosted (for exam-
ple, Kijk = 8SiS jSkKijk) to recover the target large-spin operator under 
projection.

In general, it may not be feasible to uniquely assign each spin-Si 
interaction in H to qubits in HI especially when a spin-Si is involved in 
more than 2S interactions. In this case, HI is implemented by splitting 
it into a sequence of non-overlapping groups HI,1, …, HI,D that approxi-
mate HI on average. Each sequence can handle up to D(2S) interactions 
per spin, so if d is the interaction degree, then we require a sequence 
of length D = ⌈ d

2S
⌉. Although manual decompositions sufficed for the 

models studied here, automated methods to determine efficient 
decompositions will have to be developed for more complex 
systems92,93.

Multi-qubit gates with Rydberg blockade
Rydberg atom arrays are a natural platform to realize the Floquet 
engineering scheme described above94–98. The Rydberg Hamiltonian 
governing a cluster of N atoms is

Hcluster =
Ωq(t)
2

∑
i
|1⟩i ⟨0| +

Ωr(t)
2

∑
i
|r⟩i ⟨1| + h.c.

+∑
i<j
Vij|r⟩i ⟨r| ⊗ |r⟩j ⟨r|

, (30)

where Ωq(t), Ωr(t) are complex valued driving fields99,100. In the blockade 
approximation, which is valid when Vij ≫ Ωr, there is at most one atom 
in state |r⟩ (refs. 58,101). Therefore, at leading order in Ωr/Vij, Hcluster is 
approximated by projecting into the manifold of blockade consistent 
states. This produces an interacting model with an emergent permuta-
tion symmetry (see equation (S5) in Supplementary Information). This 
symmetry allows us to write Hcluster in a low-dimensional representation 
of the Hilbert space scaling as O(NNS) for a representation102 including 
the NS largest total-spin sectors (see ‘Low-dimensional construction’ 
in Supplementary Information).

Figure 2b shows optimization results for an alternating ansatz 
with separate Ωr(t) and Ωq(t) applications (solid lines) versus a dual 
driving scheme with simultaneous field control (dashed lines). For the 
alternating ansatz, the optimization process begins with finding short 
sequences of symmetric diagonal gates D(ϕ) and global single-qubit 
rotations Q(θ) that combined realize US and UP (see equation (S11) in 
Supplementary Information). While Q(θ) uses global Ωq(t) control, D(ϕ) 
involves multi-qubit interactions, and the pulse sequences to realize 
D(ϕ) can be optimized through GrAPE51,59,60,103,104. Numerical optimi-
zation is feasible due to the manageable size of the low-dimensional 
basis. We find that the maximum gate time T*(n) for generic phases 
(Supplementary Fig. 1). Gate times in Fig. 2 are computed by multiply-
ing T*(n) by the shortest sequence length determined in the first step. 
The operations Q(θ) and D(ϕ) can also be promoted to controlled 
operations (see ‘Alternating ansatz’ in Supplementary Information), 
as required for the controlled perturbation in Fig. 4a.

Dual driving gate profiles are directly optimized using GrAPE, 
with an added smoothness regularization to ensure driving profiles 
can be implemented with available classical controls (see equation 
(S8) in Supplementary Information and Extended Data Fig. 1). Inter-
estingly, the optimized fidelity remains roughly independent of the 
system size, when tolerating noise-free error rates around 10−3. We 
select this fidelity threshold and plot the resulting gate times in Fig. 2b 
(dotted lines). However, for more stringent noise-free thresholds, 
such as 10−6, we observe an approximately linear dependence in n, 
producing gate times comparable to the alternating decomposition. 
Theoretical characterization of the asymptotic scaling of gate time 
with cluster size and error threshold remains an intriguing open 
question.

For comparison, we estimate gate counts for a decomposition of 
US and UP into single- and two-qubit gates (Fig. 2c). Using the Qiskit 
transpiler105, we find two-qubit decompositions into single-qubit rota-
tions and CPhase gates for UP. For US, the diagonal gates D(ϕ) found 
numerically in the alternating ansatz only require two-qubit interac-
tions, and can be decomposed into ( n2 ) two-qubit CPhase gates, out-

performing the Qiskit result for n ≥ 3. Finally, we show in Supplementary 
Information that symmetric operations like US and UP can be imple-
mented with poly(n) two-qubit gates using ancilla qubits, by construct-
ing an efficient matrix product operator (MPO) representation of 
arbitrary n-spin operations.

The fidelity of the multi-qubit gates is subject to errors such as 
spontaneous emission and dephasing due to a finite T∗

2 , as seen in cur-
rent Rydberg gates51. In general, errors accumulate with gate time; 
hence, shorter gates tend to produce higher-fidelity implementations. 
Certain errors can also be mitigated by improving the excitation 
schemes. Specifically, single-photon schemes as used in as in refs. 87,88, 
avoiding intermediate-state scattering, may enhance performance for 
bigger clusters. This is because the rate of decay from the Rydberg state 
does not depend on cluster size, since the number of Rydberg excita-
tions is never larger than 1. By contrast, the rate of scattering from the 
intermediate state grows linearly with cluster size.

Estimating simulation time
The simulation time is defined as the maximum evolution time, before 
which the typical error per qubit is below some target threshold ϵ. We 
account for both coherent Hamiltonian simulation errors and incoher-
ent gate errors. For a symmetrized sequence, we estimate the scaling 
of both contributions to be

εsim = (c2τ2)
2T2, εgate =

gT
τ , (31)

with target evolution time T and step size τ. Here, the coefficient c2 
depends on the detail of the Hamiltonian simulation protocol and can 
be estimated from numerics or the third-order term in the Magnus 
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expansion (see equation (S18) in Supplementary Information). The 
coefficient g measures the gate error probability per cycle and is deter-
mined by assuming that each multi-qubit gate has a fixed probability 
of failure Tgate g0 that scales linearly in the time of the gate. Such a scaling 
is valid when errors are dominated by spontaneous emission from the 
Rybderg state. For simplicity, we utilize the estimated Tgate for 
large-angle unitary UP with θ = π. Both c2 and g are estimated to grow 
extensively in system size. Thus, we work instead with the intensive 
version of these quantities, ̃c2 = c2/L and ̃g = g/L.

Optimizing the step size τ to minimize error (see ‘Heuristic simu-
lation time estimates’ in Supplementary Information), the maximum 
evolution time scales as

Topt =
22/3
55/6

ε5/6/L

( ̃c2 ̃g2)
1/3

(32)

for a target error rate ε.
In Fig. 3, we use this formula, along with numerical estimates for 

c2 in models (i) and (ii), and heuristic estimates for models (iii) and (iv). 
We further estimate g using the simultaneous driving gate times of 
Fig. 2b and select an error per Rabi cycle of g0 = 10−3. The target error 
we select is ε5/6/L = 0.1, which grows approximately extensively with 
system size. We illustrate the benefits of our approach on four example 
Hamiltonians (see Fig. 3 and ‘Heuristic simulation time estimates’ in 
Supplementary Information).

Many-body spectroscopy
To complete our simulation framework, we also develop tools for 
resource-efficient readout of Hamiltonian properties. First, we illus-
trate how to compute two-time correlation functions of the form

CO,R(t) = ⟨S|O(t)R(0) |S⟩ , (33)

using the circuit in Fig. 4a. The real and imaginary parts of CO,R(t) are 
independently accessed by measuring the ancilla in the X and Y basis, 
respectively63,64,66,106,107. More concretely, consider the state of the 
system right before measurement, including both the ancilla qubit 
and the system

|ψf⟩ =
1
√2

(|0⟩ ⊗ U(t) |S⟩ + |1⟩ ⊗ U(t)R |S⟩) , (34)

where U is the time-evolution operator. Measuring X ⊗ O or Y ⊗ O 
results in

⟨X⊗O⟩ψf =
1
2 (⟨S|R

†O(t) |S⟩ + ⟨S|O(t)R |S⟩) , (35)

⟨Y⊗O⟩ψf =
i
2 (⟨S|R

†O(t) |S⟩ − ⟨S|O(t)R |S⟩) , (36)

which together gives the full complex-valued CO,R(t) by taking a linear 
combination of the two,

CO,R = ⟨(X + iY ) ⊗O⟩ψf . (37)

For observables O diagonal in the measurement basis, CO,R can be 
efficiently estimated in parallel from snapshots. During the ith run, let 
μ(i) = {x, y} be the randomly sampled ancilla measurement basis and 
a(i) = {0, 1}, and ||b(i)⟩ be the ancilla and system measurement outcomes 
respectively. Then, the estimator can be written as

CO,R(t) =
1
M

M
∑
i=1
2σ (μ(i),a(i)) ⟨b(i)||O ||b(i)⟩ , (38)

where σ is a function taking on the values

σ(x,0) = +1, σ(x, 1) = −1,

σ( y,0) = +i, σ( y, 1) = −i,
(39)

and ||b(i)⟩ is the measured projected state.
These measurements can be used to compute the 

operator-resolved density of states (6), which can be rewritten as

DA(ω) = ∫ dt eiωt∑
n
Tr[A |n⟩ e−iϵnt ⟨n|]

= ∫ dt eiωtTr[AU(t)],
(40)

where we have replaced δ(ω − ϵn) → ∫ dt ei(ω−ϵn)t . In practice, we will 
sample evolution times t from a probability distribution p(t), such that 
the integral is normalized to one when ω = ϵn, that is,∫ dt = ∫∞

−∞ p(t)dt = 1. 
To arrive at equation (7), we can replace the trace with an average over 
probe states108

Tr[AU(t)] = ̃𝔼𝔼R∼ℛ ⟨R|AU(t) |R⟩ , (41)

where ̃𝔼𝔼R∼ℛ = Tr[�]𝔼𝔼R∼ℛ is a normalized expectation value and Tr[�] is 
the dimensionality of the Hilbert space. This is valid as long as the 
ensemble forms a two-design

𝔼𝔼R∼ℛ |R⟩ ⟨R| = �

Tr[�] . (42)

For example, we can sample perturbations R from the ensemble 
of random single-qubit rotations. Such perturbations can be imple-
mented using the techniques from Fig. 2, by applying a sequence of 
two-qubit gates between an ancilla qubit and the system qubits. In 
general, convergence properties of the estimator depend on higher 
moments of ℛ (see equation (S27) in Supplementary Information).

Observables such as equation (41) can, in principle, be computed 
via a modified Hadamard test by applying controlled-time evolution 
(see ref. 64). Since time evolution is generally the most costly step, we 
avoid the overhead associated with controlled evolution and instead 
utilize a reference state |S⟩ with simple time evolution. In particular, we 
select an ensemble of observables Os such that

1
𝒩𝒩(Os)

∑
s
OsU(t) |S⟩ ⟨S|U†(t)Os = �. (43)

The normalization factor 𝒩𝒩(Os) depends on the choice of ensem-
ble. Then, we can insert this resolution of the identity into equation 
(41) to get equation (7). In Figs. 4 and 5, we consider the polarized refer-
ence state |S⟩ = |0⟩⊗N , which is an exact eigenstate of the Heisenberg 
Hamiltonian, and the ensemble of Pauli-X operators Os = Xs=⨂N

i=1(Xi)
si, 

where s is an N-bit string. This satisfies the condition and has 𝒩𝒩(Xs) = 1 
since Xs|0⟩

⊗N  is an orthonormal basis. For generic reference states |S⟩ 
prepared by applying S to |0⟩⊗N, the ensemble Os = SXsS† satisfies the 
condition and can be measured by applying the inverse preparation 
circuit S† before measuring in the X basis. Lastly, an ensemble that is 
independent of the reference state is the set of Pauli strings Ps=⨂N

i=1σ
si
i , 

where s is a base-four string and σsi denotes the four Pauli operators I, 
X, Y and Z; this can be accessed with randomized measurements (see 
equations (S56)–(S57) in Supplementary Information) and has a nor-
malization factor 𝒩𝒩(Ps) = 2N.

Thermal expectation values. The operator-resolved density of states 
can be used to compute thermal expectation values via64

⟨A⟩β =
∫ e−βωDA(ω)dω
∫ e−βωD�(ω)dω

. (44)
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For example, to compute the magnetic susceptibility, we simply 
select the operator A = β(Sz)2, where β = 1/T is the inverse temperature. 
Interestingly, this method of estimating thermal expectation values is 
insensitive to uniform spectral broadening of each peak, due to a 
cancellation between the numerator and denominator (see discussion 
resulting in equation (S69) in Supplementary Information). However, 
it is highly sensitive to noise at low ω, which is exponentially amplified 
by e−βω. To address this, we estimate the SNR for each DA(ω) indepen-
dently and zero-out all points with SNR below three times the average 
SNR. This potentially introduces some bias by eliminating peaks with 
low signal but ensures that the effects of shot noise are well 
controlled.

Noise modelling
To quantify the effect of noise on the engineered time dynamics, we 
simulate a microscopic error model by applying a local depolarizing 
channel with an error probability p at each gate. This results in a decay 
of the obtained signals for the correlator DAR(t). The rate of the expo-
nential decay grows roughly linearly with the weight of the measured 
operators (Extended Data Fig. 2). This scaling with operator weight can 
be captured by instead applying a single depolarizing channel at the 
end of the time evolution, with a per-site error probability of γt with an 
effective noise rate γ. This effective γ also scales roughly linear as a 
function of the single-qubit error rate per gate p (Extended Data Fig. 2).

Scaling the approach
Quantum simulations are constrained by the required number of sam-
ples and the simulation time needed to reach a certain target accuracy. 
These factors are crucial for determining the size of Hamiltonians that 
can be accessed for particular quantum hardware.

Focusing on a single gapped eigenstate we determine the num-
ber of snapshots CM needed to distinguish a spectral peak from noise 
(Extended Data Fig. 4). The signal arises from the overlap of the probe 
states with the target eigenstate. The noise is given by the variance of 
the estimator equation (7) and decays as ϵ ≈ M−1/2. For certain ensembles 
of probe states, the variance can be made system size independent (see 
equation (S52) in Supplementary Information). However, a random 
probe state will have exponentially vanishing overlap with any specific 
eigenstate. One approach to mitigate this is to initialize probe states 
with higher overlap. In Extended Data Fig. 3b, we show that, for a spin-1 
anti-ferromagnetic chain, a simple bond-dimension 2 MPS can outper-
form product states by orders of magnitude in ground-state estimation. 
While bond-dimension 2 states can be efficiently prepared with simple 
circuits of two-qubit gates, more general ansatze can also be efficiently 
realized using the simulation techniques described here109,110. Opti-
mized ansatze could be further combined with importance sampling111 
to improve the sample efficiency of computing finite temperature or 
excited state properties (Supplementary Fig. 3).

The simulation time Tmax will depend on the required spectral reso-
lution, which does not scale with system size for a gapped eigenstate. 
However, the rate of spectral broadening depends sensitively on the 
weight of measured observables (Extended Data Fig. 2). When the refer-
ence state is high in energy, such as the polarized state for an AFM chain, 
the relevant observables typically have extensive weight, requiring 
Tmax ≈ N to maintain constant spectral resolution. By contrast, preparing 
a low-energy reference state, such as the ground state |S⟩ = |GS⟩, allows 
coupling to other low-energy states using low-weight operators. This 
results in a noise-resilient and system-size-independent procedure 
(Extended Data Fig. 3). We further note that ground-state preparation 
can be approximate, which would result in additional spectral broaden-
ing in the computation of DA(ω). While the spectral resolution require-
ments should also grow as the gap shrinks, we have illustrated that 
operator resolution can mitigate this in certain settings (for example, 
Figs. 5 and 6). As such, understanding the general capabilities of this 
approach is an interesting direction for continued research.

OEC Hamiltonians
The OEC is a paradigmatic example of a transition-metal complex112–116. 
The two candidates for its closed S2 state of the OEC are parameterized 
with Heisenberg models H = −∑ij JijŜi ⋅ Ŝj  (refs. 27,117–120), and the 
parameters used are summarized in Supplementary Information (OEC 
parameters). In addition to their energies, additional information about 
eigenstates can be calculated by choosing the operator A in the 
operator-resolved density of states appropriately, and multiplying by 
a narrow band-pass filter in Fourier space to isolate a small set of 
frequencies64,121. For example, we investigate the total spin of the 
cubane subunit, that is, the three magnetic sites supported on opposite 
vertices of the cube, using A = (Ŝ1 + Ŝ2 + Ŝ3)

2
, and compute

A(ω) = DA(ω)
D�(ω)

(45)

evaluated at energies ωn of the eigenstates, which can be extract from 
peaks in the spectral functions (Extended Data Fig. 5). We further use 
spin projection to improve the estimate in the presence of broadening. 
For example, if the peak at ωn occurs in spin sector PS, we insert the 
projector PS in the numerator and denominator, A(ωn) =

DAPS (ωn)
DPS (ωn)

.

Two-dimensional Heisenberg calculations
The square lattice Heisenberg calculation was performed on a large 
(L × L) system, with Hamiltonian

H2D = −J∑
r
(Ŝr ⋅ Ŝr+ ̂x + Ŝr ⋅ Ŝr+ ̂y) . (46)

We measure the Green’s function G(r, t) = ⟨S|Xr(t)X0 |S⟩ from a polar-
ized reference |S⟩⊗L

2
 (ref. 122). Since Sz is conserved under the dynamics, 

G(r, t) is classically simulated by restricting it to the space containing 
the |S⟩ and single spin-flip states Xr |S⟩, which has dimension L2 + 1. We 
evolve under equally spaced times up to JTmax = 8 and select L = 23, 
which is large enough such that G(r, t) vanishes far from the boundaries. 
Therefore, by letting G(r, t) = 0 outside the simulated region, this pro-
vides a good approximation for the L → ∞ limit. As such, we define 
projectors onto (unnormalized) plane-wave states Pk = ||k⟩ ⟨k||, where 
⟨k||Xr |S⟩ = e−ik⋅r. Then, DPk (ω) can be written as

DPk (ω) = ∫dtei(ω−ω0)t∑
r
⟨S|X0PkXr |S⟩⏟⎵⎵⎵⏟⎵⎵⎵⏟

eik⋅(r−0)

⟨S|Xr(t)X0 |S⟩⏟⎵⎵⎵⏟⎵⎵⎵⏟
G(r,t)

, (47)

which reduces to the Fourier transform G(k, ω) when the energy of 
the polarized state ω0 is set to zero. Plotting this for a continuous set 
of k and ω produces the spectral weight depicted in Fig. 6. This further 
shows that finite-size systems are sufficient to simulate extended 
systems at finite evolution times.

By computing the peak value of ω for each k in the vicinity of the 
single-particle excitations, we estimate the dispersion relation ω(k) 
associated with a single spin-flip excitation. Computations of the 
many-particle Green’s function could be performed similarly by apply-
ing multisite perturbations, to extract finite-temperature properties 
and characterize the interactions between the quasi-particles.
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Extended Data Fig. 1 | Gate optimization procedure and variational 
Hamiltonian Engineering. (a) To find smooth gates we perform the GrAPE 
optimization procedure in two steps. In the first step, we penalize rapid changes 
in the pulse profile by introducing an extra term in the cost-function. In this case, 
the resulting relationship between noise-free gate-error vs. time (yellow circles) 
saturates around 10−6. For the second step we initialize the search with the 
smooth gates found in the previous step, which are re-optimized by removing the 
smooth penalty. This substantially reduces the noise-free gate error (orange). 
The data are shown for a N = 4 qubit cluster. Since the first step already confined 
the problem into a subspace of the search space with smooth gates, the resultant 
pulses also remain smooth after the second step. On the right we show an 
example smoothened pulse profile for the hyperfine angle θ and the Rydberg 
phase ϕ (see Methods) with an noise-free gate error rate ℰ = 10−3. (b) Higher 

order interaction terms can be controllably engineered via a simple modification 
of the K = 6 Floquet projection sequence. For example, reducing the second 
time-step and increasing the fourth time-step by the same amount, δ preserves 
the target Hamiltonian at leading order. (c) By tuning τ and δ, for a system of two 
interacting spin-3/2’s, a very large family of coefficients J1, J2, J3 in the general 
Hamiltonian HT = J1(Ŝ1 ⋅ Ŝ2) + J2(Ŝ1 ⋅ Ŝ2)

2
+ J3(Ŝ1 ⋅ Ŝ2)

3
 can be engineered. In 

particular, the roughly horizontal gray lines correspond to constant δ grid lines, 
and roughly vertical gray lines correspond to values with constant τ. We see that 
changing δ primarily modifies J2 and J3, while changing τ primarily modifies J1, 
consistent with our analysis that δ picks out certain higher-order terms. We 
further note that the especially interesting AKLT family, with J2/J1 = 116/243 and 
J3/J1 = 16/243 lies among the family of efficiently engineerable interactions.
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Extended Data Fig. 2 | Gate-level noise simulations. (a)-(c) Time evolution of 
the correlations DAR(t) for a polarized reference state |S⟩ = |0⟩ and A chosen to be 
projectors onto different Sz sectors. This involves measuring operators of fixed 
weight. We see that the simulation of gate-level noise modelled as a depolarizing 
channel with a gate error probability p = 0.001 (orange dash dotted curve) 
matches well with the dynamics obtained by adding an additional 

phenomenological noise ∝ exp(−γt) with rate γ = (0.128, 0.251, 0.36) for Nspin flip = 
(1, 4, 8) (solid yellow lines) to the loss-less time evolution DA

R,Floquet (green 
dashed). (d) Relationship between the optimal phenomenological noise rate γ 
and the gate error probability p for different spin flip sectors. We see a roughly 
linear-relationship of the decay rate γ with the gate error rate p and operator 
weight Sz. All data are obtained using time-steps Jτ = 0.05.
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Extended Data Fig. 3 | Noise susceptibility and eigenstate overlaps. (a) 
Density-of-states for a spin-1 AFM chain, computed from a polarized reference 
state |S⟩ = |0⟩⊗N  (top), and ground state reference |S⟩ = |GS⟩ (bottom). The 
spectrum is separated into sectors distinguished by their operator weight from 
|S⟩. For the polarized state, these correspond to sectors with well-defined Sz. For 
the ground-state, each sector is orthogonalized with respect to lower-weight 
sectors. Each sector is phenomenologically broadened by e−γtnflips to simulate 
the operator-weight dependence of decoherence. When computing low-energy 
properties, the ground-state reference is more robust to noise, since the 
low-energy eigenstates can be reached with lower-weight operators. (b) The 

amplitude of the corresponding spectral peak is determined by the eigenstate 
overlap. We analyze the ground-state overlap for an AFM spin-1 chain performing 
DMRG for low bond dimensions (D = 1, 2) and find that it is much larger for 
bond-dimension D = 2 matrix product states (red diamonds) compared to 
bond-dimension D = 1, that is,mean-field states (green circles). Interestingly, the 
ground state overlap decays slower with the chain length for D = 2 indicating that 
the fidelity density is large. This feature makes low bond dimension states a 
promising direction for efficient state preparation within our scheme since they 
can efficiently be decomposed into short circuits.
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Extended Data Fig. 4 | Shot noise scaling with system size and convergence 
with number of snapshots. (a) Numerically computed standard deviations of 
the estimator (7) for the density of states DA(ω) of a spin-1 AFM chain, for different 
chain lengths and observables. Here, we consider a polarized reference state |S⟩ 
and random single-qubit rotations R for the controlled-perturbation. For the 
bare density of states the standard deviation slowly scales with the chain length 
(blue circles). For the projectors into the zero (gray diamonds) and three (orange 
circles) spin-flip sectors the standard deviation is consistent with being 

independent of system size. (b) Convergence of estimator with number of 
samples for two different observables. Shaded regions correspond to 2σ error 
bars around the mean, and decrease with the number of measurements as 1/√M . 
Dark lines are running averages for a specific sampled dataset. The sample 
complexity is defined as the number of samples needed such that the error bars 
around the mean do not include zero. After this point, spectral peaks can be 
reliably distinguished from noise.
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Extended Data Fig. 5 | Additional observables calculated for OEC. By choosing 
A to be the local cubane spin Ŝ2123, and calculating DA(ω) at each of the peaks in the 
density of states, we can infer the local structure of spin correlations within each 
eigenstate. (a) The cubane spin for each eigenstate for the open cubane 
configuration (S2H-1a). This model has coefficients: J12 = − 15.8, J13 = 1.9, J14, J23 = 23.1, 
J24 = 1.9, J34 = − 13.9 in cm−1, and spin-sizes S1 = 2, S2 = S3 = S4 = 3/2. The triangles, 
circles and crosses are obtained using three different methods. The crosses 
indicate the exact value obtained via exact diagonalization (ED), the green circles 
indicate the values obtained via the spin resolved (projected) density of states 

(DOS), and the orange triangles are obtained by the bare DOS. The projected 
DOS, which is able to resolve individual eigenstates, matches well with the ED 
result. In contrast the bare DOS, which has overlapping peaks (see Fig. 5), does 
not capture the expectation values accurately. (b) Same as in (a) but for the 
closed cubane configuration S2H-1b. This model has S1 = S2 = S3 = 3/2 and S4 = 2. We 
see that for the lowest-lying cluster, all spins in the cubane subunit are 
approximately polarized with a total spin value S = 9/2 = 4.5. In contrast, the 
second cluster of eigenstates seems to differ by a single spin flip as indicated by 
the value S = 7/2 = 3.5.
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