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We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in 
multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset 
of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation 
masks was used. A comprehensive mask fusion approach was developed to select relevant image 
crops of diseased tissue. These fusion masks, which were guided by multiple sequences, helped collect 
information from the regions that seem disease-free to radiologists in standard MRI sequences while 
harboring pathology. Integrating the information in different MRI sequences and leveraging the high 
entropic capacity of deep neural networks, we built a 3D ROI-based custom CNN classifier for the 
automatic prediction of MGMT methylation status of glioblastoma in multi-parametric MRI. Single 
sequence-based classifiers reached intermediate predictive performance with 0.65, 0.71, 0.77, and 0.82 
accuracy for T1W, T2W, T1 contrast-enhanced, and FLAIR sequences, respectively. The multiparametric 
classifier using T1 contrast-enhanced and FLAIR images reached 0.88 accuracy. The accuracy of the 
four-input model that used all sequences was 0.81. The best model reached 0.90 ROC AUC value. 
Integrating human knowledge in the form of relevant target selection was a useful approach in MGMT 
methylation status prediction in MRI. Exploration of means to integrate radiology knowledge into 
the models and achieve human-machine collaboration may help to develop better models. MGMT 
methylation status of glioblastoma is an important prognostic marker and is also important for 
treatment decisions. The preoperative non-invasive predictive ability and the explanation tools of the 
developed model may help clinicians to better understand imaging phenotypes of MGMT methylation 
status of glial tumors.
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Abbreviations
TMZ	� Temozolomide
MGMT	� Methyl guanine methyl transferase
DL	� Deep Learning
GBM	� Glioblastoma multiforme
BRATS	� Brain tumor segmentation challenge
ANN	� Artificial neural network

Standard treatment of high-grade glial tumors is radiotherapy coupled with chemotherapy after the widest 
possible surgical removal. Studies have shown that adding temozolomide (TMZ) to the treatment may double 
the average 2-year survival in certain conditions1,2.

Methyl-guanine-methyltransferase (MGMT) is the most important DNA repair protein that protects the 
cellular genome from the mutagenic effects of the alkylating agents. In the presence of MGMT, the lethal effect 
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of alkylating agents decreases. However, MGMT is in certain situations epigenetically silenced by methylation 
of its promoter region2.

In patients who are candidates for TMZ treatment, the determination of the drug-sensitive group before the 
administration of the treatment would be a better strategy. The standard way for this is surgically sampling the 
tissue and then applying molecular-genetic methods to the sample. This is an expensive method that carries 
many risks due to the operation and has low reproducibility2. Moreover, the tumor tissue may be heterogeneous 
regarding the MGMT methylation status, leading to erroneous decisions since the sampled part may not 
represent the entire tumor environment. Different cellular populations that are packed together to form different 
tumoral microenvironments are called habitats. These habitats might be responsible for differential treatment 
responses and require different treatment strategies. Furthermore, the epigenetic status of these tumors may 
exhibit temporal heterogeneity as well2–4. Therefore, determining the MGMT status of the tumor with imaging 
instead of surgery has great potential for healthcare delivery efficiency. Various groups researched to determine 
the MGMT status of glial tumors in MR images by using the professional knowledge of the radiologist, radiomics, 
or deep learning (DL) methods5. Most of these studies were carried out with around 100 samples and with such 
small datasets, radiomics methods were the natural choice.

In this research paper, we aimed to develop an AI-based model that can determine MGMT methylation 
status by using brain MRIs of GBM patients in the BRATS 2021 dataset.

The contribution of our study to the literature is threefold. First, our study analyses 577 patients. It is one of 
the largest sample sizes for this problem. Second, DL studies generally feed the whole image to the model in an 
end-to-end fashion. This is partially due to the knowledge gap of the machine learning researchers about the 
pathology and partially due to the strive of the developers to fully automate the process. However, most of the 
pixels across the image are repetitive, reflecting normal anatomy. The descriptive pixels reside only in a small 
fraction of the image. Since the useless information to perform a task is just noise, most of the pixels in the 
image can be assumed as noise considering the classification task. We eliminated this noise and enhanced the 
driving signal by masking out the region of interest (ROI), keeping the 3D context, and adding multiparametric 
contributions of different sequences to help the model converge better. This is a kind of human-machine 
collaboration. Third, as far as we know, there is no study in the literature that tackles the problem as a signal 
agnostic problem by analyzing the normal appearing pixels in a particular sequence, if they exhibit pathologic 
signal in any other sequence, thus benefiting from the guidance of different MRI sequences.

Method
Institutional Review Board approval was obtained from the local ethics committee for this retrospective study. 
Informed patient consent was waived by the Katip Çelebi University local ethical board. This study has been 
performed in accordance with the Declaration of Helsinki.

Dataset
The MR images in the BRATS dataset included T1W, T1CE, T2W, and FLAIR sequences. Task 1 of the competition 
was a segmentation task, and Task 2 was a classification task. Both datasets were partially overlapping, with 
1251 patients in Task 1 and 585 patients in Task 2. We selected patients who had both segmentation maps and 
information about the MGMT methylation status (Fig. 1). The images had 240*240*155 isotropic voxels, and 
segmentation maps included GBM habitat labels (Fig. 2).

During annotation, the strengths of four distinct MR sequences were emphasized, and the annotation was 
carried out accordingly. The T1W and T1CE sequences were used to label the contrast-enhancing viable tumor 
zone and central necrosis. On the other hand, edema and non-enhancing tumor zones were labeled in T2W and 
FLAIR images. Each mask label corresponded to a different glial tumor habitat (Fig. 2)11.

Preprocessing
BRATS images were presented as skull stripped, co-registered, and bias field corrected. Therefore, most of the 
preprocessing was already done. On the other hand, the pixel distribution was original. So, as a preprocessing step, 
we applied the [0–1] normalization process to prevent the higher values from dominating the calculations12,13.

Relevant region extraction
Medical images exhibit repetitive patterns that show great similarity to each other. Therefore, radiologists 
can analyze the deviations from the normal anatomy and diagnose the diseases. The contribution of normal-
appearing brain regions in a GBM patient for determining the MGMT class is limited. In contrast, the appearance 
of the tumor, which reflects its biology, can make a difference in this distinction. On the other hand, artificial 
neural networks (ANN) are extremely flexible models that can analyze many images to determine the relevant 
patterns for classification tasks. However, the more unnecessary information in the image is discarded before the 
classification, the easier they can do their job. Therefore, we thought that using segmentation maps of the tumor 
to mask out the significant regions for classification, thus narrowing the search space of the model, would be 
more effective than using the whole image. Furthermore, we hypothesized that a region exhibiting a pathological 
signal in a sequence should harbor pathology in all other co-registered sequences at the same region, even if it 
may appear normal in those sequences (Fig. 3). Therefore, we combined the mask labels and obtained a single 
fused general pathology detection mask (Fig. 4). Then, we obtained the ROI crops by multiplying the images 
of all sequences with these single fusion masks (Fig. 5). This approach effectively combined the information of 
different habitats in different MRI sequences. In this way, the standard 240*240*155 dimensions of the images 
changed and became different. However, the input size of ANN should be fixed12,13. Therefore, we set a fixed size 
for all these cropped images as 128*128*64 and resized the cropped images accordingly.
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Input strategy
Three different input strategies were applied. All the strategies were based on masked-out isolated tumor pixels. 
Initially, we fed a single sequence as the input to the model. Then, we used multiple sequences as inputs to multi-
input single-output models. FLAIR and T1CE sequences were used for the two-input model, and all sequences 
were used for the four-input model.

Model architecture
We built a 3D CNN model with four down-sampling blocks using the Keras library14 (Fig. 6). We obtained the 
feature vector by applying global average pooling to the output of the feature extractor part and connected two 
fully connected layers, one with 512 nodes and the other with 256 nodes. Finally, we used a single node with a 
sigmoid activation function for binary output. ADAM with the default 1e-3 learning rate as the optimizer, binary 
cross entropy as the loss function, accuracy as the evaluation metric, and rectified linear unit as the activation 
function were the other important hyperparameters of the model. The model was trained for 100 epochs with 
16 batches. 77 randomly selected class-balanced patients were reserved for validation and 100 for testing on a 
holdout training scheme.

Statistics
Python scripting language (version 3.7.0) and the Scipy package (version 1.4.0) were used for statistical analysis.

Predictions and ground truths were used to build contingency tables. Recall, precision, accuracy, and f1 
scores were calculated using these contingency tables. Confidence intervals were calculated using 95% as the 
confidence level.

Results
Total number of samples was 577 with 276 MGMT unmethylated (276/577, 48%) and 301 MGMT methylated 
tumors (301/577, 52%). To the best of our knowledge, this is one of the largest sample sizes for this problem. On 
the other hand, since the patients were de-identified and anonymized, which was a mandatory step to make the 
dataset available to the public, it was not possible to compare demographic or clinical distributions. However, 
considering this dataset was prepared with the hope of drawing the attention of many researchers to the topic to 
find a solution to the problem, we can assume that it was prepared in a balanced manner between the two groups. 

Fig. 1.  Patient selection.
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There were no statistically significant differences between habitat volumes of the MGMT-methylated and the 
unmethylated tumors. However, enhancing tumor volume (p = 0.14) and necrosis volume/tumor core volume 
ratio (p = 0.15) are promising. Volume statistics of each habitat are presented in Fig. 7.

The built DL model achieved an accuracy of 0.77 (CI 95% 0.73–0.80) with T1CE images, 0.71 (CI 95% 0.67–
0.74) with T2W images, 0.82 (CI 95% 0.78–0.85) with FLAIR and 0.65 (CI 95% 0.61–0.68) with non-contrast 
T1W images (Table 1).

We hypothesized that incorporating signal information from different sequences would enhance the model’s 
performance. For this purpose, we gave the T1CE and FLAIR sequences together to the model and jointly trained 
the model with them (Fig. 8). The accuracy and the f1 score of that model were 0.88 (CI 95% 0.85–0.90 and CI 
95% 0.85–0.90, respectively). We believe that this approach allowed the model to focus directly on the target by 
not wasting resources trying to classify unnecessary pixels and increased performance. Additionally, we used all 
the sequences as different inputs into a four-input model. The accuracy of the four-input model was 0.81 (CI 95% 
0.77–0.84), and the f1 score was 0.80 (0.76–0.83). Many groups have tried to enhance the model performance in 
the literature by using multiple sequences as input. However, our approach differed from the others in two main 
points (Fig. 8). Other groups combined the features that they obtained using radiomics or adopted an ensemble 
approach. However, we gave the set of images confined to the tumor region directly, allowing the model to learn 
from the image. The second key difference was the approach for assembling the image crop as input to the model 
(Fig. 9). The other groups used crops that appeared pathologic in the corresponding sequence. However, while 
some pathologies can be distinguished in some sequences, the signal change in the pathological region may not 
be distinguishable in other sequences. This does not change the fact that there is disease in that region. Using this 
information, we used the segmentation maps of all sequences together and converted them into a single mask. 
All sequences contributed to the establishment of this mask. This fusion mask helped to isolate the regions that 

Fig. 2.  Four MRI modalities and related masks that were used for this study. Enhancing tumor region (Yellow 
mask) and central necrosis zone (Red mask) were determined in T1W and T1CE sequences. Both comprise 
together the tumor core. Peritumoral edema and non-enhancing tumor (Green mask) were determined in 
T2W and FLAIR sequences. The information gained from all sequences was combined to construct the fusion 
mask, which combined all pathology-harboring regions from different sequences (Blue mask). All sequences 
were cropped based on this fusion mask.
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Fig. 4.  Sample axial slices of FLAIR and T1CE sequences of a patient along with multilabel mask. The 
multilabel mask can be decomposed into individual components to obtain different habitats of tumors, which 
accentuate different microenvironments. We used this fusion mask, which was obtained by combining all 
labels, and cropped the underlying tumoral environment from each sequence with this mask (Right column).

 

Fig. 3.  The novelty of the proposed cropping strategy. Left to right T1W, T1CE, T2W, and FLAIR sequences. 
(a) Patient from MGMT unmethylated group (b) Patient from MGMT methylated group. In a) T1W, T1CE, 
and T2W appear almost normal. The masks obtained using these sequences will be empty, and any region from 
the T1W, T2W, and T1CE sequences will not be cropped by these masks. However, FLAIR depicts the right 
frontal cortical pathology. The mask obtained using the FLAIR image will mark the pathology harboring pixels. 
Using the combined mask and applying that mask to all sequences will crop the pathology harboring region in 
all sequences.
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appeared diseased in at least one sequence from the rest of the image, regardless of whether there was a signal 
change in the processed sequence. This gave the model a chance to analyze the signal of the tissue in the diseased 
area in other sequences as well. Thus, we reached 0.88 accuracy and 0.90 ROC-AUC with this approach.

Furthermore, we developed a Streamlit application for experimental use. This application had image and 
mask exploration tools, prediction outputs of the model, and prediction explanation tools (Fig. 10). We believe 
the ease of use and availability of this application could help the translation of the research into clinics.

Dıscussıon
Using the information of all sequences in a 3D context, masking out the pathological region with isolation from 
the neighborhood normal anatomy, and enriching the data set by using data augmentation techniques, we were 
able to successfully classify the MGMT methylation status of GBM in DW MRI with a 0.88 accuracy with our 
best model. Detection of MGMT methylation status of GBM from MR images is an important problem that has 
not yet been solved and has the potential to create great value in patient management, proper treatment selection, 
and economic benefits. Although there are some controversies regarding the favorable survival expectation 
of MGMT methylated tumors, which was discussed in a recent article, we believe that their results should be 
validated15. During treatment, 2/3 of MGMT methylated tumors and just 11% of MGMT unmethylated tumors 
exhibit pseudo-progression, which can be considered as an exaggerated response to the treatment and a sign of 
better response16. This phenomenon may be another evidence of better outcomes related to MGMT methylated 
tumors.

Several studies tackled the problem using either radiomics or DL methods5–10,15,17–19. We can notice the 
highest accuracy rates in three studies in the literature7,8,17. In the first study, the T1CE series and T2W series 

Fig. 5.  Comparison of different input approaches. T2W, FLAIR, T1W, and T1CE sequences from upper to 
lower rows, respectively. (a) Whole slice, (b) ROI based on the maximum dimensions of the 3D mask, (c) and 
(d) Our approach. In our approach, the isolated tumor pixels that are completely cleaned from confounding 
normal anatomy pixels were used. Since the maximum sizes in three directions determine the sizes of the ROI 
box, in ROI-based approaches, the larger mask in a different region of the tumor size, such as seen in d), results 
in many nontumoral pixels in the crop, such as seen in b).
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were studied with the radiomics method, and 0.88 accuracy and 0.89 AUC were obtained17. However, a total of 
87 patients were used in the training cohort of this study, and the test cohort included just 35 samples. While 
70% of the training set and 80% of the test set were MGMT methylated, only 7 patients were unmethylated in the 
test set, which represented a severe class imbalance. Even a dummy model that calls all the samples methylated 
would have an accuracy of 80% in such a scenario. The very few unmethylated cases in the test set, which 
reduced statistical power, complicated the interpretation greatly. Our dataset represented a more appropriate 
scenario, both as being a larger dataset with 577 samples and in a balanced distribution of the two groups.

Fig. 7.  Boxplots and superimposed swarm plots of volumes of different habitats in the dataset. (a) Edema 
habitat (b) Enhancing tumor habitat (c) Necrosis habitat. Descriptive statistics of the volumes of (d) the 
MGMT unmethylated and (e) the MGMT methylated tumor habitat. neg: Unmethylated group pos: 
Methylated group necr: Necrosis enh: Enhancing tumor.

 

Fig. 6.  Network architecture and hyperparameters.
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In the literature, there are various attempts to link imaging phenotypes to the MGMT methylation status 
in MRI20–22. In these studies, the results are conflicting. However, there is a tendency towards specific patterns. 
The cellularity, vascularity, and proliferation of the MGMT-methylated glial tumors tend to be higher than the 
unmethylated counterparts. The imaging reflections of these biological behavior differences are reported as 
follows: MGMT-methylated tumors tend to exhibit less edema, more necrosis, and more enhancement. The 
enhancement pattern tends to be heterogeneous nodular, which in turn leads to a more heterogeneous texture20,22. 
The enhancement pattern of MGMT unmethylated tumors is typically ring-like with wider peripheral edema. 
The necrosis tends to be less in MGMT unmethylated tumors. T2-FLAIR mismatch sign, which describes the 
partial suppression of very high T2 signal of tumor in the FLAIR images, tends to be more prevalent in MGMT 
unmethylated tumors, which may be attributed to fluid accumulated in the expanded extracellular spaces and/
or microcystic changes21. When we analyzed the true predictions of our model, we observed more enhancement 
coupled with less peritumoral edema in MGMT-methylated tumors. (Fig. 11). The enhancement pattern was 
more heterogeneous nodular, and the overall tumor core size tended to be greater with more heterogeneous 
texture and less necrosis. Particularly, the necrosis/tumor core ratio is less in the true predictions of the 
MGMT-methylated group. On the other hand, false positive predictions also reflected this trend. Many MGMT 
unmethylated tumors that were predicted as methylated by the model exhibited little peritumoral edema and 
a large tumor core coupled with less necrosis relative to the tumor core (Fig. 11). The typical pattern with the 

Fig. 8.  Key differences between our approach and existing literature. We used region of interest crops, which 
were obtained by a novel mask fusion strategy, keeping 3D context and multiparametric information of all 
sequences and trained the network jointly. In standard DL applications, the whole image is given as the input 
to the models, while in radiomics studies, the usual input is the ROI of the lesion, and the feature extractors are 
fixed descriptors that are non-trainable.

 

Precision Recall Accuracy F1 Score

T1W 0.64
(0.60–68)

0.70
(0.66–0.73)

0.65
(0.61–0.68)

0.67
(0.63–0.70)

T1CE 0.80
(0.76–0.83)

0.72
(0.68–0.75)

0.77
(0.73–0.80)

0.76
(0.72–0.79)

T2W 0.68
(0.64–0.71)

0.80
(0.76–0.83)

0.71
(0.67–0.74)

0.73
(0.69–0.76)

FLAIR 0.83
(0.79–0.86)

0.80
(0.76–0.83)

0.82
(0.78–0.85)

0.82
(0.78–0.85)

FLAIR + T1CE 0.87
(0.84–0.89)

0.90
(0.87–0.92)

0.88
(0.85–0.90)

0.88
(0.85–0.90)

Four sequences 0.88
(0.85–0.90)

0.73
(0.69–0.76)

0.81
(0.77–0.84)

0.80
(0.76–0.83)

Table 1.  Performance metrics of the models. CI 95% is given in parenthesis.
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MGMT unmethylated tumors, which were correctly predicted by the model, was a ring-enhancing tumor with 
more peritumoral edema and more necrosis. The T2/ FLAIR mismatch sign, which was explored by comparing 
the mean signal ratio of the nonnecrotic tumor volume in T2W and FLAIR sequences between the true positive 
and true negative groups, was similar in both class predictions. Another observation was the high frequency of 
hemorrhagic signals in T1W and T2W among mispredictions. Since the segmentation masks did not include a 
distinct class for hemorrhagic signal, it was not possible to check the relationship between the presence and size 
of the hemorrhagic signal with false-positive and false-negative predictions. However, those points seem to be 
an interesting target to explore in future studies. Some ground truth masks also suffered from the hemorrhagic 
signal. In these samples, the contrast enhancement mask was overestimated or underestimated due to the 
intrinsic T1W high signal of hemorrhage, which introduced ground truth errors to the dataset (Fig. 12).

When we restrict our analysis to DL studies, we encounter a few successful DL studies. In one study7, only T2 
sequences were used, and the entire image was given to the model for classification. In addition, a separate test set 
was not used, and the results were evaluated over the images with the cross-validation method. Furthermore, the 
authors employed 3D U-Net and prepared two mask labels. All the pixels in the MGMT methylated tumor region 
were labeled as one class, and all the pixels in the MGMT unmethylated tumor region were labeled as another 
class. Using this dense pixel-wise classification approach and determining the final label of the image by majority 
voting increased their accuracy. However, the classification of each pixel as MGMT methylated or unmethylated 
should be questioned since the overall interaction of all the regional pixels can barely represent the exact class, 
not each individual pixel. These biases might lead to overly optimistic results. In this study, which was conducted 
with 247 patients, a sensitivity of 0.96 and a specificity of 0.91 were achieved7. In another study, authors used 
an ROI approach with four critical sequences similar to ours. They conducted their research with 259 patients8. 
Furthermore, they used segmentation maps of each sequence and down-sampled the resulting crops to 32 × 32. 
Then, they combined corresponding images of each sequence channel-wise and constructed 32 × 32 × 4 size 
input. Regarding the large size of GBM, which generally spans 1/3 to 2/3 of a hemisphere, the 32 × 32 size matrix 
seems too small to retain important details in the image. Moreover, channel-wise concatenating the individual 
images of different sequences may lead to losing important information even after the first convolution. 3D 
convolution filters will compress the channel information into 2D. Therefore, the high signal of enhancing tumor 
in the T1CE channel and of edema in the FLAIR channel will dominate over other channels. Furthermore, the 
analysis was conducted slice-wise, resulting in the loss of 3D context. They reached 0.83 mean accuracy in their 
5-fold CV experiments. Another DL study was a single-center study with 155 patients9. The authors used just 
T2W images with ResNet50 and demonstrated an accuracy of 94.9% on a test set. However, they employed slice-
wise classification with an additional normal class, and 78% of the test set were normal slices.

In another study, the researchers studied the prediction of the MGMT methylation status of the glial tumors 
in brain MRI extensively23. Actually, their extensive work was based on permutations of different model 
architectures coupled with different MRI sequences as input. They employed three CNN models (Res_Net, 
Dense_Net, and Efficient_Net) with three different architectures coupled with either pretraining or direct training. 

Fig. 9.  The topographical relationship of the tumor habitats and the surrounding normal anatomy. (a) Sagittal 
(b) Coronal (c) Axial slices (d) Isolated tumor mesh with different habitats. Tumor mesh superimposed to (e) 
Sagittal oblique (f) Coronal oblique projection on multi-planar reconstruction. Tumor mesh superimposed to 
(g) Coronal oblique (h) Sagittal oblique volume rendering.
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Fig. 10.  (a-e) We developed a Streamlit-based application for experimental use. The application includes 
5 modules. (a) First module helps the user prepare the images for the model. (b) The second module helps 
the user freely scroll around T1CE and FLAIR images and the image masks to grasp the overall extent of the 
pathology and morphological features. (c) The third module helps the user freely scroll around the image crops 
obtained by a novel fusion mask, which will be given into the model as input. To highlight subtle differences, 
color-coded versions of the images are accompanied by the grayscale crops. (d) The fourth module classifies 
the image volume along with its confidence score and displays feature maps of each of the four convolutional 
layers. (e) The last module overlays GradCam maps, which highlight the pixel importance based on gradient 
strength on input images. It may help the doctor to check the subregions that the model thought were more 
important for the classification task. This module may highlight the subtle differences in the image leading to 
correct diagnosis and may train the physician to look for those clues.
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Additionally, they employed transformer models. They permuted these models with mainly single sequence 
input and reported the performance metrics. The performance metrics were poor, and the authors concluded 
that the MGMT methylation status of glial tumors could not be predicted using the BRATS 2021 dataset and the 
state-of-the-art models. They also mentioned that, with optimum datasets and novel methodologies, the MGMT 
methylation status could still be predicted.

The dataset footprint and the modifications based on that footprint might alter the performance of the deep 
learning models more than the used architectures and the training schemes. Actually, one of the most successful 
segmentation approaches, no new U-Net (nnUnet) was based on this idea24. The modifications based on the 
dataset specifications were more important than the selected model. To date, the input to the models was either 
a whole slice or a crop of the slice guided by the segmentation masks. The inputs in the ROI approach were still 
contaminated by the surrounding anatomy. Additionally, the crops were based on the segmentation maps, which 
only considered the signal change in the corresponding sequence. For instance, FLAIR images were cropped 
by using the masks which consider the signal change in FLAIR image only. However, some habitats might be 
imperceivable in some sequences. This insensitivity of a particular sequence to all habitats does not change 
the fact that there is pathology in that region. To the best of our knowledge, no study used the guidance of a 
mask to crop a region in a particular sequence, which was obtained using the information of another sequence. 
Furthermore, to the best of our knowledge, no deep learning study used the masked-out tumor region, which 
purely consisted of pathology harboring pixels instead of ROI crops based on the maximum diameters of the 
segmentation mask.

The built Streamlit application was also an important output of our study. We developed an easy-to-use 
pipeline for this application. The user can export the image volume to the desktop and drag and drop the exported 
volume to the application to use the features of the application freely. Deployment in a Docker container locally 
requires no additional cost to the organization and no additional training for the radiologists. The simple user 
interface with one button for each function makes the usage straightforward immediately after deployment. 

Fig. 11.  Sample predictions of the model. (a) True positive, MGMT methylated tumors (b) True negative, 
MGMT unmethylated tumors (c) False positive predictions that are actually unmethylated (d) False negative 
predictions that are actually methylated.
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For sure, scaling this application to more organizations requires different deployment strategies and different 
security precautions. However, for the experimental use, deployment in the local environment of the user, which 
is protected by the user password, and which is also connected to PACS (Picture archiving and communication 
system), RIS (Radiology information system), and HIS (Hospital information system) systems of the organization 
provide an easier transition. The application is not a complete medical device. The main objective is to collect 
more information by checking its performance on the new images and molecular analysis in the environments 
of the local organizations. We believe this strategy should be adopted for all promising new models published in 
the literature, particularly for the ones applied to rare diseases. Many of the built models remain experimental 
forever due to the lack of connection between the development environment and the potential users. An easy-

Fig. 12.  Effect of hemorrhage on the ground truth masks and the predictions. (a) T1CE (b) T1CE with 
superimposed mask (c) T1W d) T1W with superimposed mask. The hyperintense signal of hemorrhage 
interfered with the annotation process and led to habitat uncertainties in the masks. The exact enhancing and 
necrosis regions are unclear. The mask seems to underestimate both habitats.
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to-use pipeline that involves just locally exporting the image and putting it into the application might take under 
a few minutes. This approach has two benefits. First, the radiologists can become more familiar with the AI tools 
and the outputs of these tools that were built by their team at no additional cost. Second, the local prospective 
validation of the models may help in selecting the more successful candidates to further work on.

The primary assumption of the machine learning models is the similarity of the training and the test datasets. 
Therefore, dataset collection should be carried out extensively and carefully considering the distribution of the 
problem in the real world. The size, diversity, and constitution of the dataset have utmost importance. Although 
convolution and max pooling operations, along with input and batch normalization, introduce some robustness 
to the models, the output is still conditioned on the pixel distribution of the input. Different MRI machines, 
different acquisition protocols, and different user preferences affect the real pixel distribution of the images. In 
order to combat the overfitting of the model to the training data, a test check on external data should be carried 
out along with internal testing. BRATS 2021 dataset was collected considering this requirement25. The multi-
institutional nature of this dataset satisfies the external data requirement for the models trained with local data.

There are some limitations of our study. One of them was the lack of important demographic and clinical 
information such as age, gender, and clinical features of the patients since it was carried out on a public data set. 
Therefore, it is not possible to make a clear statement about whether these factors affect our comparison. On the 
other hand, due to the use of a preprocessed image set, all images had a common size of 240*240*155, and the 
voxel dimensions were fixed as 1*1*1* mm. Therefore, it has not been possible to carry out some quality control 
tests, such as showing how the accuracy changes by pooling the images according to their quality and resolution. 
The pixel distribution ​​of an image acquired with a medium resolution protocol at 1.5 T field strength and an 
image obtained with higher resolution at 3 T field strength can be quite different from each other. On the other 
hand, in our study, although the information of all sequences was used, only the regions that had a signal change 
in at least one sequence were used. However, the displacement and compression patterns of the surrounding 
structures can also provide additional information about the nature of the tumor. Another limitation was the 
number of samples in the dataset. Although dataset size is one of the largest for this problem, 577 patients may 
still not be enough for building robust DL applications.

Conclusıon
In conclusion, we achieved to determine the MGMT methylation status of GBM in MR images with high 
performance by using one of the largest datasets in the literature, multiple-sequences guided masks, 3D 
context kept, noise-reduced tensor patches, and deep learning. We believe the different biological compositions 
driven by the underlying genomic profile of the glial tumors exhibit different imaging phenotypes. However, 
the imaging phenotypes of the glial tumors are not solely determined by MGMT methylation status. This may 
explain the controversial outcomes of research studies. Larger datasets that are stratified according to more 
detailed, comprehensive genetic labels, including other important genomic signatures such as IDH, EGFR, 1p19q 
codeletion, CDKN2A/B, TERT, and ATRX may provide better opportunities to build more comprehensive and 
robust classifiers.

Data availability
The anonymised data collected are available as open data via the Kaggle platform repository: ​h​t​t​p​s​:​​/​/​w​w​w​.​​r​s​n​a​.​
o​​r​g​/​r​s​​n​a​i​/​a​i​-​i​m​a​g​e​-​c​h​a​l​l​e​n​g​e​/​b​r​a​i​n​-​t​u​m​o​r​-​a​i​-​c​h​a​l​l​e​n​g​e​-​2​0​2​1​​​​​. Example from: ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​​c​o​m​p​e​t​i​
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