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Therapeutic targets
Most drugs that are either currently available or in 
Phase III clinical trials for the treatment of MS are 
immunomodulatory. The exact modes of action for 
many of these drugs have not been fully elucidated; 
however, these agents are thought to prevent immune 
cell egress from secondary lymphoid organs (fingoli-
mod), regulate peripheral immune cell activation (for 
example, IFNβ, GLAT, mitoxantrone, teriflunomide, 
alemtuzumab, daclizumab and rituximab), prevent 
immune cells from crossing the blood–brain barrier 
(natalizumab) or, potentially, suppress inflammation 
in the CNS through possible direct effects on oligo-
dendrocytes and immune cells (fingolimod and 
laquinimod) or through anti-oxidant effects (DMF). 

     These therapeutics all have efficacy in treating the 
earlier phases of MS. To date, however, no drugs have 
been shown to be effective at slowing the later, 
progressive accumulation of disability in a Phase III 
trial. Therefore, there is a need for drugs with 
non-immunological targets within the CNS, such as 
sodium channel blockers, which are currently in 
clinical trials. The complexity of MS pathophysiology 
suggests that combinatorial therapy for the 
modulation of multiple disease mechanisms — both 
immunological and neurological — is likely to be 
of greatest benefit, and thus the continued study of 
these mechanisms is crucial for the establishment 
of improved therapeutic options for MS.
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MS is thought to arise when an aberrant immune response is 
mounted against CNS antigens as self-tolerance mechanisms 
break down in the periphery, potentially owing to a combination 
of genetic and environmental factors. Following activation in the 
periphery, CNS-directed autoreactive T cells, along with antigen-
presenting cells such as DCs, infiltrate the CNS, where they drive 
focal inflammation and tissue damage. 
     Various mechanisms are induced to mitigate neural tissue injury. 
Remyelination, which depends on the survival of oligodendrocyte 
progenitor cells (OPCs), is thought to actively reverse damage to 
the myelin sheath. 
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Remyelination and its points of failure
Following demyelination, microglia and astrocytes 
become activated, resulting in activation of nearby 
OPCs. The release of mitogens and pro-migratory 
factors by reactive astrocytes and inflammatory cells 
(mainly microglia and monocyte-derived macrophages) 
leads to the proliferation of OPCs and their migration to 
the demyelinated area. The recruited OPCs differentiate 
into remyelinating oligodendrocytes, a process that 
involves axon engagement and the formation of a 
myelin sheath. Macrophages also facilitate remyelination 
by removing myelin debris, which contains inhibitors of 
OPC differentiation. Remyelination failure can occur 
because of a failure of OPC recruitment or, more 
frequently, because of a failure of differentiation. The 
most promising remyelination-promoting agents aim to 
target positive regulators of differentiation (such as 
RXR agonists) or negate inhibitors of differentiation 
(such as antibodies against LINGO1). 
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• Positive regulators: 
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• Negative regulators: 
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Later in the disease course, immune cell infiltration 
wanes. However, chronic CNS-intrinsic inflammation 
persists. 
    In this milieu, oligodendrocytes are damaged and 
remyelination may fail. Various factors may inhibit 
OPC proliferation or differentiation and, in the 
absence of sufficient neuroprotection and repair, 
neurodegenerative processes prevail. 
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The immunology and neurobiology of multiple sclerosis
Calliope A. Dendrou, Robin J. M. Franklin and Lars Fugger

Multiple sclerosis (MS) is a neuroinflammatory disease of the central nervous system 
(CNS). The disease is characterized by a considerable heterogeneity of disease course and 
clinical manifestations — which can include visual and sensory disturbances, motor 
impairments, pain, fatigue and cognitive deficits. However, most individuals with MS show 
a progressive accumulation of disability in the later stages of the disease. Disease onset 
usually occurs at around 30 years of age and most people with the condition have a near-
normal life expectancy: thus, MS is a chronic debilitating disorder. Here, we summarize 

key immune and nervous system cell types and molecules that are involved in the 
pathophysiology of MS. We delineate the roles of innate and adaptive immune cells,  
in the periphery and within the CNS, and we provide an overview of how the relative 
contributions of immune and nervous system components change over time as the 
chronic neurodegenerative damage to the CNS ultimately overwhelms neuroprotective 
and/or neuroregenerative mechanisms. We also highlight the sites of action of currently 
available drugs, where known, and therapeutic strategies that are under investigation.
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AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; 
ASIC1, acid-sensing ion channel 1; BCR, B cell receptor; BDNF, brain-derived 
neurotrophic factor; CCL2, CC-chemokine ligand 2; CD8+ MAIT cell, CD8+ 
mucosa-associated invariant T cell; CNS, central nervous system; CSPG, 
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growth factor; GLAT, glatiramer acetate; GM-CSF, granulocyte–macrophage 
colony-stimulating factor; IFN, interferon; IL, interleukin; LINGO1, leucine rich 
repeat- and immunoglobulin domain-containing 1; mGluR, metabotropic 
glutamate receptor; MHC, major histocompatibility complex; MS, multiple 
sclerosis; NK cell, natural killer cell; NMDAR, N-methyl-d-aspartate receptor; 
NO, nitric oxide; OPC, oligodendrocyte precursor cell; PDGF, platelet-derived 
growth factor; RNS, reactive nitrogen species; ROS, reactive oxygen species; 

RXR, retinoid X receptor; S1PR, sphingosine 1-phosphate receptor; SEMA, 
semaphorin; TCR, T cell receptor; TH cell, T helper cell; THR, thyroid hormone 
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