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1 Introduction

Both casual observation and detailed survey data indicate that post-college earnings for graduates vary

widely by field of study. Though this is in part driven by differences in the mix of students majoring

in different subjects, both regression studies that control in detail for student background and studies

relying on quasi-experimental variation in student assignment to different majors indicate that major choice

plays a causal role in earnings determination (Altonji, Blom, and Meghir 2012; Altonji, Arcidiacono, and

Maurel 2016; Hastings, Neilson, and Zimmerman 2013; Kirkeboen, Leuven, and Mogstad 2016). State

and national policymakers observing cross-field wage differentials have proposed policies encouraging

students to pursue degrees in perceived high-return areas such as the STEM fields while suggesting that

students think carefully before pursuing degree programs in liberal arts with perceived low returns (Alvarez

2012; Jaschik 2014). The idea is that by choosing higher-earning degree programs, students will help raise

the return on public and private investments in higher education.

While policy discussions tend to focus on labor market outcomes, pecuniary returns on educational invest-

ments depend on costs as well as future earnings. At least until recently, tuition costs have not varied across

fields, or have not varied much (CHERI 2012; Ehrenberg 2012; Stange 2015). However, the available evi-

dence suggests that the costs of producing graduates or credit hours varies substantially by field (Johnson

2009; Conger et al. 2010). Some majors may lead to high earnings but be costly to produce, offering lower

net returns per graduate or per invested dollar than lower-earning but less costly majors. An understanding

of net private returns (private returns net of instructional costs) may be valuable for policymakers seeking

to maximize the efficacy of higher education spending.

This paper brings together evidence on major-specific earnings outcomes and production costs to provide

what is to the best of our knowledge the first assessment of the net returns to college major. We eval-

uate earnings outcomes using two data sources: administrative records of educational and early career

labor market outcomes for a large sample of in-state, first-time-in-college students enrolling in the Florida

State University System (SUS), and nationally representative data from the American Community Survey

(ACS). Though we lack experimental or quasi-random variation in the assignment of students to college

major, the Florida data do contain a detailed set of control variables, including high school grades and

college admissions test scores. We evaluate the costs of producing graduates and credits in different fields

using publicly available administrative expenditure reports from the SUS Board of Governors (FLBOG).

These reports detail total and per credit direct and indirect instructional expenditures within institution-

major-course level cells. Majors are defined by two-digit CIP codes. We link the expenditure reports to

microdata on student course-taking to compute total instructional expenditures over college careers for the

same graduates and dropouts for whom we observe earnings outcomes.

We use these data to construct two measures of net returns. The first is the present discounted value (PDV)
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of net earnings returns per graduate by major. These values are potentially relevant for a university or

policymaker trying to decide whether to open an additional spot in one major versus another. The second

measure is the PDV of net returns per dollar of incurred cost. This is potentially relevant for universities

or policymakers with a fixed budget trying to decide which major or majors to expand.

We find that costs per credit and per graduate vary by field, and that measures of earnings returns net of

cost are in many cases significantly different from returns measured using labor market outcomes only.

Engineering majors are the most expensive, with total costs of $62,297. This compares to a graduate

weighted median degree cost of $36,369 across all majors and a cost of $31,482 for business, the second

cheapest major. The graduate-weighted standard deviation of the distribution of the PDV of costs by major

is $7,187 (in 2014 USD). This is roughly one quarter the size of the standard deviation of the PDV of the

earnings effects through age 32, the oldest age at which we observe earnings in the Florida data, and

13.5% of a standard deviation of the PDV of earnings effects if we extrapolate those effects out to age

45.1 Measuring returns on a per graduate basis, we find that low-cost but relatively high-earning fields like

business and computer science offer higher net returns through age 32 than higher-earning but higher-cost

majors like engineering. On the whole, however, differences in per graduate net returns across degree

programs are driven primarily by differences in earnings. The correlation between per graduate PDVs of

earnings net of costs through age 32 and estimates of log earnings effects is 0.95. The role of earnings

differences in driving PDVs is even larger when we consider earnings through age 45.

Differences between net returns and earnings returns are more striking when evaluated per dollar of in-

structional expenditure. High earning but high cost degree programs in engineering and health offer per

dollar returns that are similar to lower earning but lower cost programs in fields like education and phi-

losophy. High earning but low cost degree programs in fields like business and computer science have the

highest net returns by this measure. The graduate-weighted correlation between per dollar estimates of net

PDVs through age 32 and estimates of log earnings effects is 0.52.

The last component of our empirical work considers trends in field-specific per credit expenditures over

the 1999-2013 period. On average, per credit expenditures dropped by 16% in the Florida SUS over this

period. Rates of decline differ by field. The largest drops occured in engineering and health, growing

fields with high per graduate returns. Per credit funding in these fields fell by more than 40% over the

period. Overall, costs per credit fell more in fields with large increases in credit hours. The changes have

little relationship with average per credit costs or with earnings effects. Our findings suggest that long-run

declines in funding at the institution level affect fields differentially. This may alter the distribution of

degree types in addition to reducing overall completion rates, as reported in Bound and Turner (2007) and

Bound, Lovenheim, and Turner (2010). An analysis of staffing data for the University of Florida suggests

that changes in faculty and staff inputs per credit can explain about half of the overall decline. Faculty

1The ratio does not account for sampling error in the earnings effects estimates, which is substantial in the case of the estimates
based the Florida administrative data. We find similar results using ACS data.
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FTEs per credit declined 16% between 2000 and 2012.

The paper proceeds as follows. In Section 2 we discuss our contribution to existing work on the topic. In

Section 3 we present a model of the tradeoffs facing policymakers deciding how to allocate program spots

and funding across majors. In Section 4 we describe our data. Sections 5 and 6 present our findings, and

Section 7 concludes.

2 Related literature

Our work builds on two strands of literature. The first is the rapidly growing literature on the return to

education by field of study, surveyed by Altonji, Blom, and Meghir (2012; henceforth ABM) and Altonji,

Arcidiacono, and Maurel (2016; henceforth AAM). A core challenge in this literature is to understand

how the process by which students choose different fields affects observed earnings outcomes. A small

set of studies, including Arcidiacono (2004) and Beffy et al. (2012), use structural models of field choice

and wages to address this issue. A few other studies use plausibly exogenous variation in access to fields

of study to identify returns. Hastings, Neilson, and Zimmerman (2013; henceforth HNZ) and Kirkeboen,

Leuven, and Mogstad (2016; henceforth KLM) use the fact that Chile and Norway (respectively) deter-

mine admission to particular school/field of study combinations using an index of test scores and grades.

This admissions structure provides the basis for a fuzzy regression discontinuity design. Findings from

these studies indicate that admission to different fields of study can have large effects on earnings out-

comes.

In the absence of quasi-experimental variation, we follow the vast majority of studies that use multivariate

regression with controls for student characteristics.2 While omitted variables bias is a concern, we do have

access to high school transcript information and test scores. Consequently, our control set is richer than

that of most previous studies. We find large differences in the returns across majors that follow the general

pattern in previous studies (see ABM and AAM). Using the earnings regressions, we compute the present

discounted value of earnings by field, taking the education major as the omitted category. As we discuss

in Section 4, we have some concerns about earnings outcomes measured using our Florida data because a)

the data cover early career outcomes only, and b) we do not observe earnings outcomes for students who

leave Florida. We therefore use the ACS to construct alternate measures of earnings effects. These are

very similar to estimates described in ABM, with the key differences being that we create more aggregated

major categories to correspond with what we observe in the Florida administrative records and that we use

annual earnings rather than hourly wage rates as our earnings measure.

We also contribute to a much smaller literature on education production costs. Bound and Turner (2007)

2Examples include Berger (1988), Chevalier (2011), Grogger and Eide (1995), Webber (2014), and Hamermesh and Donald
(2008).
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and Bound, Lovenheim, and Turner (2010) show that reductions in per-student resources have played an

important role in the decline in rates of college graduation since the 1970s. In research focusing on cost

heterogeneity by major, Middaugh et al. (2003), Johnson (2009; 2013), and Conger et al. (2010) provide

evidence that instructional costs vary across fields, and tend to be higher for STEM courses, as well as

courses in instruction-intensive non-STEM fields like education, art, and nursing (Middaugh et al. 2003).

Thomas (2015) uses data on course selection and instructor costs for particular courses at the University

of Central Arkansas to estimate a model of how universities decide what courses to offer. Our cost-side

analysis most closely parallels Johnson (2009), who also uses data on expenditures and course-taking

from the Florida State University System. Our findings on the average and major-specific per credit and

per graduate costs are similar to his. Though our research focuses exclusively on Florida, evidence on

costs from Ohio, New York, and Illinois suggests that other states exhibit similar patterns of expenditure

across field and trends over time (Conger et al. 2010).

Our main contributions are to a) highlight the importance of considering costs as well as earnings when

evaluating the efficacy of field-specific educational investments, and b) bring earnings and cost estimates

together to produce what to our knowledge are the first available measures of per-person and per-dollar

net returns. We interpret our findings cautiously. Our estimates of earnings effects may be biased. Our

measures of costs are based on average expenditures which may diverge from the marginal cost concepts

that should guide institutional decision-making. Still, we believe our results represent a jumping-off point

for future research into universities’ production functions.

We also provide new evidence on heterogeneity in major-specific spending trends. Much previous work

on major-specific spending has focused on snapshots of spending for particular cohorts of graduates. One

exception, Conger et al. (2010), documents trends in major-specific spending in the SUS system over the

2002-2007 period, when both our data and theirs show little change in per credit spending. Using a longer

time window, we document a secular decrease in spending, with timing that coincides with economic

downturns in 2001 and 2008.

3 Private Incentives, Externalities, and Choice of Major

In this section we motivate our focus on instructional costs using a simple model of optimal major choice

from the point of view of both the individual and the social planner. Our focus is on how labor market

returns, instructional costs, and tuition influence choice in an environment where taxation and externalities

cause the private and social values of majors to differ. We abstract from the extensive margin choice to

attend college, as well as from the college completion margin.

Students choose majors to maximize utility. The utility from a given major depends on earnings returns,

tuition, and the nonpecuniary benefits associated with its coursework and the occupations it leads to.
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Assuming additive separability, the utility U f
i that student i receives from enrolling in major f is

U f
i = ui((1− t)Y f − τ f ) + V f

i , (1)

where Y f is the present discounted value of earnings for individuals who enroll in f , t is the tax rate on

earnings, τ f is the tuition in major f , and V f
i is i’s non-pecuniary utility from major f . We assume for

simplicity of exposition that earnings and tuition do not vary across individuals within a major, and that

tax rates are constant. We also abstract from general equilibrium effects on skill prices of large changes in

the allocation of students across majors. The function ui captures utility from the consumption of goods

and services financed out of earnings net of tuition costs. V f
i depends on preferences over subject matter

and occupations, academic preparation, and ability.

Students rank fields based on their preferences, and choose the highest utility field available to them from

some set of F majors, perhaps given some capacity constraints. We discuss these in more detail below.

Note that students consider earnings Y f and tuition τ f , but not the costs of providing major f .

The social planner’s problem differs from the individual’s problem in three respects. First, the planner

values Y f , not just the after tax component. Second, the planner considers education production costs

C f , which may vary by major. Third, the planner considers the externalities associated with graduates in

different fields. The value SU f
i that the planner places on a degree in f for student i is

SU f
i = U f

i + λ[tY f + τ f − C f ] + EXT f (2)

= ui((1− t)tY f − τ f ) + V f
i + λ[tY f + τ f − C f ] + EXT f (3)

In the above equation λ is the marginal utility generated by an extra dollar of goverment transfers and

expenditures made possible by tax and tuition revenue. EXT f is the net social externality associated with

an extra graduate in field f .3

An instructive special case is when utility is linear in consumption, so that

ui(Y f (1− t)− τ f ) = θi[Y f (1− t)− τ f ]

3Lange and Topel (2006), Moretti (2004), and McMahon (2009) discuss the social benefits of higher education in general.
Studies such as Currie and Moretti (2003) focus on effects on political participation and citizenship, on crime, and on parenting.
There is much less evidence regarding differences across fields in externalities. Much of the policy discussion of field specific
externalities centers on STEM education. For a recent example, see Olson and Riordan (2012). Note that large changes in the
relative supply of majors would alter EXT f in addition to Y f .
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Assume the marginal utility of income does not vary, so that θi = θ . Since a benevolent planner would

choose taxes and transfers and public expenditures so that the marginal utility generated by expenditures

matched the marginal benefit of private consumption, we set θ = λ. Then i’s utility from enrolling in f
is

U f
i = λ[(1− t)Y f − τ f ] + V f

i ,

and the planner’s valuation simplifies to

SU f
i = λ[Y f

i − C f ] + V f
i + EXT f

= U f
i + λ

(
tY f + (τ f − C f )

)
+ EXT f (4)

We make two observations based on equation 4. First, the individual’s preferences will be identical to the

planner’s when C f − τ f = tY f + EXT f /λ. Left unconstrained, individuals will choose the same alloca-

tion as the planner when tuition subsidies C f − τ f are sufficient to a) offset the wedge between individual

and planner preferences created by the tax rate, and b) account for positive or negative externalities gen-

erated by enrollment. In the first part of our empirical work, we document differences in tuition subsidy

levels by field of study. Second, the planner’s valuation depends on Y f − C f , i.e. earnings net of costs for

enrolled students. Our empirical work presents estimates of these quantities, which would determine the

planner’s preferences in the absence of externalities and non-pecuniary differences across majors.

Our empirical work also considers differences in per-dollar returns to field of study. To understand why

this quantity is relevant for policy, consider a case in which student and planner preferences are as above,

but where students cannot sort freely across fields.

Specifically, assume that at least some fields are subsidized in the sense that C f > τ f , and have budget

limits B f , with corresponding enrollment caps of N f = B f /(C f − τ f ). Students are allocated to fields

in a way that may depend on student preferences over fields and admissions’ committee preferences over

students.

The idea of a hard cap on major-specific enrollment corresponds closely with institutional details in many

non-US countries, such as Norway and Chile (see HNZ and KLM for more details). It is a reasonable

approximation of US institutions that, e.g., establish minimum GPA standards for enrollment in some

majors, or where lack of available seats in required courses leads to de facto limits on enrollment.

The planner has an opportunity to expand the budget in major f to allow for increased enrollment. For

simplicity we assume that students who benefit from this expansion would otherwise have enrolled in a
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reference major g where tuition is equal to costs and where the capacity constraint is slack. Let Di f be an

indicator function equal to 1 if i enrolls in f , and let

SU = ∑
i

∑
f

Di f SU f
i

be the sum of social utility over all students. Then, the gain in social utility from a marginal increase in B f

is given by

dSU
dB f =

dSU
dN f ×

dN f

dB f =
dSU
dN f ×

1
C f − τ f

=
λ
(
(Y f − C f )− (Yg − Cg)

)
+ (E f − Eg) + V̄ f g

C f − τ f , (5)

where V̄ f g = E[V f
i − Vg

i |i ∈ marginal group]. Differences in returns net of costs are scaled by the net

cost of producing majors in the destination field. We consider measures of earnings scaled by costs in

section 5.5.

In practice, the social returns from marginally relaxing major-specific budget constraints will depend on

the mix of majors from which students affected by the policy are drawn, and on students’ relative skills in

and preferences for those majors. HNZ (2013) and KLM (2016) explore these issues in detail.

4 Data

4.1 Cost data

Our cost data come from administrative expenditure reports compiled by the Board of Governors of the

Florida State University System (FLBOG 2000-2014). The data span the 12 universities in the State Uni-

versity System.4 These are four-year public institutions that primarily offer degrees at the bachelor’s level

or higher. The Florida College System, which includes mostly two-year institutions, is excluded. The re-

ports document course taking and expenditures for the state university system as a whole and within groups

defined by the intersection of college major and offering institution. Majors are identified at the two-digit

CIP code level. This is a relatively high level of aggregation: in 2000, there were 33 distinct major codes,

4Florida A&M, Florida Atlantic University, Florida Gulf Coast University, Florida International University, Florida Polytech-
nic University, Florida State University, the New College of Florida, the University of Florida, the University of North Florida,
the University of South Florida, and the University of West Florida.
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of which 30 reported a positive number of undergraduate student credit hours. Examples include ‘Engi-

neering’ or ‘English Language and Literature.’ A full list is provided in Table A1. We use data obtained

from academic year (AY) 1999-2000 through AY 2013-2014 versions of these reports.

Each report breaks down spending by course level and expenditure type. There are four relevant course

levels for graduate and undergraduate education: lower undergraduate, upper undergraduate, masters’

level courses, and doctoral courses.5 Reports describe direct expenditures for instruction, research, and

public service within institution-major cells. Direct expenditures are primarily for personnel. They also

compute indirect costs for activities including academic advising, academic administration, financial aid,

plant maintenance, library costs, and student services. They allocate these indirect costs to institution-

major cells based on either student credit hours (for academic advising and student services) or faculty/staff

person-years (for the other listed cost types). See Johnson (2009) for a more detailed description of these

data.

Table 1 describes SUS expenditures by level and type for the 2000-2001 academic year. Instructional

spending totaled just over $2 billion in that year, with direct spending accounting for 54% and indirect

accounting for the rest.6 Spending on undergraduate instruction made up 72% of total instructional spend-

ing, and direct expenditures accounted for 49.7% of the undergraduate instructional total. Together, these

expenditures purchased a total of over 5.7 million student credit hours, equivalent to about 190,000 student

FTEs at 30 credits per year. 37% of student credit hours were at the lower undergraduate level, 49% at the

upper undergraduate level, and the remainder at the graduate level. Average per credit spending was $357,

with per credit expenses increasing with course level. Non-instructional spending on research and public

service added up to $483 million.

How reliable are these cost measures? Johnson (2009) compares aggregate cost measures in the FLBOG

expenditure reports to expenditure measures reported in IPEDS. The main difference between the two

data sources is the FLBOG reports include only expenditures out of state appropriations and student fees.

The reports do not include expenditures from other sources, like grants, contracts, or endowment income.

Comparisons with IPEDS data indicate that the omission of these revenue sources may lead the expenditure

reports to understate costs by 15-25%. It is also worth noting that although expenditure records do include

operations and maintenance, they do not include the (amortized) costs of capital investment.

Our analysis hinges on comparisons of costs across majors. Existing evidence suggests that direct expen-

ditures consist largely of instructor salaries (Johnson 2009; Middaugh et al. 2003). They will therefore

allow for meaningful cross-major comparisons to the extent that either a) faculty and other instructors allo-

cate their time to teaching in a manner consistent with the time breakdowns they report to (or are assigned

by) universities, or b) differences between reported and actual time allocations are similar across majors.

5There are also separate codes for medical school courses and clinical education for medical residents.
6All dollar values reflect 2014 USD deflated using the CPI-U except where noted.
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Comparisons will be uninformative if, e.g., both engineering and English professors report spending 40%

of their time on teaching and 60% as research, but in practice English professors spend 80% of their time

on research and only 20% on teaching while Engineering professors stay closer to the nominal allocation.

The assumptions required to believe cross-major comparisons in indirect expenditures are harder to justify.

How to divide costs of building maintenance, academic advising, and similar activities across majors is

not obvious. Allocating expenses based on student credit shares and faculty/staff person-year shares is an

a priori reasonable strategy, but it will yield faulty comparisons if usage intensity of different resources

varies by discipline.

Our analysis of per credit expenditures will focus primarily on total instructional spending at the lower-

and upper-undergraduate levels. This parallels our focus on undergraduate majors in the earnings analysis.

When we compute costs per graduate, we use data on all courses taken by graduating students. We focus

on total as opposed to direct instructional spending because we want our cost measure to come as close as

possible to capturing cost levels across majors. This choice follows Johnson (2009), who notes that this is

the approach taken by the FLBOG in internal cost calculations. The tradeoff is that indirect costs may be

measured less accurately. We note that direct costs are strong predictors of both indirect and total costs.

In credit-weighted univariate linear regressions, direct costs explain 95.4% of the variation in total costs

and 77.9% of the variation in indirect costs. Similarly, changes in direct costs explain 91.3% of changes in

total costs and 60% of changes in indirect costs. In sum, we view our cost measures as reasonable though

imperfect first-order approximations of the production costs of different types of college credits.

We emphasize that our cost data measure average costs, not marginal costs. The marginal cost to a uni-

versity of adding an additional student in any particular major may be small if the university does not

have to hire new faculty, or allocate additional funds to student programming. However, even one addi-

tional student changes expected costs by altering the probability that extra class sections will be required

across the set of courses the student takes. Our estimates are likely most appropriate in the context of

changes in major size or class size that are large enough to require at least some new investment in faculty

and staff. Over the long run, we believe it is these types of changes that are most relevant from a policy

perspective.

4.2 Instructor Data

We use FBLOG data on instructional personnel by field, institution, and year as part of our analysis of

trends in costs and credits. The data are from the FBLOG reports discussed above. They are reported in

person years and are broken out into three categories—faculty, support staff, and a combined category that

includes graduate assistants, house staff, adjunct faculty, and other (hereafter, GA-AF). We have data for

the University of Florida for 2000-2001 to 2012-2013.
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4.3 Microdata extracts

We compute earnings and total spending for graduates using aggregated extracts and regression output

drawn from administrative student microdata collected by the Florida Department of Education. We have

data on the population of high school graduates from 15 Florida counties over six cohorts between 1995

and 2001. There are a total of 351,198 students in this sample. These data track students from high school,

through any public college or university they may attend, and into the labor market. We focus on the subset

of 57,711 students who enroll in the state university system in the year following high school graduation.

Labor market data come from Florida Unemployment Insurance (UI) records and include in-state labor

market outcomes only. In addition to academic and labor market outcomes, these data include standard

demographic variables like racial/ethnic background and free lunch status, as well as math and reading SAT

scores for students who took those exams. See Zimmerman (2014) for a more detailed description.

For the purposes of this study, key academic outcomes are course-taking behavior while in college and data

on degree type, graduation date, and major. The microdata on college coursetaking contain administrative

course identifiers and a set of narrow subject descriptors that divide courses in 483 subject categories.

We combine these records with publicly available administrative data that maps course identifiers to CIP

codes (FLDOE 2011) and course levels (FLDOE 2015). We then merge on AY 2000-2001 SUS average

per credit cost data at the course level by two-digit CIP level. We match 96% of course to CIP codes and

74% to both CIP and course level.7 We replace cost data for courses with missing level information with

CIP-specific averages. We replace cost data for students with missing CIP codes with average per credit

costs across all majors and levels. We then compute total incurred direct, indirect, and total costs at the

individual level, based on all courses each student takes within the state university system.

Our earnings data track students through early 2010, so the oldest students in the earnings records are

14 years past high school graduation, or approximately age 32. For each individual we compute mean

quarterly earnings over the period eight or more years following high school completion, so the youngest

individuals in our earnings outcome sample are approximately age 26. Our earnings specifications take

either this variable or its log as the outcome of interest. Our earnings measure has a number of limitations in

this application. First, as mentioned above, we do not observe earnings for individuals who leave Florida.

Because missing values of earnings may reflect both true zeros and students who do have earnings but leave

the state, we consider only quarters with positive earnings values when computing means. We observe no

earnings records for about 25% of individuals in our data. We discuss the relationship between earnings

7Note that our administrative course records date to the 2010s, while our microdata on student course-taking span the early
1990s through late 2000s. Merge rates are less than one because some courses offered in, say, 2000 do not appear in 2015
administrative data. Merge rates for CIP code are high because we observe narrow subject classification in both the administrative
records and the course microdata. This allows us to merge CIP classifications to microdata at the subject level even where we do
not observe a direct course match. Merge rates for level are relatively low because there is no level classification in the microdata,
so we only observe level where we can precisely match a course from the late 1990s through mid 2000s to a course offered in
2011.
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censoring and major choice in section 5.4. Second, it does not capture differential growth in earnings across

majors over time. Two majors with similar average earnings over the immediate post-college period could

have different long-run trajectories. Third, because we cannot differentiate between non-employment and

out-of-state migration, we cannot compute labor force participation rates, which may differ by major.

When computing the present discounted value of cross-major earnings differences, we scale our estimated

level effects by the number of elapsed quarters times 0.84, the labor force participation rate for college

graduates aged 25-34 in 2005 (NCES 2015, Table 501.50).

We consider two samples of students in our earnings and cost analysis. The first consists of students who

enroll in a state university in their first year following high school graduation and go on to complete a

bachelor’s degree program at a state university. We use data on these students for the cross-major earnings

and cost comparisons. The second consists of students who satisify the initial enrollment criterion but do

not graduate. We consider earnings and cost outcomes for these students in Section 5.6.8

To address concerns related to censoring and the lack of late- and mid-career data in the Florida earnings

data, we supplement our earnings analysis with estimates of mid-career earnings from the ACS. We use

data from the 2009 to 2012 ACS surveys, and estimate earnings value added specifications that control for

gender, race, and labor market experience within the set of individuals aged 24 to 59 and who had earnings

of at least $2000 per year. These estimates closely parallel those discussed in Altonji et al. (2012), except

that we aggregate majors into coarser categories to correspond with two-digit CIP codes. We discuss

results obtained using these data in parallel with our findings using the Florida data extracts.

5 Costs, returns, and net PDVS

5.1 Methods

Our analysis focuses on earnings and cost ‘value added’ specifications of the form

yi = θ
y
f (i) + X′i β

y + ey
i (6)

and

ci = θc
f (i) + X′i β

c + ec
i . (7)

8Due to changes in data access policies, we no longer have access to the microdata used to estimate the earnings models and
construct the cost estimates. Consequently, for part of the analysis we are limited to using data extracts based on the microdata.
We were unable to compute summary statistics for our earnings and costs analysis samples.
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Equation 6 estimates the effects of college major, indexed by f , on earnings outcome yi. We consider

specifications with both log earnings and earnings levels as the dependent variable. In the Florida data

Xi is a set of controls for individual and institutional characteristics. It includes race, gender, free lunch

status while in high school, a dummy variable equal to one for students born in the US, a third degree

polynomial in high school GPA, and third degree polynomials in SAT math and reading scores. It also

includes sets of dummy variables for high school graduation cohort and the university a student attends.

We estimate this specification within the sample of students who graduated from college. The coefficients

of interest here are the θ
y
f (i), which correspond to the effect of major on earnings conditional on other

student observables. Although our control set is fairly rich, students may sort into majors in ways that are

correlated with unobservable determinants of income levels. Students may also sort into majors on the

basis of comparative advantage. We therefore interpret our estimates cautiously: they may not capture the

earnings changes that would occur if students were arbitrarily selected to move from one degree to another.

This concern is stronger is the case of the ACS earnings regressions, which do not control for test scores,

high school grades or free lunch status while in high school.

Equation 7 has a control set identical to the earnings regression, but takes as an outcome the total costs

a student incurs while in college. We regression-adjust costs to account for the fact that some students

may take more or less expensive routes through college regardless of major. For example, students with

lower high school grades may take more remedial courses. Consequently, our estimates of degree costs

by major hold constant differences across majors in student characteristics.

We use estimates of θ
y
f and θc

f from versions of equations 6 and 7 where the dependent variables are

earnings and cost levels to compute present discounted values of earnings and cost streams. We compute

the present discounted value of a stream of earnings by a) multiplying the estimated quarterly earnings

effects by four to get annual effects, b) scaling annual effects by 0.84 (the average rate of labor force

participation amongst college graduates 25-34 in 2005) to approximate labor force participation rates,

and c) computing the discounted value of a stream of payments of this size beginning in the eighth year

following high school graduation and continuing until some stop-time T. We discount values back to the

year before students begin college at an interest rate of 5% per year. We focus on two stop times: age 32 (14

years after HS completion), and age 45. The former corresponds to the limit of our support for earnings

outcomes in the Florida data. We choose the latter to approximate earnings effects through mid-career.

We also present estimates through age 55. To compute the PDVs of college costs, we assign estimated

total cost effects evenly across the first four years following high school completion and discount back to

the year of completion. This discounting will result in values that are too large for students who stay in

college longer than four years, but too small for students who front-weight credits to their first few years

of college.
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5.2 Distribution of credits and graduates over majors

The upper panel of Figure 1 shows the shares of undergraduate credits by major for the 2000-2001 school

year, sorted from smallest to largest share. In total, we observe cost data for 4.9 million student credit

hours, or roughly 164,000 student FTEs. Business courses are the most common, accounting for 14.3% of

all credit hours. The next most popular fields are social science and education, which make up 11.7% and

8.5% of credit hours, respectively. The most common type of STEM credit is math. Math courses make

up 7.9% of all credit hours. Within the STEM category, math is followed by Engineering, Biology, and

Computer Science, which each make up between 3.7% and 3.8% of all credit hours.

The distribution of degree programs for graduating majors is strongly but not perfectly correlated with the

distribution of credits. The lower panel of Figure 1 plots the log share of credits on the horizontal axis

against the log share of graduates on the vertical axis. Most majors track the 45-degree line, which we plot

for reference. A handful of majors– Math, Physical Science, Languages, and Philosophy– fall far below

the line. Many students take courses in these subjects but do not major in them. The most common major,

Business, accounts for nearly one quarter of all graduates.

5.3 Cost heterogeneity

As shown in the upper panel of Figure 2, spending per credit varies widely by field. Table 2 presents

descriptive statistics about the distribution of costs over field, while Table 3 shows spending for each field

individually. Per credit spending on direct instruction in the highest-cost major, engineering, is $322, 272%

higher than per credit spending in the lowest-cost major, parks and recreation. It is 237% higher than the

field with the second lowest cost, mathematics. Levels of total instructional spending are roughly twice

as high, but both the ordering of degree programs and relative magnitudes of differences (in percentage

terms) are quite similar. For example, the total cost per credit of an engineering course is $569, 209%

more than the $184 per credit cost of a mathematics credit. Though STEM fields like Engineering, Health

Sciences, and Engineering Technology are among the highest-cost fields, not all high-cost fields are STEM

fields. For example, visual art, architecture, and library science all have above-average pre-credit costs.

The (credit-weighted) interquartile range of the total cost per credit distribution is $120, or 43% of the

median per credit cost, and the standard deviation of per credit cost distribution is $89.

The cost differences we observe suggest that some majors cross-subsidize others. Under the assumption

that levels of institutional aid are consistent across majors, we can read off the relative net costs of credit

hours in different majors to the institution by subtracting per credit tuition from major-specific per credit

costs. Per credit average in-state tuition in the State University System was $108 (2014 dollars) in the

2000-2001 academic year, including mandatory fees (FLBOG 2001). The upper panel in Figure 2 shows

that tuition covers direct instructional costs in only a handful of majors, and does not cover total costs in
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any of them. Relative to tuition, the per credit subsidy in engineering degrees was $461, compared to a $76

subsidy for mathematics credits. The credit-weighted average subsidy level is $191 per credit. Relative

to this average, classes in fields like business, psychology, and computer science cross-subsidize fields in

engineering, health, education, and the visual arts.

We observe similar patterns across fields when assessing the costs on a per graduate basis. Compared to

an average total degree cost of $39,184, engineering graduates incur costs of $62,297 over their schooling

career while graduates in business (the third lowest cost major) incur costs of $31,482. The graduate-

weighted interquartile range is $11,511, equal to 32% of the median value. The graduate-weighted cor-

relation between total per credit costs and total incurred costs for graduates is 0.89, while the credit hour

weighted correlation is 0.75. The values of total costs we compute are very similar to results reported for a

subset of degrees in Johnson (2009) based on the 2003-2004 graduating cohort from the Florida SUS. For

example, Johnson reports average total costs for graduates of $40,339 (after converting to 2014 dollars),

similar to our estimate of $39,184, and he reports average costs for engineering graduates of $60,703,

compared to our estimate of $62,297.

5.4 Earnings heterogeneity

Earnings outcomes also differ across majors. Figure 3 and Table 4 show mean log earnings and regression

adjusted log earnings differences based on the Florida data. Values are expressed relative to the omitted

education major. Without adjusting for student covariates, education majors earn an average of $10,279

per quarter that they work, or roughly $41,000 if they work for the entire year. This is 42.6 log points less

than students in the highest-earning major, Engineering Technology, and 39.8 log points more than the

lowest earning major, art. Value added measures that control for student observable characteristics yield

similar patterns. Engineering technology majors earn 43.5% more than education majors with similar

observable characteristics, while art majors earn 37% less. Though STEM majors such as engineering

technology, engineering, computer science, and health science are among the highest-paying majors, non-

STEM majors like business are also high paying, while other STEM majors like biology, math, and the

physical sciences offer lower returns. Overall, the graduate-weighted standard deviation of estimated

earnings effects is 0.17 log points, and the difference between the lowest- and highest-earning degrees is

80 log points, or 123%.

Our findings are qualitatively similar to those reported in Altonji et al. (2012) in that the gap between

the highest- and lowest-earning majors is comparable in size to the college wage premium. However,

our finding of fairly low returns (relative to education) in math and the physical sciences is inconsistent

with results displayed there and in many of the studies they survey. This discrepancy may reflect real

differences in program quality, labor market conditions, or student sorting in our data versus in the nation
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as a whole. 9 The availability of a richer set of controls in the Florida data probably plays a role, and one

should be mindful of the fact that the standard errors are quite large for some of the Florida parameters.

It is also possible that our findings are affected by differential censoring across majors or of our focus on

early-career outcomes. Table A2 describes difference in rates of earnings censoring by major.

To supplement our coefficient estimates, we present parallel estimates of equation 6 using nationally-

representative ACS data for college graduates aged 24 to 59. These estimates control for gender, race,

a third degree polynomial in age, and interactions between these variables. Table 4 reports coefficient

estimates and standard errors. The graduate-weighted correlation between the Florida and ACS estimates

is 0.678. The most salient difference between the Florida estimates and the ACS estimates is that in the

ACS data education is a relatively low-earning degree program, while in the Florida data it falls in the

middle of the earnings effect distribution. Physical Science, Life Science, and Math majors also perform

well in the ACS data relative to the Florida data. The ACS estimates of the effects of physical sciences,

math and life sciences and most other majors are lower relative to education even when we restrict the ACS

sample to persons who were born in and living in Florida at the time of the survey and between the ages of

26-32 (roughly the age range of the Florida data), though we note that the Florida-only ACS estimates are

noisy. We will continue the comparison of Florida and ACS earnings estimates when comparing earnings

to costs. Estimates are based on the Florida administrative earnings data unless stated otherwise. Figure

A1 plots the estimated coefficients from the Florida data on the horizontal axis against ACS coefficients

on the vertical axis.

5.5 Net returns

Table 5 and Figure 4 compare regression-adjusted earnings and costs for graduates from different majors

and compute present discounted values of net effects for graduates. We focus on levels specifications to

facilitate simple comparisons between earnings and costs. We find that a) differences across major in net

PDVs are primarily driven by earnings outcomes, but that b) differences in costs have a sufficiently large

effect on PDVs to make an economically significant difference in relative returns.

Figure 4 compares value added measures of earnings effects (measured in levels) on the horizontal axis

to returns net of costs through age 32 on the vertical axis. As with the earnings estimates above, we

measure earnings level effects and net PDVs relative to the values observed for education, which we

normalize to zero. Because the PDVs of earnings and costs are weakly correlated (the graduate-weighted

correlation between these variables is 0.21), PDVs net of costs on average rise one-to-one with PDVs of

earnings, closely tracking the 45-degree line, which we plot for reference. The highest-earning degrees,

9It is worth noting the Florida was particularly hard hit by the Great Recession. Oreopoulos et al. (2012) and Altonji et al.
(2016b) show that labor market conditions have a substantial effect on the early career earnings of college graduates that vary
across fields.
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like engineering technology, engineering, and computer science, have the highest PDVs net of costs, while

the lowest-earning degrees have the lowest net PDVs.

Deviations from the 45-degree line are driven by cost differences across degrees. One way to quantify the

importance of these differences is to compare variation in costs to variation in the distribution of earnings.

The graduate-weighted standard-deviation of the cost PDV distribution is $7,187, roughly one quarter the

size of the graduate-weighted standard deviation of the earnings PDV distribution ($28,845). It is 13.5%

of a standard deviation of the graduate weighted PDV of earnings effects extrapolated out to age 45. It

is 15.6% and 15.7% using the PDV through age 45 and age 55 (respectively) of earnings effects based

on the ACS data. The graduate-weighted interquartile range of the cost PDV distribution is $10,582, and

the difference between the highest and lowest-cost degree is $27,184. The former value is somewhat

larger than the difference between the 10th and the 25th percentile of the distribution of earnings PDVs

through age 32 ($6,940) and somewhat smaller than the difference between the 25th and 50th percentile

($13,934).

It is also helpful to draw concrete comparisons between earnings and cost rankings of specific degree

programs. For example, the PDV of early-career earnings is more than $32,000 higher for engineering

majors than for business majors. However, higher costs for engineers lead these two majors to have net

PDVs that are close to equal. Similarly, business and health majors have earnings PDVs that are essentially

the same, but lower costs for the business degrees lead to a higher net NPV. Shifting focus to the lower-

earning degree programs, we can make similar comparisons. For example, English degrees have higher

net NPV than physical science despite fairly similar earnings, because costs are much lower. Broadly

speaking, we observe a relatively small number of degree programs where earnings are substantially higher

than in Education. Using a difference of 10 log points as a cutoff, these degrees are in the fields of Health,

Business, Computer Science, Engineering, Engineering Technology, and (somewhat surprisingly) Library

Science. Cost differences are sufficient to reorder these programs relative to one another based on early

career earnings, but not to shift them to lower values than the set of lower-return programs. When we

consider PDVs of earnings to age 45 or beyond, rank reversals are rare, but the cost differentials are still

substantial.

5.5.1 Returns per instructional dollar

If we believe that estimates of earnings and cost effects are causal, that earnings effects are not heteroge-

neous across individuals, and that our cost estimates are representative of differences in marginal costs,

then the above discussion identifies the earnings return net of costs of adding an additional graduate in

a given field. The effects of additional spending on a per dollar basis are also of interest. While the net

earnings returns on a per-degree basis are relevant for individuals who face the true costs of degree provi-

sion, or for policymakers maximizing the sum of net earnings returns who must choose how to allocate an
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additional graduate, net earnings returns on a per-dollar basis are relevant for policymakers trying to figure

out how get the most net value given a fixed budget for additional students.

To consider per dollar effects we first fix earnings and cost intercepts by conditioning on a specific set

of covariates. We consider the case of a Hispanic, female, US-born student from the Miami-Dade school

district in the 2000 high school graduating cohort who attends Florida State, had unweighted high school

GPA of 3.5, and scored 500 on the math and verbal sections of her SATs. We compute predicted PDVs

of earnings and costs for this individual based on estimated effects from Table 5 and divide the earnings

PDV by the cost PDV to get a per-dollar measure of the return to spending in each major. Figure 5 plots

estimates of per-dollar returns by major through age 32 as a fraction of the per-dollar return to education

on the vertical axis versus estimated log earnings effects on the horizontal axis. We normalize the return

for the education major to zero. We report estimates for each major in Table 6.

The graduate-weighted correlation between per-dollar spending effects and estimated earnings effects is

0.52. Health and Engineering majors, where earnings returns are large on a per graduate basis, have

per-dollar returns similar to those observed in education, math, philosophy, and language degrees, where

earnings are much lower. The degrees that fare best on a per-dollar basis are business and computer

science, which are both high-earning and relatively cheap. These majors have per-dollar earnings returns

that are 60% to 80% higher than in education degrees. The degrees that fare worst are Architecture, Art,

and the Physical Sciences, which are fairly expensive and have relatively low earnings; these majors have

per-dollar earnings returns that are 20% to 30% below that for education.

We also consider measures of per-dollar returns computed using ACS earnings data. Paralleling Figure 5,

Figure A2 plots ACS estimates of log earnings effects on the horizontal axis earnings PDV per spending

dollar on the vertical axis. We obtain per-dollar earnings PDV estimates using the procedure described

above but substituting ACS earnings estimates for Florida earnings estimates and use earnings through age

45. A similar pattern emerges in the sense that high-earning, low-cost degrees like business and computer

science have the highest per-dollar PDVs. As in the Florida analysis, Health and Engineering degrees

have fairly similar per-dollar PDVs to education despite much higher earnings. Most degrees, including

Math, Life Sciences, and Social Science have higher per-dollar PDVs relative to education in the ACS data

than in the Florida analysis. This pattern reflects the difference in estimates of earnings effects that we

discussed earlier, particularly the lower return to the education major in ACS data.

5.6 Dropouts

The analysis above focuses on college graduates. Students who attend college but do not graduate incur

costs as well, but may have very different labor market outcomes. Unfortunately, we do not observe

declared major prior to graduation. Nor do we observe specific patterns of course-taking for non-graduates
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that might allow us to divide students by major prior to graduation. However, we are able to observe the

total costs incurred by students who obtain varying amounts of course credits. Specifically, we observe

results from specifications of the form

ci = θc
t(i) + Xiβ

c + ec
i (8)

and

yi = θ
y
t(i) + Xiβ

y + ey
i (9)

in the sample of students who enroll in a state university but do not complete their degree. Here yi is

earnings, again measured between eight and fourteen years following high school completion, ci is total

spending on courses taken by student i, θt(i) is a set of dummy variables corresponding to amounts of total

completed credits, and Xi are the same set of individual covariates described in section 5.1. The categories

indexed by t are divided into 24-credit bins. This is the minimum number of credits required to maintain

full-time enrollment for two semesters, so we describe persistence in college for non-completers in terms

of years. We focus on earnings effects in levels to make the comparison with costs more straightforward.

Recall that earnings are measured on a quarterly basis.

Table 7 shows estimates of earnings and cost effects of the θt for students who persist through their second,

third, and fourth or more year relative to those who drop out within the first year. Costs increase rapidly

with additional years of attendance, rising by $5,419 in the second year to $11,915 in the third year, and

to $28,276 for students who stay for three or more years but do not graduate. In contrast, earnings for

non-completers do not rise much with additional years of attendance. We cannot reject the null hypothesis

that non-completers who remain in college for two or three years have earnings equal to those who remain

in college for only one year. Students who remain in college for three or more years earn $261 more per

quarter than those who complete at most one year’s worth of credits. However, the PDV of these earnings

gains is $4,812 through age 32, 18.3% of the PDV of the additional costs these students incur.

One possible explanation for our finding of limited earnings gains per additional year of schooling in

the dropout sample is that students who persist in an SUS institution but do not complete are likely to

move out of state (for example, to complete college at a different institution). We note that a) this would

not mechanically reduce estimated earnings effects, which are computed using earnings for stayers only,

and b) rates of earnings censoring decline with additional schooling in the dropout sample. We display

estimates of equation 9 with an indicator variable for missing earnings outcomes as the dependent variable

in the third column of Table 7.

Dropouts account for a substantial share of overall costs in our data. Within our sample of students who
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enroll in college in the year following high school graduation, 38,336 students go on to graduate and are

included in our analysis of college major returns, while 19,375, or one third of the total sample, do not

receive a BA from any institution in the SUS. Based on average per graduate expenditures of $39,184

and average per-dropout expenditures of $16,101, dropouts account for 17.2% of total expenditures in our

sample. This estimate is similar to internal calculations conducted by the FLDOE and reported in Johnson

(2009). The FDLOE calculations indicate that 19.6% of costs for entering first-time-in-college students

in the 2001-2002 school year accrued to students who had not graduated from any SUS institution by

2006-2007. Due to data limitations, allocating dropouts in a way that would allow the costs of dropouts to

be attributed to specific majors is a topic we leave for future work.

6 Trends in costs per credit

6.1 Overall trends in spending

Our analysis thus far captures a snapshot of instructional expenditures at a point in time. Results indicate

that average earnings returns per graduate and per dollar differ substantially across majors. This implies

that a given increase (or decrease) in instructional expenditures may have very different implications for

total income depending on how it is allocated across fields of study. In this section, we analyze changes in

expenditures and course-taking over the 1999-2013 pattern through the lens of our findings on differential

returns and subsidies across majors. Our goal is to understand how the allocation of resources and subsidies

across majors changed over this period. Under the strong assumption that per-person and per-dollar returns

to major did not change over the period, and that our estimates of average returns and costs are predictive

of marginal returns and costs, this exercise can provide insight into the overall return to instructional

spending. We note, however, that changes in spending may also reflect changes in production technology.

For example, expenditures may decline without any change in student earnings if professors become able

to teach more students in the same time without a reduction in quality. We return to this point in section

7.

We begin by documenting overall trends in course-taking and spending. Figure 6 shows how total credits,

total instructional spending, and average spending per student credit hour changed over the 1999-2013

period. Total undergraduate credit hours rose by roughly 50% over the period, from approximately 4.6

million in 1999 to 7 million by 2013. This represents a rise from 150,000 FTEs to 233,000. Expenditures,

shown in the middle panel, also rose, though less steadily and by a lower percentage. Total expenditures

on undergraduate instruction rose roughly 25% from 1999 to 2013, from $1.4 billion to $1.7 billion. The

result of these simultaneous trends was a 16% fall in per credit spending over the period. It is worth noting

that per credit spending patterns correspond to the business cycle, with large drops in spending during

downturns in 2001 and 2007-2010.
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6.2 Major specific trends in credits and spending

The allocation of student credit hours and expenditures also shifted between 1999 and 2013. Figure 7

breaks down enrollment and spending trends by major for the 12 largest majors. Together, these 12 majors

account for 75% of credits over the period. The upper panel of Figure 7 shows the ratio of each major’s

share of total credits in a given year to its credit share in 1999, which we normalize to 1. The middle panel

shows shares of total within-year spending over the same period, again normalizing the 1999 spending

share to one. The lower panel shows total per credit expenditures by major relative to the 1999 per credit

spending level. Within each panel, we split the majors into high, middle, and low cost groups using terciles

of average per credit cost over the period.

Course enrollment trends vary by major within each cost category, and are not strongly related to the

earnings or net PDVs we observe in our analysis of microdata. The degrees with the greatest increase in

credit share over the period were, in order, biology, health science, psychology, and engineering. Recall

from Table 5 that health science and engineering were among the majors with highest NPVs, while biology

and psychology were near the middle of the PDV distribution. The degrees with the largest losses over

the period were, in order, education, computer science, and English. Computer science was among the

highest-return degree programs in our data by any measure, while English and education were near the

middle of the PDV distribution.

Changes in cost shares bear a limited relationship to changes in credit shares for many degree programs.

Focusing on the middle panel of Figure 7, we see that while the 52% increase in credit share for biology

courses was nearly matched by a 41% increase in cost share, the 42% increase in health science credits

did not correspond to any rise in cost share (in fact, there was a 3% decline in cost share over the period),

while the 17% rise in engineering credit share corresponded with a 17% decrease in cost share. Overall, a

10% within-major increase in credit hour share between 1999 and 2013 corresponded to a 5.8% increase in

relative cost share, meaning that spending per credit share tended to decline in degrees with growing credit

shares. On average, a 10% shift in enrollment share between 1999 and 2013 was met by a 3.5 percent

decline in average costs per credit. The lower panel of Figure 7 explores this relationship in more detail.

Some of the highest-growth fields saw the largest declines in spending per credit. Average spending per

credit in engineering and health science fields fell by over 40% between 1999 and 2013. Conversely, the

only field of the 12 considered here which had higher average spending per credit in 2013 than in 1999

was English literature, which saw one of the biggest declines in credit share.

To explore the relationship between spending per credit and number of credits, we regressed log spending

per credit by course level, field, institution, and year on log credits, including course level, field, institution,

and year indicators as controls (not reported). The coefficient on log credits is -0.178 (.008) for direct costs

and -0.134 (.007) for total costs. We also looked for evidence that, at least in the short run, cost per credit

respond asymmetrically to increases and decreases in enrollment in a given subject area. One might expect
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this if some staff inputs (particularly tenure track faculty) and classroom facilities are fixed in the short

run. We regressed one year changes in log total spending per credit on one-year changes in the log of total

credits, allowing the coefficient to depend on the sign of the change in credits. The results are sensitive to

choice of weights, and so we do not draw any firm conclusions.

6.3 Staff inputs and spending per credit

In this subsection we explore the degree to which changes in spending per credit reflect changes in faculty

and staff inputs. The association reflects the extent to which educational inputs are adjusted as demand for

credits varies, and will also depend on policy choices about class size and instructor type. Some caution is

called for in interpreting the relationship between credits and inputs, because causality may also run in the

other direction—from education inputs to supply of credits for student to take. We focus on the University

of Florida because we do not have data after 2007-2008 for the other schools in a usable form.

Figure 8 reports the trend in costs per credit for the same groups of high, middle, and low cost majors at

the University of Florida for the years 1999-2000 to 2012-2013.10 The figure shows a substantial decline

in spending per credit and is broadly similar to that in Figure 7 for all universities. Figure 9 reports the

trends in faculty FTE per credit hour for the University of Florida by cost grouping. Faculty inputs in the

high- and middle-cost majors show a decline, with the exception of Computer Science and Literature. All

low-cost majors show a decline.

Figure 10 aggregates across all undergraduate majors. The upper panel of the figure shows that faculty

per credit drops by about 16% between 2000 and 2012. This decline parallels the drop in the number

of faculty FTEs devoted to instruction, displayed in the lower panel. Graduate Assistant-Adjunct Faculty

(GA-AF) per credit rose by about 21% during the period, particularly between 2009 and 2012. GA-AF

FTEs rose by similar amount. Support staff per credit and in total rose by about 13% over the period. Use

of GA-AF and support staff rose prior to the Great Recession, dropped during the Great Recession, and

then recovered.

We decompose the change in log total spending per credit over the 2000-2012 period into a component

driven by changes in instructional inputs and a component unexplained by instructional inputs. The de-

composition is based on coefficient estimates from a regression of spending per credit by course level,

field, and year on the three instructional input measures and year indicators. The regression also controls

for course level and field of study. We weight using the course shares of each field of study in a given

year. Consequently, more popular fields get more weight. The coefficient on log faculty per credit is

0.317. The coefficients on log GA-AF per credit and log support staff per credit are 0.156 and 0.188,

10We report data through 2012-2013 rather than 2013-2014 as in the previous figures for comparability with staffing data,
which is available through 2012-2013.
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respectively.

We use the coefficients on the instructional inputs along with the weighted means of the input measures

to compute an index for each year summarizing the effect of inputs on costs. Figure 11 displays the

trend in the actual value of log spending per credit and the trend holding inputs per credit at the level in

2000. Spending per credit drops by 0.08 log points between 2000 and 2001, then steadily rises between

2001 and 2006 to about 0.06 above 2000 level. This increase is followed by a decline during the Great

Recession. Overall, costs per credit fall by 0.21 log points between 2000 and 2012. About half of the

decline is accounted for by instructor inputs, and about half is a decline holding instructor inputs constant.

Many factors, including changes in compensation, a shift in toward lower paid instructors within the three

instructor categories, and more intense utilization of other inputs may have contributed to the share not

determined by changes in counts of faculty, GA-AF and support staff per credit. A full analysis of this

issue is an interesting topic for future research.

7 Conclusion

This paper studies the differences in costs of producing course credits and graduates across majors and

compares them to differences in earnings outcomes. We have two main findings. First, costs per credit

and per graduate vary widely by major. The average cost per graduate across all fields is $39,184; the

standard deviation of costs is $7,187. This is equal to one quarter of the standard deviation of cross-

major differences in earnings PDVs through age 32 and 13.5% of a standard deviation of the graduate

weighted PDV of earnings effects extrapolated out to age 45. While major specific earnings estimates

differ somewhat across data sets, they show that differences in costs are sufficiently large to have an

economically significant effect on the relative net returns to various majors. The importance of costs as a

determinant of relative returns is even more striking on a per-dollar basis. For example, the mean PDV of

earnings for an engineering major is similar to that for a much lower-earning education major per dollar of

instructional cost. Earnings returns are highest per dollar of instructional expenditure for inexpensive but

high-earning majors like computer science and business.

An important question for public policy is whether higher education institutions could become more pro-

ductive by shifting the allocation of resources across majors given some fixed budget constraint. If one is

willing to make the assumption that our estimates of earnings effects and average costs capture returns and

costs for marginal students under such a policy, then one way to view our findings is as describing what

would need to be true about major-specific externalities and non-pecuniary utilities for current tuition set-

ting and enrollment policies to yield an optimal outcome. Specifically, at a utility maximizing allocation,

the marginal dollar spent should have equal value in any field of study. This means that observed per-

dollar differences in earnings net of costs must be balanced out by per-dollar differences in non-pecuniary
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utility and utility from externalities. Our findings indicate that, if schools are currently allocating fund-

ing optimally across majors, it must be the case that degrees in fields with low per-dollar returns such

as art, architecture, and even engineering and the physical sciences, must offer larger non-pecuniary and

public benefits than programs in fields like computer science, business, or law. It is not impossible that

universities are finding this balance, but it does seem a priori unlikely. Given some set of beliefs about

non-pecuniary and public returns by field, possible levers for equalizing marginal returns across degree

programs are changes in tuition, or shifts in supply large enough to change skill prices.

Our second main finding is that recent trends in per credit spending differ by major. Per credit spending fell

16% between 1999 and 2013, with especially rapid declines in majors with increasing number of credit

hours. These include high-return majors like engineering and health science, where per credit funding

fell by more than 40% over the period. Though we cannot rule out that these declines reflect increased

pedagogical efficiency on a per-dollar basis as opposed to any reduction in program quality, other research

suggests that reduced expenditures at the level of the institution lead to declines in student outcomes.

Bound and Turner (2007) and Bound, Lovenheim, and Turner (2010) highlight the extent to which reduc-

tions in per-student resources at two-year colleges and less-selective four-year public universities depress

college completion rates in the aggregate. The declines in median per-student expenditures they observe

are on the order of 5% to 15% depending on institution type. Our findings suggest that these average

declines may mask larger declines in some majors than others, and that these large declines may occur

in high-return areas. Overall declines in graduation rate may understate the degree to which declining

investment reduces human capital accumulation, because the mix of graduates across fields may also be

shifting. The effects of changes in major-specific educational expenditures on the majors students choose

and earnings outcomes conditional on major choice is a topic for future study.

Finally, our results highlight how policies that fix tuition across majors create systems of cross-field cross-

subsidies. A natural question is how changes to this cross-subsidy system would affect the private and

public returns to higher education. One approach would be to shift to major-specific tuition while keeping

spending fixed (or not altering projected spending paths). As discussed in Stange (2015), Ehrenberg (2012)

and CHERI (2011), an increasing number of universities allow tuition to vary for at least some majors.

While some universities use these policies to more closely match tuition to instructional costs in majors

like nursing and engineering, others reduce tuition to encourage students to enroll in‘high-need’ majors

regardless of costs. The majors labeled ‘high need’ are often STEM majors with fairly high costs as well.

Our results suggest that measures of need based on private labor market outcomes should take into account

differences in production costs. We also emphasize that earnings returns may not reflect public returns.

An alternate approach is to reallocate spending across majors while keeping tuition as it is. The effects of

such a policy depend on the relative returns to a dollar of spending across majors. Further research on the

marginal effects of additional subject-specific dollars would be valuable here.
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Tables and figures

Figure 1: Credits and graduates by major

Upper panel: share of undergraduate-level credits by major in AY 2000-2001. Sample includes all Florida SUS institutions.
Majors are divided by two-digit CIP code. Lower panel: log share of credits by major AY 2000-2001 on horizontal axis. Log
share of graduates by major for AY 2000-2001 on vertical axis. Source: authors’ calculations from FLBOG expenditure and
enrollment reports and graduate reports.
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Figure 2: Costs by major

Upper panel: total and direct spending per credit by major, AY 2000-2001. Lower panel: total and direct spending per graduate.
Upper panel uses administrative per credit data for undergraduate-level credits averaged across SUS system. Tuition per credit
line represents (deflated) 2000-2001 in-state per credit tuition and mandatory fees. ‘Mean total’ and ‘Mean direct’ lines are
credit-weighted average of per credit costs across majors. Lower panel: average total and direct course costs over course of study
for graduates in microdata extracts. ‘Mean total’ and ‘Mean direct’ lines are graduate-weighted cost averages.
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Figure 3: Log earnings by major

Raw (left) and regression-adjusted (right) log mean earnings estimates for FL graduates in microdata extracts. Coefficient
estimates expressed relative to omitted education category. N=28469 in left panel and 26189 in right panel.

Figure 4: Earnings vs. per graduate net value by major

Horizontal axis: PDV of earnings effects through age 32 by major. Vertical axis: net PDV (earnings less costs) through age 32.
Earnings and cost estimates come from equations 6 and 7 with quarterly earnings and total costs as dependent variables. Earnings
and costs normalized to zero for education major. See section 5.1 for a discussion of PDV calculation in more detail.
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Figure 5: Earnings vs. per instructional dollar net value by major

Horizontal axis: estimated log earnings effects from equation 6 relative to omitted education category. Vertical
axis: ratio of earnings to cost PDVs relative to ratio for reference education category, conditional on Xi = x, i.e.:

EARNPDVj(x)/COSTPDVj(x)
EARNPDVeduc(x)/COSTPDVeduc(x) − 1. See section 5.5 for more details on per-dollar effect calculations.

Figure 6: Trends in credits and spending

Trends in total credits, total expenditures, and per credit expenditures over time. Undergraduate level credits only. Statistics com-
puted over all SUS campuses. Credit hours reported in 1000s; total costs in millions of 2014 USD. Source: FLBOG expenditure
reports.
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Figure 10: Trends in Faculty Inputs, All Undergraduate Courses, U. of Florida

The top figure and bottom figure report trends in instructional personnel years per credit and in instructional personnel years. The
values are for all undergraduate courses at the University of Florida for the 2000-2001 to 2012-2013 academic years. The values
are relative to 2000-2001, which is normalized to 1. ‘Graduate’ is graduate assistants, adjunct faculty, house staff, and other. It is
referred to as GA-AF in the text. ‘Support’ is support staff.

35



Figure 11: UF spending per credit on undergraduate instruction

The figure reports observed log spending per credit and log spending per credit holding instructional inputs constant at their
2000-2001 values. See section 6.3 for a description of the adjustment procedure. The data for all undergraduate courses at the
University of Florida.
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Table 1: Spending by type, AY 2000-2001

Type Direct Indirect Total Credit hours Direct PC Indirect PC Total PC
A. Instruction
Lower 232 273 505 2147 108 127 235
Upper 502 467 969 2781 181 168 349
Graduate 371 199 570 803 462 248 710
All instruction 1106 939 2044 5731 193 164 357

B. Non-instruction
Research 282 155 437
Public Service 31 15 46

Spending and credit hours by direct expenditure category in SUS system, AY 2000-2001. Units in left three columns are millions
of USD. Units in credit hours column are 1000s of credits. Per credit (PC) expenditures in dollars. Panel A: instructional expen-
ditures by level and type. ‘Upper’ and ‘Lower’ are undergraduate level expenditures. Panel B: non-instructional expenditures.
See Section 4.1 for a discussion of direct and indirect expenditures.

Table 2: Spending variation by major, AY 2000-2001

Direct PC Total PC Direct per grad Total per Grad
mean 149 299 14009 39184
sd 54 89 3013 8025
p5 95 209 10792 31482
p10 102 222 11501 31482
p25 109 236 11501 31689
p50 123 280 12958 36369
p75 178 357 15597 43200
p90 205 407 17600 49335
p95 250 461 18196 58764

Distribution of per credit and per graduate expenditures by major for SUS system AY 2000-2001. N=28. Graduate data from
extract with N=38336. The left two columns describe credit-weighted per credit direct and total expenditures for undergraduate
credits. Right two columns describe graduate-weighted direct and total per graduate expenditures for graduates in microdata
extracts. All values in dollars. p5 is the 5th percentile of cost distribution, p10 the 10th, and so forth.
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Table 3: Spending by major

Per credit Per graduate Per credit Per graduate
Major Total Direct Total Direct Major Total Direct Total Direct
Fitness 184 87 40775 13587 Bio. 311 154 46735 14319
Math 209 95 42543 14077 Nat. Res. 326 164 39141 13137
Soc Sci 222 102 35744 12958 Gen. Stud. 370 177 35173 10743
Security 223 103 31689 10792 Educ. 357 178 43200 15597
Phil 245 109 36899 12873 Law 325 179 34338 13672
Home Ec. 255 112 40534 16074 Phys. Sci. 346 183 53716 17736
Bus. 236 119 31482 11501 Pub. Admin 368 193 40417 13823
Psych. 241 121 36369 12189 Art 407 205 42710 16222
Engl. 280 123 34656 12979 Agri. Bus. 437 237 46765 14986
Area Stud. 256 123 36951 12701 Arch. 432 238 58764 16599
Lang. 296 132 39448 14676 Eng. Tech. 439 246 45126 18196
Comp. Sci. 274 144 37236 12572 Health Sci. 461 250 49335 17600
Comm 282 147 33070 12841 Inter. 519 283 50569 14950
Lib. Sci. 376 151 28223 12480 Engine. 569 322 62297 23937

Per credit and per graduate total and direct expenditures by major. Credit data for SUS system, AY 2000-2001. Graduate data
for microdata extract. Graduate data from sample with N=38336. All values in dollars. For distribution summary statistics see
Table 2.
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Table 4: Earnings by major

Florida Administrative Records ACS 2009-2012 ACS Age 26-32
Age 24-59 Born and Live in Florida

Field Mean Coef SE Coef SE Coef SE
Agri -0.383 -0.342 0.094 0.050 0.007 0.202 0.087
Nat. Res. -0.038 -0.108 0.072 0.072 0.008 -0.107 0.091
Arch -0.049 -0.042 0.058 0.139 0.010 0.079 0.107
Area -0.227 -0.164 0.078 0.163 0.016 0.045 0.132
Comm -0.055 -0.053 0.023 0.171 0.004 0.099 0.047
CompSci 0.272 0.260 0.032 0.379 0.004 0.148 0.074
Educ 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Engine 0.324 0.295 0.026 0.428 0.003 0.238 0.048
Eng Tech 0.426 0.435 0.043 0.218 0.008 0.341 0.211
Lang -0.357 -0.366 0.090 0.077 0.008 0.148 0.205
Home Ec -0.155 -0.145 0.038 0.032 0.009 0.130 0.097
Law -0.050 -0.003 0.072 0.120 0.020 0.073 0.133
Lit -0.159 -0.137 0.026 0.092 0.005 -0.051 0.067
Gen Stud -0.345 -0.289 0.042 0.085 0.007 -0.046 0.067
Library 0.289 0.135 0.214 -0.044 0.030 0.055 0.026
Bio -0.263 -0.261 0.034 0.239 0.004 0.184 0.059
Math -0.210 -0.259 0.096 0.328 0.006 0.205 0.225
Multi -0.175 -0.081 0.083 0.141 0.008 0.313 0.073
Parks/Rec -0.182 -0.180 0.047 0.057 0.008 0.260 0.095
Phil -0.424 -0.372 0.089 -0.018 0.011 0.006 0.168
Phys -0.173 -0.205 0.065 0.258 0.005 -0.150 0.115
Psych -0.210 -0.193 0.023 0.283 0.031 -0.063 0.056
Sec -0.037 -0.017 0.026 0.088 0.004 -0.050 0.079
Pub Admin -0.069 -0.044 0.033 0.125 0.005 -0.047 0.058
Soc Sci -0.120 -0.089 0.021 0.012 0.006 0.108 0.045
Art -0.398 -0.369 0.036 0.244 0.004 -0.077 0.062
Health Sci 0.096 0.106 0.023 0.004 0.005 0.232 0.047
Bus 0.153 0.137 0.017 0.330 0.003 0.140 0.036

Column 1 reports the mean of log earnings by major based on the Florida administrative records. Columns 2 and 3 report
regression-adjusted estimates and standard errors. Estimates are relative to the Education major. Controls include indicators for
ever graduated from high school, gender, Spanish language, U.S. born, black, Hispanic, and other race, ever received free or
reduced lunch, cohort indicators, district indicators, university indicators, a cubic in high school gpa, and cubics in reading and
math tests scores. Standard deviation/IQR of log means: 0.189/0.312. Standard deviation/IQR of VA estimates: 0.174/0.274. Un-
adjusted means from regression sample with N= 28469, adjusted from sample with N=26189. Columns 4 and 5 report regression-
adjusted estimates and standard errors using the ACS data for 2009-2012. The ACS sample is restricted to workers between the
ages of 24-59 inclusive who earned at least $2000/year. It includes controls for race/ethnicity interacted with gender, and a cubic
in age interacted with gender, and dummies for masters, professional, and PhD degrees. The final two columns reports estimates
after restricting the ACS sample to persons born in and living in Florida.
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Table 5: Per graduate PDVs of Costs, Earnings and Earnings Net of Costs, by Major

Florida Admin Earnings Data ACS

Major Costs Earn 32 NetPDV 32 NetPDV 45 NetPDV 55 NetPDV 45 NetPDV 55
Parks/Rec -3.4 -18.7 -15.3 -31.2 -38.2 23.8 27.9
Math -2.8 -25.7 -23.0 -44.9 -54.5 120.5 144.0
Soc Sci -8.2 -3.3 4.9 2.0 0.8 95.6 113.1
Security -10.6 5.1 15.6 19.9 21.8 55.5 64.5
Bus -11.6 35.9 47.6 78.2 91.6 114.5 135.2
Psych -7.2 -20.9 -13.7 -31.5 -39.2 38.5 44.8
Phil -6.9 -38.6 -31.7 -64.6 -78.9 0.3 -1.0
Home Ec -3.9 -15.6 -11.7 -25.0 -30.8 15.2 17.5
Area -6.6 -25.8 -19.2 -41.2 -50.8 64.9 76.6
CompSci -6.8 52.5 59.3 104.0 123.5 142.8 170.1
Lit -8.7 -13.9 -5.3 -17.2 -22.3 41.6 48.3
Comm -10.4 -0.4 10.0 9.7 9.6 71.8 84.1
Lang -5.8 -35.6 -29.8 -60.2 -73.4 33.3 38.9
Bio 1.8 -16.0 -17.8 -31.4 -37.3 83.8 101.0
Law -7.1 11.9 19.1 29.2 33.6 50.0 58.6
Nat. Res. -4.7 -25.0 -20.3 -41.6 -50.9 30.6 35.8
Phys 7.4 -17.3 -24.7 -39.5 -45.9 85.0 103.5
Educ 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pub Admin -2.5 -6.9 -4.4 -10.3 -12.8 6.8 7.7
Gen Stud -6.5 -29.7 -23.2 -48.4 -59.5 37.1 43.2
Library -12.0 32.2 44.2 71.6 83.5 -3.8 -7.0
Art -1.3 -42.1 -40.8 -76.7 -92.3 2.6 2.9
Arch 12.7 -5.7 -18.4 -23.2 -25.3 37.0 47.0
Agri 0.2 -18.6 -18.8 -34.7 -41.6 17.8 21.4
Eng Tech 1.1 88.2 87.1 162.2 195.0 77.2 92.9
Health Sci 4.8 35.2 30.4 60.4 73.4 113.6 137.3
Multi 4.5 4.8 0.3 4.3 6.1 46.0 56.2
Engine 15.5 68.6 53.1 111.5 137.0 137.9 168.7

Columns 1 and 2 report PDVs of costs and earnings (to age 32) by major. The remaining columns report PDV of earning net
of costs, by major. Units are 1000s of USD. Column headings indicate the age through which earnings are considered. Column
2-5 is based on the Florida administrative earnings records. Columns 6 and 7 are based on the ACS. All estimates expressed
relative to education major, which is normalized to have earnings and cost PDVs of zero. See Section 5.1 for details on NPV
calculation. For the Florida date, SD/IQR of cost pdv: 7.19/10.58. SD/IQR of earning 32 PDV: 28.85/49.88. SD/IQR of Net
PDV is 28.4/52.84 through age 32, 52.7/95.27 through age 45, and 63.40/113.88 through age 55. For the ACS data, the SD/IQR
of Net PDV is 45.9/71.6 through age 45, and 54.87/90.33 through age 55.
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Table 6: PDVs by major per instructional dollar

Earn PDV Earn PDV
Major per dollar Major per dollar
Fitness 0.003 Law 0.342
Math -0.056 Nat. Res. 0.009
Soc Sci. 0.294 Phys. Sci -0.252
Sec. 0.486 Educ. 0
Bus. 0.799 Pub. Admin 0.04
Psych. 0.129 Gen Stud. 0.047
Phil. 0.004 Lib Sci 0.801
Home Ec. 0.038 Art -0.185
Area Stud. 0.074 Arch -0.292
Comp Sci 0.59 Agri -0.101
Engl. 0.243 Eng. Tech 0.411
Comm 0.434 Health Sci 0.037
Lang -0.018 Inter. -0.095
Bio -0.129 Engine. -0.069

PDVs through age 32 of per dollar of spending as fraction of PDV per dollar in education major at fixed Xi = x. See section 5.5
for details on per-dollar spending PDVs.

Table 7: Earnings and costs for non-completers

Spell length Earnings Costs Censoring
1-2 years -21 5419 -0.016

(127) (54) (0.010)
2-3 years 141 11915 -0.033

(143) (72) (0.011)
3+ years 261 28276 -0.084

(130) (161) (0.010)

Earnings and costs for non-completers in extract data. Rows correspond to approximate lengths of enrollment before dropout.
Earnings and cost columns present estimates of equations 3 and 4, respectively. Coefficients are expressed relative to omitted
category of one or fewer enrollment years (within sample of students who enroll in university in year after high school comple-
tion). Earnings are quarterly earnings. Costs are total incurred costs. ‘Censoring’ outcome is a dummy equal to one if we do not
observe mean earnings for a student. N=12,301 in earnings regression and 16,651 in cost and censoring regression.
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A Appendix: Additional tables and figures

Figure A1: ACS vs. FL major effect estimates

Estimated coefficients on for in ACS (vertical axis) versus FL (horizontal axis). Dependent variable is log earnings. ACS controls
described in section 5.4 . FL controls described in section 4.1. FL N=38,336. ACS N=1,272,597. Degree weighted correlation
between ACS and FL estimates is 0.678.
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Figure A2: Earnings PDVs per instructional dollar using ACS earnings estimates

Horizontal axis: estimated log earnings effects from equation 6 in ACS data relative to omitted education category. Ver-
tical axis: ratio of earnings to cost PDVs relative to ratio for reference education category, conditional on Xi = x, i.e.:

EARNPDVj(x)/COSTPDVj(x)
EARNPDVeduc(x)/COSTPDVeduc(x) − 1. See section 5.5 for more details on per-dollar effect calculations.
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Table A1: Major classifications used in this paper
CIP code Full name Abbreviation
1 agribusiness and agric production Agri
3 natural resources and conservation Nat. Res.
4 architecture and environmental design Arch
5 area and ethnic studies Area
9 communications Comm
11 computer and info sciences CompSci
13 education Educ
14 engineering Engine
15 engineering technologies Eng Tech
16 foreign languages Lang
19 home economics Home Ec
22 law Law
23 english lang literature ltrs Lit
24 liberal general studies Gen Stud
25 library and archival science Library
26 life sciences Bio
27 mathematics Math
30 multi interdisciplinary study Multi
31 parks rec leisure fitness studies Parks/Rec
38 philosophy and religion Phil
40 physical sciences Phys
42 psychology Psych
43 protective services Security
44 public administration and services Pub Admin
45 social sciences Soc Sci
50 visual arts Art
51 health sciences Health Sci
52 business and management Bus
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Table A2: Censoring by fields
Cens. Cens.

Major rate Major rate
Fitness 0.076 Law 0.081
Math 0.1 Nat. Res. 0.113
Soc Sci. 0.103 Phys. Sci 0.234
Sec. 0.076 Educ. 0
Bus. 0.054 Pub. Admin 0.069
Psych. 0.1 Gen Stud. 0.108
Phil. 0.226 Lib Sci 0.228
Home Ec. 0.103 Art 0.185
Area Stud. 0.185 Arch 0.115
Comp Sci 0.053 Agri 0.125
Engl. 0.088 Eng. Tech -0.01
Comm 0.1 Health Sci 0.035
Lang 0.171 Inter. 0.252
Bio 0.217 Engine. 0.127

Estimates of regressions of the form given in equation 6 with a dummy variable for presence in earnings data as the outcome.
Estimates expressed relative to omitted education category. Censoring rate in education programs is 0.128. Estimates from
regressions with N=38,336.
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