



IPC-XIII/FRC-V Symposium, PMOD September, 2021

## **LUNAR PHOTOMETRY**

África Barreto (<u>abarretov@aemet.es</u>) Izaña Atmospheric Research Center (IARC), Meteorological State Agency of Spain (AEMET)





## **LUNAR PHOTOMETRY - Outline**



- Features of the Moon's orbit
- Technical problems
- Motivation. Detect:
  - Diurnal cycles
  - Change in atmospheric composition
  - Polar studies (polar night)
- Commertial instruments: Cimel, Prede, LunarPFR
- Lunar Irradiance Models. Calibration. Recent advances and possible solutions
- Brief summary of the nocturnal (lunar) activities
  - 3 lunar campaigns + MOSAIC





#### **Periodic lunar cycles**



- Diurnal cycle: rise & set
- Orbital cycle: 27,3d
  - ∆d<sub>app</sub>≈14%
  - ΔI≈30% (SuperMoon, + 50000km)
  - Lunar nodes
- Saros (18 yr)
- Draconic cycle (18.6 yr) [2025 2034]

What the moon has to do with oceanic tides (floodings)+ long-term lunar atmospheric tides

Lunar Librations







#### Features of the lunar disk reflectance



7

# TECHNICAL PROBLEMS, MOTIVATION AND COMMERCIAL INSTRUMENTS

### **Technical problems**

- 6-7 orders of magnitude (detectors with enough sensibility)
- Suitable SNR (quarters)
- Sun-light pollution
- High dynamic range (solar/lunar)
- Tracking: 4Q
- UV



#### **Moon photometry:** Motivation



- Models and satellite data evaluation/assimilation
- Lidar/photometry synergies: active remote sensing techniques also dependent on column-integrated AOD information
- Ensure a continuous monitoring of aerosols for climate studies
  - Diurnal cycle
  - Evaluate dynamics, transport and chemistry of atmospheric aerosols
  - High latitude stations (Polar Winter)

#### Moon photometry: Motivation – Continuous monitoring

#### **Diurnal cycles**



#### **Moon photometry:** Motivation

![](_page_11_Picture_1.jpeg)

- Models and satellite data evaluation
- Lidar/photometry synergies: active remote sensing techniques also dependent on column-integrated AOD information
- Ensure a continuous monitoring of aerosols for climate studies
  - Diurnal cycle
  - Evaluate dynamics, transport and chemistry of atmospheric aerosols
  - High latitude stations (Polar Winter)

#### **Moon photometry:** Motivation – Continuous monitoring

#### **Detect changes atm. composition**

![](_page_12_Figure_2.jpeg)

13

#### **Moon photometry:** Motivation

![](_page_13_Picture_1.jpeg)

- Models and satellite data evaluation
- Lidar/photometry synergies: active remote sensing techniques also dependent on column-integrated AOD information
- Ensure a continuous monitoring of aerosols for climate studies
  - Diurnal cycle
  - Evaluate dynamics, transport and chemistry of atmospheric aerosols
  - High latitude stations (Polar Winter)

THE ARCTIC

- early indicator of climate change
- challenging environment

#### ARCTIC HAZE – "POO-JOK" (1750)

The first indicator of human activity in the Arctic

NASA P3B and the Arctic haze layer 02 (source: https://www.esrl.noaa.gov)

#### Gaps in the long polar night!

![](_page_16_Figure_2.jpeg)

17

#### And finally ... Data!!!! Thanks to Herber et al. (2002)

![](_page_17_Figure_2.jpeg)

There are still a lot of things to do in this regard, trying to understand the complex mechanisms of transport to the Arctic.

![](_page_17_Picture_4.jpeg)

Ny-Alesund (Norway) 1991-1999

#### **Moon photometry:** Motivation

![](_page_18_Picture_1.jpeg)

- Models and satellite data evaluation
- Lidar/photometry synergies: active remote sensing techniques also dependent on column-integrated AOD information
- Ensure a continuous monitoring of aerosols for climate studies
  - Diurnal cycle
  - Evaluate dynamics, transport and chemistry of atmospheric aerosols
  - High latitude stations (Polar Winter)

#### **Moon + Star photometry**

### **Commercial lunar photometers**

![](_page_19_Picture_1.jpeg)

Sun/sky/lunar Cimel

![](_page_19_Picture_3.jpeg)

#### **Commercial stelar photometers**

#### DR. SCHULTZ & PARTNER GMBH STAR-PHOTOMETER

![](_page_20_Picture_2.jpeg)

![](_page_20_Picture_3.jpeg)

![](_page_21_Picture_0.jpeg)

## CALIBRATION & LUNAR EXO-ATMOSPHERIC IRRADIANCE MODELS

#### Main problem in lunar photometry: calibration!

Moon's illumination is changing at any time

As a consequence (Beer-Lambert-Bougher Law):  $V_{\lambda} = V_{0,\lambda} \cdot e^{-\tau_{\lambda} \cdot m}$ 

To be calculated at any time!!!!

Lunar Langley Method Barreto et al. (2016)

$$V_{0,\lambda} = \kappa_{\lambda} \cdot I_{0,\lambda}$$

Lunar exo-atmospheric Irradiance Model

Calibration CONSTANT

A highly accurate exo-atmospheric lunar irradiance model is mandatory for Moon photometry!!

#### **ROLO USGS exo-atmospheric lunar irradiance model**

+ +/

| Science for a changing world |                                         |
|------------------------------|-----------------------------------------|
| Lunar Cal                    | ibration                                |
| ROLO - RObotic Lun           | ar Observatory                          |
| Overvie                      | w                                       |
| ROL                          | .O Facility                             |
| R                            | OLO Database                            |
|                              | unar Modeling                           |
|                              | Spacecraft Calibration                  |
| Re                           | ferences                                |
| Phote                        | <b>Gallery</b> (Kieffer and Stone, 2005 |

Start acan

+

+

![](_page_25_Figure_0.jpeg)

#### **ROLO USGS exo-atmospheric lunar irradiance model:** uncertainty

![](_page_26_Figure_1.jpeg)

#### **ROLO USGS exo-atmospheric lunar irradiance model:** uncertainty

Important dependence of the AOD uncertainty with the Moon's phase

![](_page_27_Figure_2.jpeg)

#### **ROLO USGS exo-atmospheric lunar irradiance model:** uncertainty

Possible solutions:

1) Improvement of the ROLO model with new lunar measurements

2) Develop a completely new lunar irradiance model with new measurements

3) Develop new calibration approaches: The Gain-Ratio calibration method

#### Improved exo-atmospheric lunar irradiance model: ESA LIME

![](_page_29_Picture_1.jpeg)

Lunar spectral irradiance measurement and modelling for absolute calibration of EO optical sensors (ESA funded project)

![](_page_29_Figure_3.jpeg)

### New exo-atmospheric lunar irradiance models: NASA AIR-LUSI

![](_page_30_Figure_1.jpeg)

![](_page_30_Picture_2.jpeg)

Air-LUSI telescope and autonomous, robotic mount is designed to acquire unprecedentedly accurate measurements of lunar spectral irradiance from an ER-2 aircraft flying at 21km altitude.

31

#### New exo-atmospheric lunar irradiance models: NASA + ESA

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_2.jpeg)

![](_page_31_Picture_3.jpeg)

#### New calibration approaches: Gain ratio

- Does not need the ROLO model
- Affected by ROLO absolute uncertainties (AOD calculation)

![](_page_32_Figure_3.jpeg)

### New calibration approaches: Gain ratio (pros & cons)

![](_page_33_Figure_1.jpeg)

#### New calibration approaches: GAIN-RCF calibration method

![](_page_34_Figure_1.jpeg)

![](_page_34_Figure_2.jpeg)

#### New calibration approaches: AERONET Provisional lunar data

#### SELECT CHARTS FOR LARGER IMAGES

![](_page_35_Figure_2.jpeg)

.

- + Download Tool
- + Download All Sites
- + Climatology Tables
- + Web Service

#### AEROSOL INVERSIONS (V3)

- + Data Display
- + Download Tool
- + Download All Sites
- + Web Service

#### SOLAR FLUX

+ Data Display

#### OCEAN COLOR

- + V3 Data Display
- + V3 Web Service

#### LUNAR AOD (V3) - PROVISIONAL

- + Data Display
- + Download Tool

| Choose year :          | 2018 | 2019 | 2020 |
|------------------------|------|------|------|
| Choose month of 2019 : | JAN  | FEB  | MAR  |
|                        | APR  | MAY  | JUN  |
|                        | JUL  | AUG  | SEP  |
|                        | OCT  | NOV  | DEC  |

AOD Level 1.5 data from year of 2019

![](_page_35_Figure_23.jpeg)

#### AOD Level 1.5 data from JAN of 2019

![](_page_35_Figure_25.jpeg)

![](_page_35_Figure_26.jpeg)

## LUNAR PHOTOMETRY CAMPAINGS

### FIRST LUNAR PHOTOMETRY CAMPAIGN: IZAÑA, 2017

#### Lunar Photometry Campaign and Workshop Izaña 2017

![](_page_37_Picture_2.jpeg)

MINISTERIO DE AGRICULTURA Y PESCA, ALIMENTACIÓN Y MEDIO AMBIENTE

![](_page_37_Picture_4.jpeg)

![](_page_37_Picture_5.jpeg)

![](_page_37_Picture_6.jpeg)

### FIRST LUNAR PHOTOMETRY CAMPAIGN: IZAÑA, 2017

![](_page_38_Picture_1.jpeg)

![](_page_38_Picture_2.jpeg)

### **SECOND LUNAR PHOTOMETRY CAMPAIGN: NY-ALESUND, 2020**

![](_page_39_Picture_1.jpeg)

**Instruments participant:** CE318-TS, PFR, Stellar, All sky camera, MPL, Raman Lidar, Prede prototype, C-Lidar

#### SVALBARD INTEGRATED ARCTIC EARTH OBSERVING SYSTEM

HOME ABOUT SIOS - SERVICES - ACCESS - OPTIMISATION - INTRANET -

Home / Access / Research Infrastructure (RI) / RI access projects in 2020 / Lunar AOD intercomparison campaign

#### Lunar AOD intercomparison campaign

![](_page_39_Picture_7.jpeg)

#### THIRD LUNAR PHOTOMETRY CAMPAIGN: LINDENBERG, 2020

![](_page_40_Picture_1.jpeg)

**Deutscher Wetterdienst** Wetter und Klima aus einer Hand

**MOL-RAO:** 

Meteorological Observatory Lindenberg – Richard Assmann Observatory 52.2 N, 14.1 E, 120 m At Lindenberg (Germany/Brandenburg)

## MOSAiC

<u>M</u>ultidisciplinary Drifting <u>Observatory for the Study of Arctic Climate</u>

Sep 2019 – Sep. 2020 5 icebreakers, flights 300 scientists from 60 institutions (17 nationalities)

## An entire year trapped in the Arctic ice

**The largest Central Arctic expedition ever** 

![](_page_42_Figure_0.jpeg)

## MOSAIC - Polarstern

![](_page_44_Picture_0.jpeg)

![](_page_44_Picture_1.jpeg)

## **Thanks for your attention!**

http://izana.aemet.es