Extending the Calibration Traceability of Longwave Radiation Time-Series (ExTrac)

Stephan Nyeki¹, Julian Gröbner¹, Laurent Vuilleumier², Christian Lanconelli³, Amelie Driemel^{4,} Marion Maturilli⁵, Holger Schmithüsen⁴, Nozomu Ohkawara⁶

¹PMOD/WRC, Davos, Switzerland; ²MeteoSwiss, Payerne, Switzerland;
³Joint Research Center, Ispra, Italy; ⁴AWI, Bremerhaven, Germany;
⁵AWI, Potsdam, Germany; ⁶Japan Meteorological Agency, Tsukuba, Japan

ExTrac project duration: 1 Aug. 2020 – 31 Jul. 2022

Baseline Surface Radiation Network (BSRN)

- BSRN (bsrn.awi.de) is hosted by the World Radiation Monitoring Centre (WRMC).
- BSRN designated as the global baseline network for surface radiation of GCOS in 2004.
- Time-series of DLR/ULR in the BSRN archive are primarily traceable to the WISG.

ExTrac: Rationale

- Several issues regarding longwave meas. being addressed by CIMO (2018), e.g. WISG reference scale, IWV dependence
- Scale revision: Could / should BSRN DLR be revised in the future? Study at several BSRN stations (*Nyeki et al.*, 2017):

~5.1 W.m⁻² (clear-sky sites), 0.7 - 1.3 W.m⁻² (cloudy sites)

- With raw pyrgeo. data and a calibration traceable to the WISG
 → DLR timeseries re-calculation
- However, raw pyrgeo. data not submitted to BSRN archive in the past (... soon though). WISG traceability of BSRN pyrgeos not fully known.
- Raw pyrgeo. data might not be fully available due to IT issues, loss of a knowledge-base, etc.

ExTrac: Aims

- Investigate whether a methodology can be applied to retrieve the original raw pyrgeometer data from DLR_{BSRN} and other parameters in the BSRN archive.
- Prevent the loss of legacy data and ensure future availability when traceability and instrumental issues have been resolved by the research community.
- Extend the traceability of BSRN longwave time-series to the WISG.
 - Up to 10 pyrgeometers from BSRN Payerne and other BSRN stations will be calibrated as part of our in-kind contribution.
 - Five calibrated so far and 2+ to follow in March 2022.

Extended Albrecht and Cox equation (amongst others for DLR)

$$DLR = \frac{U}{C} \left(1 + k_1 \sigma T_b^3 \right) + k_2 \sigma T_b^4 - k_3 \sigma (T_d^4 - T_b^4)$$
 Eg Eppleys

$$DLR = \frac{U}{C} \left(1 + k_1 \sigma T_b^3 \right) + k_2 \sigma T_b^4$$
 Eg K&Zs

- DLR equation is non-linear so scale revision not trivial.
- BSRN archives: DLR is archived but not U, T_b, T_d
- Can these parameters be "retrieved" or "reconstructed"?

DLR in
$$[W.m^{-2}]$$
U = pyrgeometer voltage $[V]$ C = calibration factor $[V.W^{-1}.m^2]$ $\sigma = 5.670e-8$ $[W.m^{-2}.K^{-4}]$ Stefan-Boltzmann constant T_b = pyrgeometer body temp. $[K]$ T_d = dome temp. $[K]$ k_1 = correction for sensor non-linearity k_2 = correction for body T k_3 = dome correction

Retrieving "Raw" Pyrgeometer Data

• Train a station-specific algorithm using 1-min / 1-hr data and not empirical corrections (eg annual cycle etc):

i) DLR, DSR, T_{2m}, other parameters (BSRN archives)

- ii) U_{original} and cloud fraction* (station archives)
- Step 1: T_b , T_d and $T_{2m} \rightarrow T_{b proxy}$ and $T_{d proxy}$
- Step 2: Using DLR_{BSRN} , T_{b proxy} , T_{d proxy}, in A&C eq \rightarrow U_{retrieved}

* PCA method, Dürr and Philipona (2004)

Station-Specific Algorithm: Neumayer Station, 2006 – 2015, Eppley PIR, 1-hr data

"Current Best Model" for Neumayer Data

Station-Specific Algorithm: Neumayer Station, 2006 – 2015, Eppley PIR, 1-hr data

- Constructing accurate values of T_{b proxy} and T_{d proxy} are the key to determining accurate U_{retrieved}
- How accurate is the retrieved DLR? Use U, T_{b proxy} and T_{d proxy} in A&C eq to give DLR_{proxy calc}

*Use the root-mean-square deviation (RMSD) as a statistic to compare two data distributions.

How good is "Current Best Model" vs a Basic Model?

• Basic Model: replace T_b and T_d with T_{2m} in A&C eq

 \rightarrow RMSD ~ 4 – 8 Wm⁻²

• Current Best Model: RMSD agreement at all 4 stations < 2.3 Wm⁻²

*Use the root-mean-square deviation (RMSD) as a statistic to compare two data distributions.

Conclusions

- RMSD agreement of DLR_{BSRN} vs DLR_{proxy calculation} <2.3 Wm⁻² standard uncertainty of DLR measurements is 4 – 5 Wm⁻²
- So far, only data with a 1-hr resolution can be retrieved to within the DLR measurement uncertainty. BSRN archive data is 1-min data.
- Pyrgeometer ventilation units must have operated stably in the past.
- A station-specific model rather than a basic (or universal) model is currently seen as best option to determine U_{retrieved}, T_{b proxy} and T_{d proxy} with an acceptably low RMSD.
- The project was designed as an exploratory analysis ...

Outlook

Outlook

• ExTrac algorithm to be used on a "real" test case:

Payerne raw pyrgeo time-series <2007 very difficult to extract from station archives.

Can retrieved data be considered valid?

• Technical report / literature paper.

Acknowledgement

We gratefully thank GCOS Switzerland for supporting the ExTrac project.

