



### Irradiance sounding up to the lower stratosphere Ralf Becker, Stefan Wacker, Lionel Doppler

00:09:01:11

## What are we doing?



- Observation of *vertical profiles* of all four components of *net radiation* using an adapted radiosonde: solar + terrestrial, upwelling + downwelling
- Usually reached peak height about 31 km, thus the whole troposphere and lower stratosphere are subject of investigation
- Targeted probing of clouds possible
- Frequency of soundings is *about monthly*
- sonde needs to be retrieved from the landing point



- *All-season* probing but *rather fair weather* preferred (rain, storm, snowfall, strong convection excluded), up to now 64 soundings performed
- Beside weather conditions the calculated landing point is a crucial part of the decision tree to fly or not



- In 2012 Philipona et.al. introduced a balloon-carried sonde equipped with the sensors of a CNR4 to measure irradiances up to 32 km
- In 2016 Kräuchi & Philipona and 2020 Philipona et.al. this approach was extended by using a return glider the get the equipment back to predefined locations instead of standard parachute descent
- Air traffic control: this light-weight mini-airplane is handled as a drone and thus cannot be flown in central Europe on an regular basis
- MetObs Lindenberg: long tradition of vertical sounding with different sensors and these days strongly involved in GRUAN project -> almost perfect conditions to fly a *pure balloon-based* sonde
- Sonde is manufactured by Meteolabor AG (CH)

GRUAN: global reference upper air network



# **ISOLDE – Irradiation SOunding LinDEnberg**

**Deutscher Wetterdienst** 

Wetter und Klima aus einer Hand









$$E_L = \frac{U_{\text{emf}}}{C} (1 + k_1 \sigma T_B^3) + k_2 \sigma T_B^4 - k_3 \sigma (T_D^4 - T_B^4)$$
 To be considered:

- C: calibration coefficient, updated regulary
- k1: thermopile sensitivity, <<1
- k2: blackbody-like emitted radiation by the instrument, =1
- k3: weigthing the thermal discrepancy dome body

$$E_{\downarrow Solar} = \frac{U_{emf}}{S_{ensitivity}} - k_3 \sigma (T_D^4 - T_B^4)$$

 $\begin{array}{lll} E_{\downarrow Solar} &= Global \ radiation & [W/m^2] \\ U_{emf} &= Output \ of \ pyranometer & [\mu V] \\ S_{ensitivity} &= Sensitivity \ of \ pyranometer & [\mu V/W/m^2] \end{array}$ 

incoming irradiation emitted radiation by the instrument emitted radiation by the dome and the sensor's surface reflected radiation by the dome

Depending on instrument: correction of solar contribution, no issue concerning CG3 (K&Z manual)

what is the impact of the dedicated terms ??

- Near surface observations: temperature difference term can be neglected in the thermal
  - Profile observations: temperature difference to be regarded, except with EKO MS80



### terrestrial & solar irradiance, temperature dependencies, example 20200327

-80

Temp (°C) 27.03.20





DWC

**Deutscher Wetterdienst** 

Wetter und Klima aus einer Hand



# Radiation measurements near surface vs

### free atmosphere



efforts to achieve precise and reliable observations of radiative fluxes near surface ...

### Close to ground

Levelling of the sensors

At least daily cleaning of ٠ the domes plus on demand

٠ Ventilation using a continuous horizontal air stream (5 m/s)

### Free atmosphere

- Deviations from the horizontal position are • inherent but can be averaged out (V.1, mostly, combination of pendulum and rotation depends on conditions), can be tracked (ISOLDE V.2), relevant for solar downward only
- cleaning of the domes before start, can be subject to icing while passing water or mixed clouds. Tend to get heated away in ascent, tend to remain in descent
- Ventilation using an *almost* continuous *vertical* air stream (5 m/s) for a pair of instruments respectively, the other pair at lee side; but dome temperatures tracked on pyranometers too





 Table 1 Uncertainty budget for solar and terrestrial irradiance observations, single component contributions, according to manufacturer specifications

| Characteristics<br>Instrument                                                       | CMP22                                                                            | CGR4                                                                                                                                 | Net 1(          |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Calibration uncertainty<br>Temperature dependence of<br>sensitivity<br>(-20+50  °C) | 2%<br>0.5%                                                                       | 3%<br><1%                                                                                                                            | Albed<br>Heatin |
| Non-linearity error<br>Spectral                                                     | 0.2%<br>2%                                                                       | <1%<br><5%                                                                                                                           | Tilting         |
| Tilt response<br>Directional error                                                  | 0.25%<br>5 Wm <sup>-2</sup> @ 1000 Wm <sup>-2</sup> ,                            | 1%<br>Not defined                                                                                                                    | Accor           |
| Zero offset                                                                         | 0.5%<br>A 3 Wm <sup>-2</sup><br>B 1 Wm <sup>-2</sup><br>total 4 Wm <sup>-2</sup> | A: not defined<br>B: $< 2Wm^{-2}$ , plus window heating effect $< 4 Wm^{-2}$ ,<br>total 6 $Wm^{-2}$ @ 240 $Wm^{-2}$ corresponding to | Saund           |
|                                                                                     | corresponding to 1% @<br>400 Wm <sup>-2</sup>                                    | 2.5%                                                                                                                                 | -> her          |
| Tilting angles<br>Total uncertainty irradiance                                      | 1.5%<br>2.81% downward, 2.76%<br>upward (directional<br>error = 0)               | 1.5%<br>6.74%                                                                                                                        | SIOW-(          |

Due error propagation cumulated **uncertainties**:

Net 10,2% Albedo 5,48% Heating rate 14,42%

### **Tilting error correction** According to Saunders et.al. 1998

-> here only applicable in slow-changing conditions





## **Reached altitude & landing**

**Deutscher Wetterdienst** Wetter und Klima aus einer Hand





Mean burst height without separator: 30.3 km

Predominantly westerly winds only partly provide invited sounding scenarios (horizontal drifting), otherwise region east of Berlin and western Poland sparsely populated





### Calibration vs BSRN Lindenberg

**Deutscher Wetterdienst** Wetter und Klima aus einer Hand



Calibration by iteratively minimising the mean error and mean absolute error w.r.t to BSRN readings

-> selection of clear
sky days/hours,
further filtering
using ratio
diffuse/direct
-> top and bottom
side sky viewing





### Calibration vs BSRN Lindenberg

#### **Deutscher Wetterdienst**

Wetter und Klima aus einer Hand













### **Expectations: how irradiances change when lifting the sensor**





## Solar fluxes – clear sky and minor cloudiness







# Solar fluxes – clear sky and minor cloudiness







緣







# Example cloud flight Dec 02, 2020







# Example cloud flight Dec 02, 2020

Deutscher Wetterdienst Wetter und Klima aus einer Hand



### Clouds:

Altostratus, overcast, opaque, from 3136 to 3419 m

Distinct peak in vertical gradient close to cth in solar upward and terrestrial downward, but close to cloud base in terrestrial upward



# Example cloud flight Dec 02, 2020







# Example cloud flight Dec 02, 2020: Obs vs Model

**Deutscher Wetterdienst** Wetter und Klima aus einer Hand





ice cloud at the observed level with OD=5 & Reff=10 μm, T@CBH: -12°C

Simulations made with Streamer (Key & Schweiger 1998: Tools for atmospheric radiative transfer )



### Solar fluxes – overcast, cloud top albedo

Deutscher Wetterdienst Wetter und Klima aus einer Hand



Stratocumulus (7x): 0.482 -0.849 Altocumulus/Altostratus (5x) 0.404 - 0.519. If cloud cover N<6/8 (mixed scene): gray



More to come ...







- Profiles of net radiation components can be measured using a balloon-carried ٠ **4-sensor system**
- Free flying sondes and tethered ballooning (V.1) too ... ۲
- In-situ observation of net radiation divergence, cooling and heating effects ٠ related to clouds -> assign that to cloud categories
- Link the results to collocated observations of microphysical properties ٠
- Above 20 km: careful selection of valid data points to get the direct solar ٠ component, i.e. TSI (seems to work)



Thank you for your attention !

00:29:53:17