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SM. Supplementary materials

SM.1. Energy & GHG data

We assume the decarbonisation of the energy sector by the end of the century as follows.

SM.1.1.Fuels
Current (fossil) fuels are replaced gradually by bio-fuels between 2040 and 2080, as shown in Eq. A.1:

𝐶𝐼𝑓𝑢𝑒𝑙(𝑡) = %𝑓𝑜𝑠𝑠𝑖𝑙 𝑓𝑢𝑒𝑙(𝑡) ×  𝐶𝐼𝑓𝑜𝑠𝑠𝑖𝑙 𝑓𝑢𝑒𝑙(2020) +  %𝑏𝑖𝑜 ‒ 𝑓𝑢𝑒𝑙(𝑡) ×  𝐶𝐼𝑏𝑖𝑜 ‒ 𝑓𝑢𝑒𝑙(2020)  
(𝐸𝑞. 𝐴.1)

where:  is the carbon intensity of fuels over time (kg CO2eq/l), and  is time (yrs).  𝐶𝐼𝑓𝑢𝑒𝑙(𝑡) 𝑡

 and  are the current carbon intensities (direct and indirect 𝐶𝐼𝑓𝑜𝑠𝑠𝑖𝑙 𝑓𝑢𝑒𝑙(2020) 𝐶𝐼𝑏𝑖𝑜 ‒ 𝑓𝑢𝑒𝑙(2020) 

emissions) of fossil-fuels and bio-fuels (kg CO2eq/l), respectively, as shown in Table A.1, and 

 and  are the shares of fossil fuels and bio-fuels over time (%), respectively. %𝑓𝑜𝑠𝑠𝑖𝑙 𝑓𝑢𝑒𝑙(𝑡) %𝑏𝑖𝑜 ‒ 𝑓𝑢𝑒𝑙(𝑡)

Also, . %𝑓𝑜𝑠𝑠𝑖𝑙 𝑓𝑢𝑒𝑙(𝑡) +  %𝑏𝑖𝑜 ‒ 𝑓𝑢𝑒𝑙(𝑡) = 1

                              Table A.1 (Current) direct and indirect carbon intensities for fuels.

Type of fuel
Direct emissions 
(kg CO2eq/l)

Indirect emissions
(kg CO2eq/l)

diesel 2.55 0.61
bio-diesel 0.17 0.37

SM.1.2. Electricity
Electricity becomes carbon-neutral by 2050, using (region-specific) projections of the IPCC illustrative 
pathway P21, as shown in Eq. A.2:

𝐶𝐼𝑒𝑙𝑒𝑐(𝑡) =  𝐶𝐼𝑒𝑙𝑒𝑐(2020) × %𝑑𝑒𝑐𝑎𝑟𝑏𝑜𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛(𝑡)
(𝐸𝑞. 𝐴.2)

where:  is the carbon intensity of electricity over time (g CO2eq/kWh), and  is time (yrs).  𝐶𝐼𝑒𝑙𝑒𝑐(𝑡) 𝑡

 is the current carbon intensity of electricity (g CO2eq/kWh), as shown in Table A.2, and 𝐶𝐼𝑒𝑙𝑒𝑐(2020)

 is the decarbonisation share over time (%).%𝑑𝑒𝑐𝑎𝑟𝑏𝑜𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛(𝑡)

                              Table A.2 (Current) electricity carbon intensities in different regions.

Region Indirect emissions Indirect emissions
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(g CO2 eq/kWh) (g CO2 eq/MJ)

Brazil 130 36
China 735 204
UK 313 87
India 854 237

USA 470 131

The net-zero transition of the electricity grid in different regions is illustrated in Fig. A.1. For example, 
India has the highest electricity carbon intensity in 2020 (i.e., 854 g CO2eq/kWh) and Brazil has the 
lowest one (i.e., 130 g CO2eq/kWh), whereas electricity carbon intensities reach toward net-zero in all 

regions by 2050. 
SM.1.3. Natural Gas & Hydrogen

Thermal energy is required for sorbent regeneration in the case of liquid solvent DACCS. Because the 
regeneration temperature is around 900°C2,3, only natural gas has been suggested to supply such high-
grade heat. However, it is still unclear what the decarbonisation trend of natural gas will be. In this 
study, we also consider hydrogen (H2) for the supply of high-grade heat, for which a decarbonation 
trend is clearer and more likely. Current and near-future H2 is therefore assumed to be produced via 
natural gas steam methane reforming (SMR), which is currently highly carbon intensive (the current 
indirect carbon intensity for SMR-based H2 is 9.1 times higher than for natural gas), and then to 
transition progressively between 2040 and 2080 to green H2 (i.e., produced from electrolysis). As 
green H2 will be produced with grid electricity, which is subject to decarbonisation and will become 
net zero by 2050, green hydrogen will become net-zero by 2050 as well. This is shown in Eq. A.3-4:

𝐶𝐼𝐻2
(𝑡) = %𝑆𝑀𝑅 ‒ 𝐻2

(𝑡) ×  𝐶𝐼𝑆𝑀𝑅 ‒ 𝐻2
(2020) +  %𝑒𝑙𝑒𝑐(𝑡) ×  𝐶𝐼𝑒𝑙𝑒𝑐 ‒ 𝐻2

(𝑡) 

(𝐸𝑞. 𝐴.3)

Fig. A.1 Decarbonisation of the electricity mix, following the IPCC P2 
illustrative pathway.



𝐶𝐼𝑒𝑙𝑒𝑐 ‒ 𝐻2
(𝑡) = 𝐶𝐼𝑒𝑙𝑒𝑐 ‒ 𝐻2

(2020) × %𝑑𝑒𝑐𝑎𝑟𝑏𝑜𝑛𝑖𝑠𝑎𝑡𝑖𝑜𝑛(𝑡)

(𝐸𝑞. 𝐴.4)

where:  is the carbon intensity of H2 over time (g CO2eq/MJ), and  is time (yrs).  
𝐶𝐼𝐻2

(𝑡) 𝑡

 and  are the current carbon intensities (indirect emissions only) of 
𝐶𝐼𝑆𝑀𝑅 ‒ 𝐻2

(2020) 𝐶𝐼𝑒𝑙𝑒𝑐 ‒ 𝐻2
(2020)

SMR-based and green H2 (g CO2eq/MJ), respectively, and  is the carbon intensity of green 
𝐶𝐼𝑒𝑙𝑒𝑐 ‒ 𝐻2

(𝑡)

H2 over time (g CO2eq/MJ), as shown in Table A.3.  and  are the shares of 
%𝑆𝑀𝑅 ‒ 𝐻2

(𝑡) %𝑒𝑙𝑒𝑐 ‒ 𝐻2
(𝑡)

SMR-based and green H2 over time (%), receptively. Also, . 
%𝑆𝑀𝑅 ‒ 𝐻2

(𝑡) +  %𝑒𝑙𝑒𝑐 ‒ 𝐻2
(𝑡) = 1

Table A.3 Current and projected carbon intensities for natural gas and hydrogen (H2).

Type of fuel
Direct emissions
(g CO2eq/MJ)

Indirect emissions
(g CO2eq/MJ)

Natural gas† 56.59 11.74
Currently steam-reforming 
H2 0 109.4
Currently electrolysis H2 0 175.0
Zero-carbon electrolysis H2 0 0
† The direct CO2 emissions from the combustion of natural gas are 100% 
captured within the liquid solvent DACCS process, and are therefore not 
accounted for in DACCS CDR efficiency. 

SM.2. Afforestation/Reforestation (AR)

This section presents the main assumptions that have been adopted for parameterizing AR in the 
MONET framework. 

SM.2.1. Value Chain & Sankeys
In this study, AR is explicitly spatio-temporally modelled into 5 integrated sub-models4: 1) a forest 
growth model, 2) a forest management cycle model, 3) a biogenic carbon (and CO2) sequestration 

Fig. A.2 Schematic of the AR's whole-system model, outlining the interactions between 5 integrated 
sub-models: 1) a forest growth model, 2) a forest management cycle model, 3) a biogenic carbon (and 
CO2 sequestration model, and 4) its associated “fire-penalty” model, and 5) a forestry operations 
model.



model and 4) its associated "fire-penalty" model, and 5) a forestry operations model. This is shown in 
Fig. A.2 :

Within the forest growth model, forest growth curves are characterised by ecological zone and forest 
type (broadleaves/conifers), to account for geographic, climatic and ecological variations5. Both the 
above-ground biomass—the vegetation above the soil, such as stems, branches, foliage or bark—and 
the below-ground biomass—the roots—are included in the forest growth model. For example, 
temperate oceanic forests dominate the ecology of the UK—88% of the land cover in the UK5—and 
conifers and broadleaves account for around half of the UK forest area—49% and 51% respectively6. 
By using this ecological zone and this distribution of tree species as a proxy for the UK, the maximum 
CO2 sequestration potential of forests in the UK is 398 tCO2/ha (327 and 71 t CO2/ha in above-ground 
and below-ground biomass, respectively).

Within the forest management cycle model, forest stands are subject to a non-intensive forest 
management—with reduced or minimum human intervention. The purpose of this forest 
management is to maximise and maintain the carbon (and CO2) sequestration potential of the forest 
(calculated in the biogenic carbon sequestration model) by clearing the forest of old and/or sick trees 
in order to let younger trees grow, more vigorously and with more space. In particular, the forest 
management cycle model directly determines the proportion of above-ground biomass that needs to 
be thinned for the aforementioned reasons. Indirectly, it also impacts the proportion of below-ground 
biomass that remains after. Fig. A.3 shows the forest growth, as calculated here, for different regions 
and climates, subject to forest management.

Fig. A.3 Evolution of the CO2 sequestration potential of AR for different climates and regions, subject 
to forest management activities. AR has the highest CDR potential in warm and humid climates, e.g. 



Brazil (tropical rainforests) here, and the lowest in cold and/or dry climates, e.g. UK (boreal coniferous 
forests) or India (tropical shrublands).

Finally, the “fire-risk” model evaluates the risk of wildfires over time, that discount the CO2 
sequestration of AR. This is described in Section A.2.2 below.
Within the forestry operation model, a set of forestry operations—forest establishment and 
management—is defined and evaluated in term of their energy requirements and associated CO2 
emissions7–9. These include forest establishment, forest roads construction and maintenance, and 
forest maintenance. Specifically, CO2 (and N2O) emissions are accounted for, at each step of the 
forestry operations model.

Overall, the CO2 removal efficiency of AR  (%) is calculated as follows 𝐶𝑂2 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝐴𝑅(𝑡)

(Eq. A.5-6):

𝐶𝑂2 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝐴𝑅(𝑡)

=  
𝐶𝑂2 𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑𝐵𝑖𝑜𝑚𝑎𝑠𝑠(𝑡) × 𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑐𝑒(𝑡) ‒  𝐶𝑂2 𝐸𝑚𝑖𝑡𝑡𝑒𝑑𝐹𝑜𝑟𝑒𝑠𝑡𝑟𝑦 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠(𝑡)  

𝐶𝑂2 𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑𝐵𝑖𝑜𝑚𝑎𝑠𝑠(𝑡)
(𝐸𝑞. 𝐴.5)

 𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑐𝑒(𝑡) = (1 ‒ 𝑅𝐹(𝑡))
(𝐸𝑞. 𝐴.6)

where: 

-  is the cumulative CO2 captured via photosynthesis and 𝐶𝑂2 𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑𝐵𝑖𝑜𝑚𝑎𝑠𝑠(𝑡)

sequestrated in biomass over time (t CO2/ha);

-  are the cumulative CO2 emissions resulting from forestry 𝐶𝑂2 𝐸𝑚𝑖𝑡𝑡𝑒𝑑𝐹𝑜𝑟𝑒𝑠𝑡𝑟𝑦 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠(𝑡)

activities over time (t CO2/ha);
-  is AR’s permanence over time (%);𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑐𝑒(𝑡)

-  is the risk of wildfires over time (See below) (%);𝑅𝐹(𝑡)

- and   is time (yrs).𝑡

In Section 2 of the main study (Value Chains of CDR Pathways), the Sankey diagrams (Fig. 2) represent 
AR’s CDR efficiency in the UK over periods of 10, 30, 100 and 1,000 years, in order to account for the 
different and time-evolving contributions of the forest growth, the on-going maintenance of the 
forest, as well as the risk of wildfires over time. 
Because temperate oceanic forests dominate the ecology of the UK—88% of the land cover in the 
UK— this ecological zone is used in this study as a proxy for the U 5. Similarly, because conifers and 
broadleaves account for around half of the UK forest area—49% and 51% respectively6, this 
distribution of tree species is used as a proxy for the UK as well.

SM.2.2. Risk of Wildfires/Permanence
Afforestation/reforestation is subject to disturbances—natural and unintended such as wildfires, 
insects or weather events, or anthropogenic and intended, such as harvest or deforestation—that 
decrease its CDR potential, and in fine CDR efficiency, over time. In particular, the penalty associated 
with the risk of wildfires  can be quantified as a function of the wildfire’s severity and frequency, 𝑅𝐹



increasing over time. Adapted from (Hurteau et al., 2009)10, the “fire-risk” model uses the following 
equation (Eq. A.7):

𝑅𝐹(𝑡) = { 0,  𝑡 < 𝑚𝐹𝑅𝐼

𝑉𝐷𝑒𝑝 ×  (1 ‒
𝑚𝐹𝑅𝐼

𝑡 ),  𝑡 ≥ 𝑚𝐹𝑅𝐼�
(𝐸𝑞 𝐴.7)

where:
  is the vegetation departure index—ranging from 0% (zero potential biomass loss) to 100% 𝑉𝐷𝑒𝑝

(complete potential biomass loss) (%),
  is the mean fire return interval—ranging from 0 years (very frequent) to 1,000 years (very 𝑚𝐹𝑅𝐼

rare) (yrs),

 and  is the time (yrs).𝑡

Initially, VDep and mFRI are geo-spatial datasets from the LANDFIRE program 11 that cover the USA, 
but they have been processed—1) aggregated per ecological zones at the USA-scale 5, and 2) 
extrapolated to the word-scale—in the software ArcGIS. Fig. A.3 shows the evolution of the risk of 
wildfires as a function of different climates over time. We observe that subtropical and tropical 
climates are the most affected by such risk, where it starts increasing after a period of 46-50 years 
(i.e., mFRI in both climates, respectively), and up to 54-62% over 1,000 years. Specifically, the risk of 

Fig. A.3 Evolution of the risk of wildfires over a period of 1,000 yrs for 
different climates.



wildfires is greater in tropical climates than in subtropical climates, because the severity of wildfires, 
when occurring, is greater (i.e., VDep of 65% and 57%, respectively). Conversely, the risk of wildfires 
is lower in temperate climates, both due to lower mFRI and VDep (i.e., mFRI of 424 yrs and VDep of 
61% in temperate oceanic forests), and almost inexistant in boreal climates (i.e., mFRI of 1,000 yrs and 
VDep of 0%). 
In Section 2 of the main study—in which the Sankey diagrams illustrate/represent the case of the UK, 
dominated by temperate climates—, the risk of wildfires is therefore null over 10, 30, and 100 years, 
but equal to 35% over a period of 1,000 years. In Section 3 of the main study (Timeliness & 
Permanence), different climates within different regions are represented in order to show the wide 
range of impact associated with the risk of wildfires, both in term of 1) when it starts increasing, and 
2) how much it increases, on the CO2 removal efficiency of AR. 

SM.3.  Bioenergy with CCS (BECCS)

This section presents the main assumptions that have been adopted for parameterizing BECCS in the 
MONET framework. 

SM.3.1. Value Chain & Sankeys
Building on previous studies12,13 BECCS’s entire/full value chain is, here, explicitly spatio-temporally 
modelled, as shown Fig. A.4. This includes BECCS’s biomass supply chain, i.e. LUC, biomass cultivation, 
processing and transport to the BECCS plant, biomass to energy conversion and CO2 capture (at the 
BECCS plant), and CO2 transport and storage. Different types of crops cultivated and/or collected 
different types of lands are analysed, as well as different biomass transport modes and distances (i.e., 
local, imported biomass). Importantly, owing to the “carbon debt” initiated by land conversion to 
biomass production (which depends on the type of land that has been converted14–16), it usually takes 
some time for BECCS projects to bring net negative emissions. As a result, BECCS’s CO2 balance—the 
amount of CO2 captured minus the amount of CO2 emitted—, as well as BECCS’s CDR efficiency are 
calculated cumulatively over time, in order to identify the time at which BECCS’s “carbon debt” is paid 
off. This period of time is also referred as the carbon break-even time.

Fig. A.4 Schematic of the BECCS's whole-system model, outlining the interactions between each steps 
of biomass supply chain, BECCS power plant, and CO2 transport & storage. Adapted from 12,13.



Overall, the CO2 removal efficiency of BECCS  (%) is calculated as 𝐶𝑂2 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝐵𝐸𝐶𝐶𝑆(𝑡)

follows (Eq. A.8-9):

𝐶𝑂2 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝐵𝐸𝐶𝐶𝑆(𝑡)

=  

∑
𝑡

(𝐶𝑂2 𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑𝐵𝐸𝐶𝐶𝑆 𝑝𝑙𝑎𝑛𝑡(𝑡) × 𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑐𝑒(𝑡)) ‒  ∑
𝑡

𝐶𝑂2 𝐸𝑚𝑖𝑡𝑡𝑒𝑑
𝐵𝑖𝑜𝑚𝑎𝑠𝑠 + 𝐶𝑂2 𝑆𝐶

(𝑡) ‒ (𝐼)𝐿𝑈𝐶

∑
𝑡

𝐶𝑂2 𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑𝐵𝑖𝑜𝑚𝑎𝑠𝑠(𝑡)

(𝐸𝑞. 𝐴.8)

𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑐𝑒(𝑡) = 𝑃𝑔𝑒𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠(𝑡)
(𝐸𝑞. 𝐴.9)

where :

-  is the annual amount of CO2 captured at the BECCS plant over 𝐶𝑂2 𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑𝐵𝐸𝐶𝐶𝑆 𝑝𝑙𝑎𝑛𝑡(𝑡)

time (t CO2/ha);

-  is the annual amount of CO2 emitted by the biomass supply 𝐶𝑂2 𝐸𝑚𝑖𝑡𝑡𝑒𝑑
𝐵𝑖𝑜𝑚𝑎𝑠𝑠 + 𝐶𝑂2 𝑆𝐶

(𝑡)

chain and the T&S of CO2 over time (t CO2/ha);
-  is the initial “carbon dept” associated with direct and indirect land use change (t (𝐼)𝐿𝑈𝐶

CO2/ha);
-  is BECCS’s permanence over time (%). This is detailed below;𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑐𝑒(𝑡)

- and  is time (yrs).𝑡

In Section 2 of the main study, the Sankey diagrams (Fig. 4) represent BECCS’s CDR efficiency in the 
UK over a period of 100. Different types of biomass cultivated on different types of land, and different 
transport modes and distance are illustrated, in order to account for a range of biomass cultivation 
and processing practices, as well as to evaluate the contribution of biomass transport and (I)LUC on 
BECCS’s overall CO2 removal efficiency. 

SM.3.2. Direct & Indirect Land Use Change ((I)LUC)/Permanence
When deploying BECCS, the conversion of the land on which the biomass is cultivated and/or 
harvested for BECCS results into land use change (LUC) and possibly indirect land use change (ILUC). 
(I)LUCs are associated with a CO2 footprint, which takes more or less time to be compensated by 
BECCS’s CO2 removal potential. In other words, depending on the type of land on which the biomass 
used for BECCS, the CDR breakeven of BECCS—time at which BECCS has captured CO2 than the CO2 
debt associated with (I)LUC, and therefore starts providing negative emissions.
For instance, converting an existing cropland into biomass cultivation for BECCS, results into 37,500 
kgCO2/ha of LUC14 (due to the clearing of the land, and therefore the destruction of the natural CO2 
sink), but also 0.2 tCO2/ha of ILUC15,16, because the activity must be displaced and will itself create LUC 
somewhere else. Table A.4 provide LUC and ILUC for different types of land. As a result with BECCS 
using indigenous energy-dedicated crop (Miscanthus) on cropland, BECCS’s CDR breakeven time (CBT) 



is 14 years.  For forests and grasslands, it is 20 and 37 years respectively, whereas it is less than a year 
on MAL .

Table A.4 LUC and ILUC associated with different types of land, as well as BECCS’s carbon break-even 
time (CBT), calculated in this study.

Land type LUC (t CO2/ha) ILUC(t CO2/ha) References BECCS’s CBT 
(yrs)

Cropland 38 183 14–16 14
Grassland 136 183 14–16 20
Forest 573 0 14,15 37
MAL <1 (0.025) 0 14 <1

SM.3.3. Permanence of geological reservoirs
For BECCS to generate negative emissions, the CO2 captured by the BECCS plant is injected into 
geological reservoirs. Geological storage of CO2 is a highly secure and therefore permanent climate 
change mitigation option. Based on Alcalde et al. (2018)17, we assume that CO2 leakage rate is as low 
as 0.0286% over 100 years, and remains below 0.532% over 10,000 years. This equates to simplified 
time-averaged linear leak rates of 0.0000532% per year, which we use to calculate the permanence 
of geological reservoirs through time, as follows:

𝑃𝑔𝑒𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟𝑠(𝑡) = (1 ‒ 0.0000532% )𝑡

(𝐸𝑞. 𝐴.10)

SM.4.  Biochar

This section presents the main assumptions that have been adopted for parameterizing biochar in the 
MONET framework, and therefore in this study. 

SM.4.1. Value Chain & Sankeys
Based on existing literature18–22,  biochar’s entire/full value chain is explicitly spatio-temporally 
modelled, as shown Fig. A.5 This includes the biomass supply chain, i.e. LUC, biomass cultivation, 
processing and transport to the pyrolysis plant, the pyrolysis plant and the biochar transport and 
application on soil. Different types of crops cultivated and/or collected different types of lands are 
analysed, as well as different pyrolysis processes (i.e., slow, medium and fast pyrolysis). However, only 
the slow pyrolysis process is considered in this study, for reasons explained below.



Fig. A.5 Schematic of the biochar's whole-system model, outlining the interactions between each steps 
of biomass supply chain, pyrolysis plant, and biochar supply chain. 

Overall, the CO2 removal efficiency of biochar  (%) is calculated as 𝐶𝑂2 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝐵𝑖𝑜𝑐ℎ𝑎𝑟(𝑡)

follows (Eq. A.11-12):

𝐶𝑂2 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝐵𝑖𝑜𝑐ℎ𝑎𝑟(𝑡)

=  

∑
𝑡

(𝐶𝑂2 𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑𝑃𝑦𝑟𝑜𝑙𝑦𝑠𝑖𝑠 𝑝𝑙𝑎𝑛𝑡(𝑡) × 𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑐𝑒(𝑡)) ‒  ∑
𝑡

𝐶𝑂2 𝐸𝑚𝑖𝑡𝑡𝑒𝑑𝐵𝑖𝑜𝑚𝑎𝑠𝑠 + 𝐵𝑖𝑜𝑐ℎ𝑎𝑟 𝑆𝐶(𝑡) ‒ (𝐼)𝐿𝑈𝐶

∑
𝑡

𝐶𝑂2 𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑𝐵𝑖𝑜𝑚𝑎𝑠𝑠(𝑡)

(𝐸𝑞 𝐴.11)

𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑐𝑒(𝑡) = 1 ‒ 𝐷𝐶(𝑡)
(𝐸𝑞 𝐴.12)

where :

-  is the annual amount of CO2 captured at the pyrolysis plant 𝐶𝑂2 𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝑑𝑃𝑦𝑟𝑜𝑙𝑦𝑠𝑖𝑠 𝑝𝑙𝑎𝑛𝑡(𝑡)

over time (t CO2/ha);

-  is the annual amount of CO2 emitted by the biomass and 𝐶𝑂2 𝐸𝑚𝑖𝑡𝑡𝑒𝑑𝐵𝑖𝑜𝑚𝑎𝑠𝑠 +  𝐵𝑖𝑜𝑐ℎ𝑎𝑟 𝑆𝐶(𝑡)

biochar supply chains over time (t CO2/ha);
-  is the initial “carbon dept” associated with direct and indirect land use change (t (𝐼)𝐿𝑈𝐶

CO2/ha);
-  is biochar’s permanence over time (%);𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑐𝑒(𝑡)

-  is the decay rate of biochar over time (See below) (%);𝐷𝐶(𝑡)

- and  is time (yrs).𝑡

In Section 2 of the main study, the Sankey diagrams (Fig. 6) represent biochar’s CDR efficiency in the 
UK over a period of 100. Different types of biomass cultivated on different types of land are illustrated, 



in order to account for a range of biomass cultivation and processing practices, as well as to evaluate 
the contribution of (I)LUC on biochar’s overall CO2 removal efficiency. 

SM.4.2. Decay Rate/Permanence
Biochar is a carbon rich material, comprised of both aliphatic and aromatic compounds, having 
different rate of persistence in soil. The latter can be expressed as a two-pool exponential decay rate 
(DR) 18,22,23—the labile (i.e., rapid decay) and recalcitrant (i.e., slow decay) pools—as follows (Eq. A.13):

𝐷𝑅(𝑡) = 𝐿 × 𝑒𝑥𝑝( ‒ 𝑙𝑛(2)
𝑡1/2𝐿

× 𝑡) +  𝑅 × 𝑒𝑥𝑝( ‒ 𝑙𝑛(2)
𝑡1/2𝑅

× 𝑡)
(𝐸𝑞 𝐴.13)

where:
 is the labile fraction of biochar (%);𝐿

 is the recalcitrant fraction of biochar (%) — with ;𝑅 𝐿 + 𝑅 = 1

 is the labile half-time (yrs);𝑡1/2𝐿

is the recalcitrant half-time (yrs);𝑡1/2𝑅 

and  is the time (yrs).𝑡

Biochar’s decay rate is function of the biochar properties, i.e. how recalcitrant the carbon compounds 
in the biochar are to biotic and abiotic degradation). Generally expressed as the molar ratio of 
hydrogen to organic carbon H/Corg, biochar properties depend on the pyrolysis temperature (i.e., slow 
or fast pyrolysis) and the biomass feedstock used to produce biochar22–24. 
As shown in Fig. A.6, the estimated persistence of biochar is lower for slow pyrolysis processes than 
for fast ones (i.e., lower pyrolysis temperatures). In addition, biochar’s decay rate is also a function of 
the soil characteristics, on which it is applied. In particular, higher soil temperatures reduce biochar’s 
persistence, mainly due to the enhanced intensity of biotic and/or abiotic processes, e.g. increased 
microbial activity, sorption, desorption, and/or organo-mineral interactions22,25. As a result, the 
estimated longevity of biochar accumulated in soil decrases more rapidly in tropical climates (e.g., in 
Brazil, where the surface soil temperature is usally around 30C) than in temperate ones (e.g. in the 
UK), especially if slower pyrolysis processes have been adopted. Key scenarios inputs for Fig. A.6 are 
summarised in Table A.5.

Decay rateb 
(%)

Scenario Pyrolysis 
temperature 

(°C)

Soil 
temperature 

(°C)

a 𝐿
(%)

a 𝑅
(%)

a 𝑡1/2𝐿

(years)

a 𝑡1/2𝑅

(years)
Over 

100 yrs
Over 

500 yrs
Over 
1,000 

yrs
Slow pyrolysis 
- UK

350–450°C 10.9 46 54 104 460 70 27 12

Slow pyrolysis 
- Brazil

350–450°C 25 77 23 84 515 54 13 6

Medium 450–600°C 10.9 29 71 92 617 64 41 23

Table A.5 Two-pool exponential model for biochar’s decay rate, under different scenarios (i.e., pyrolysis 
temperature and soil temperature).



pyrolysis - UK
Fast pyrolysis 
- UK

≥ 600°C 10.9 40 60 270 1075 87 54 34

Fast pyrolysis 
- Brazil

≥ 600°C 25 44 56 136 575 76 34 17

a Data interpolated from (Woolf et al., 2021)22.
b Data from (Woolf et al., 2021)22.

Finally, although fast pyrolysis processes result into more persistent biochar (and therefore more 
permanent CDR), the share of biochar produced is lower than in the case of slow pyrolysis processes— 
biochar yield decreases from 40% (i.e., C yield of 48-61%) to 12% (i.e., C yield of 14-18% C) — and are 
therefore, overall, less efficient, as shown in Fig. A.7. For this reason, if biochar is produced for the 
purpose of achieving CDR, then only slow pyrolysis processes should be considered.

Fig. A.6 Different decay rates for biochar over 1,000 years.



           Fig. A.7 Comparison of CDR efficiencies between slow-pyrolysis and fast-pyrolysis.

SM.5.  Direct Air Capture with CCS (DACCS)

This section presents the main assumptions that have been adopted for parameterizing DACCS in the 
MONET framework, and therefore in this study. 

SM.5.1. Value Chain & Sankeys
Three DACCS technologies are considered in this study, for which their entire value chains are explicitly 
spatio-temporally modelled, as shown Fig. A.8 : A solid sorbent DAC technology and a liquid solvent 
for the capture of CO2 directly from the air26  and sea water mineralisation for the capture of CO2 from 
the sea27. For the liquid solvent DACCS, high-grade heat (i.e., 900°C2,3) is either provided by natural 



gas or by hydrogen and power by the electricity grid in the UK. In particular, based on (Keith et al., 
2018)3, the CO2 emissions resulting from the combustion of natural gas are captured within the DAC 
plant. For the solid sorbent DACCS, heat and power are provided by the electricity grid in the UK, and 
we assume the use of a heat pump (COP = 3) for the conversion of the grid power to low-grade heat 
(i.e., ~100°C2).

SM.5.2. Decarbonisation of the Energy Sector
DACCS’s CDR efficiency is mainly reduced by the carbon intensity of the energy used, which vary with 
the DAC technology (i.e., solid sorbent, liquid solvent or seawater mineralisation), with the region in 
which, and when, it is deployed. The decarbonisation of energy sector, in particular the heat supply 
(via natural gas, hydrogen or electricity) and the electricity grid, is detailed in Section A.1.

SM.5.3. Permanence of geological reservoirs
See Section A.3.3.

SM.6.  Enhanced Weathering (EW)

SM.6.1. Value Chain & Sankeys
Based on existing literature28–31,  EW’s entire/full value chain is explicitly spatio-temporally modelled, 
as shown Fig. A.9.

Fig. A.8 Schematic of the DACCS's whole-system model, for the liquid solvent (LS), 
solid sorbent (SS), and seawater mineralisation (SWM) DAC technologies.



Fig. A.9 Schematic of the EW's whole-system model, outlining each steps of the rocks supply chain.

SM.6.2. CO2 sequestration Potential & Carbonation Rate
Enhanced weathering’s CO2 sequestration potential increases over time, as silicate rocks weather, and 
saturates (permanently) afterwards, once the rocks are fully weathered. By then, the rocks have 
reached their maximum CO2 sequestration potential, which is inherently permanent.

As detailed in (Beerling et al., 2020)32, the chemical reactions involved with the rocks weathering 
process are 1) the formation of ions HCO3

-, resulting from the transfer of base cations, such as calcium 
ions (Ca2+), from soil drainage waters to surface waters, and then 2) the precipitation of calcium 
carbonate (CaCO3), resulting from the transport of ions Ca2+ and HCO3

- to the ocean.  These two 
reactions are shown below (Eq. A.14-15):

The chemical reactions involved with the rocks weathering process are 1) the formation of bicarbonate 
ions (HCO3

-), resulting from the transfer of base cations, such as calcium (Ca2+) or magnesium (Mg2+) 
ions, from soil drainage waters to surface waters (when the rocks are exposed to water) (Eq. A.14-15), 
and 2) the precipitation of calcium carbonate (CaCO3), resulting from the transport of ions HCO3

- to 
the ocean, and their reactions with ions Ca2+ (Eq. A.16).

For example, forsterite (silicate mineral) is dissolved trough the following reaction:

𝐶𝑎𝑆𝑖𝑂3 + 2𝐶𝑂2 + 3𝐻2𝑂 → 𝐶𝑎2 + +  2𝐻𝐶𝑂 ‒
3 +  𝐻4𝑆𝑖𝑂4

(𝐸𝑞 𝐴.14)
Wollastonite (another silicate mineral) is, instead, dissolved through the following reaction:
𝑀𝑔2𝑆𝑖𝑂4 + 4𝐶𝑂2 + 4𝐻2𝑂 → 2𝑀𝑔2 + +  4𝐻𝐶𝑂 ‒

3 +  𝐻4𝑆𝑖𝑂4

(𝐸𝑞 𝐴.15)
Eventually, part of the ions HCO3

- are transported to the ocean, where they are mineralised following 
the reaction below:

𝐶𝑎2 + +  2𝐻𝐶𝑂 ‒
3  → 𝐶𝑎𝐶𝑂3 + 𝐶𝑂2 +  𝐻2𝑂

(𝐸𝑞 𝐴.16)



Whilst in the first two reactions (Eq. A.14-15), 2 moles of CO2 are sequestrated for 1 mole of Ca2+ or 
Mg2+, 1 mol of CO2 is emitted back, into the ocean, in the third reaction (Eq. A.16).
Overall, because not all bicarbonate ions (resulting from Eq. A.14-15) are transported to the ocean 
and then mineralised, it is conventionally assumed that, overall, 1.7 mol of CO2 is sequestrated per 
mol divalent cation produced28,29,32—the CO2 sequestration potential of a rock is equal to 1.7 times its 
carbonation potential.

As such, EW’s CO2 sequestration potential  over time (t CO2/t 𝐶𝑂2 𝑠𝑒𝑞𝑢𝑒𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑊(𝑡)

rock) is evaluated as follows:

𝐶𝑂2 𝑠𝑒𝑞𝑢𝑒𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑊(𝑡) = 𝜔 × 𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑊 × 𝐶𝑅(𝑡) 
(𝐸𝑞 𝐴.17)

where: 

  is the maximum/theoretical carbonation potential of silicate rocks (t 𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐸𝑊

CO2/t rock);
  is the “carbonation to CO2 sequestration” conversion factor (%), which accounts for the 𝜔

additional drawdown from cation flux into the ocean. As explained above, ;𝜔 = 1.7

  is the carbonation rate of EW over time (%);𝐶𝑅(𝑡)

 and  is time (yrs).𝑡

Typically, carbonation rate —the share of rock that weathers every year—is a function of the rock 𝐶𝑅

weathering rate —itself function of soil characteristics, i.e. temperature33 and pH34, and mineral 𝑊𝑅

composition—and size of rock 29,35.  can be modelled as a function of the soil pH  and 𝑊𝑅 𝑝𝐻

temperature  and the mineral composition , using generalized equations for the linear transition 𝑇 𝑚

state theory law, as in (Beerling et al, 2020)36 and (Tayor et al, 2016)37 and  can then be modelled 𝐶𝑅
with a shrinking core model, as suggested in (Renforth, 2012)28 . This is shown in the following 
equations (Eq. A.18-20).

The carbonation rate  is expressed as follows:𝐶𝑅

𝐶𝑅(𝑡,𝑑𝑇) =
𝑑3

𝑇 ‒  (𝑑𝑇 ‒ 2 × 𝑊𝑅 × 𝑉𝑚𝑡)3

𝑑3
𝑇

(𝐸𝑞 𝐴.18)
where:

  is the target rock size after grinding (m),𝑑𝑇

  is the weathering rate of the rock (mol m-2 s-1),𝑊𝑅

  is the molar volume of the rock (m3 mol-1),𝑉𝑚

 and  is the time (s).𝑡

The weathering rate  is expressed as follows:𝑊𝑅



𝑊𝑅 =  

∑
𝑚

𝑀𝑓𝑚 × 𝑀𝑚𝑚 × 𝑊𝑅𝑚

∑
𝑚

𝑀𝑓𝑚 × 𝑀𝑚𝑚

(𝐸𝑞 𝐴.19)
where:

  is the molar fraction of the mineral  within the rock (%g),𝑀𝑓𝑚 𝑚

  is the molar mass/weight of the mineral  within the rock (g mol-1),𝑀𝑚𝑚 𝑚

 and  is the weathering rate of the mineral  (mol m-2 s-1).𝑊𝑅𝑚 𝑚

And the weathering rate of a mineral   applied to a soil with pH  and temperature  is 𝑚 𝑊𝑅𝑚 𝑝𝐻 𝑇
expressed as follows: 

𝑊𝑅𝑚(𝑝𝐻,𝑇)

=  𝑘
𝐻 + × 𝑒

‒

𝐸𝑎
𝐻 +

𝑅
×  (1

𝑇
‒

1
298.15)

× 10
‒ 𝑛

𝐻 + × 𝑝𝐻
+  𝑘𝐻2𝑂 × 𝑒

‒

𝐸𝑎𝐻2𝑂

𝑅
×  (1

𝑇
‒

1
298.15)

+  𝑘
𝐻𝑂 ‒

× 𝑒
‒

𝐸𝑎
𝐻𝑂 ‒

𝑅
×  (1

𝑇
‒

1
298.15)

× 10
𝑛

𝐻𝑂 ‒ × (𝑝𝐻 ‒ 14)

(𝐸𝑞 𝐴.20)
where:

  is the rate constant of the individual weathering agent, e.g. [H+], [H2O]  or [HO-] (mol m-2 s-1),𝑘𝑖

  is the apparent activation energy of the individual weathering agent (kJ mol-1),𝐸𝑎𝑖

  is the gas constant (kJ mol-1 K-1),𝑅

 and  is the reaction order of the individual weathering agent (-).𝑛𝑖

As shown in Fig. A.10, EW’s carbonation rate is a function of the rocks properties (i.e., type, 
composition and size). For example, the carbonation rate of rocks increases as the size of the rocks 
decreases—it takes about 250 years for 10 µm fast-weathering basalts to be entirely weathered, 
whereas it takes more than a millennium for 50 µm ones. Another example shows that, owing to the 
type and composition of the rocks, dunite rocks weather faster than fast-weathering basalt, 
themselves faster than slow-weathering basalts—it takes respectively 35, 250, and 580 years for these 
rocks, all ground to 10 µm and applied in the UK, to reach their maximum carbonation potential.
Moreover, EW’s carbonation rate is also a function of the soil on which the rocks are applied (i.e., soil 
temperature and pH). For example, increasing soil temperatures result into higher weathering rates, 
and therefore faster carbonation rates—it only takes 113 years in Brazil (where the average soil 
temperature is about 30), compared to 250 years in the UK (where it is about 10.8), for 10 µm fast-
weathering basalts to be entirely weathered. A last example shows that extreme pH values (towards 
acid or base) also result into faster carbonation rates—it takes 375 years in China (where the average 
soil pH is about 7), compared to only 250 years in the UK (where it is about 5.4), for 10 µm fast-
weathering basalts to be entirely weathered.



Finally, we recognise that when rocks are ground to a specific size target, the resulting size of grinded 
rocks usually follows a distribution28,32, rather than a single rock size. The resulting carbonation rate 

 is therefore equal to the weighted sum of the CR , specific to a size , as shown below:𝐶𝑅𝑑𝑖𝑠𝑡 (𝑑𝑇) 𝑑𝑇

𝐶𝑅𝑑𝑖𝑠𝑡(𝑡) =  ∑
𝑑𝑇

𝐶𝑅(𝑡,𝑑𝑇)

(𝐸𝑞 𝐴.21)

However, this is not accounted for in this work, we only assess CR for a single target rock size—
either 10 or 50 µm—as the aim is to emphasize and provide insights on the key elements that impact 
EW’s CDR efficiency the most. 
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