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ABSTRACT: Short-lived and poorly organized convective cells, often called weakly forced thunderstorms (WFTs), are a
common phenomenon during the warm season across the eastern and southeastern United States. While typically benign,
wet downbursts emanating from such convection can have substantial societal impacts, including tree, power line, and
property damage from strong outflow winds. Observational studies have documented the occurrence of severe (25.7 m s21

or higher) wind speeds from wet downbursts, but the frequency of severe downbursts, including the spatial extent and tem-
poral duration of severe winds, remains unclear. The ability for modern observing networks to reliably observe such events
is also unknown; however, answering these questions is important for improving forecast skill and verifying convective
warnings accurately. This study attempts to answer these questions by drawing statistical inferences from 97 high-resolution
idealized simulations of single-cell downburst events. It was found that while 35% of the simulations featured severe winds,
the spatial and temporal extent of such winds is limited}O(10) km2 or less and persisting for around 5 min on average.
Furthermore, through a series of simulated network experiments, it is postulated that the probability that a modern meso-
net observes a severe wind gust given a severe downburst is around 1%. From these results, a statistical argument is made
that most tree impacts associated with pulse convection are likely caused by subsevere winds. Several implications for fore-
casting, warning, and verifying WFT events fall out from these discussions.

KEYWORDS: Convective storms; Forecasting; Operational forecasting; Probability forecasts/models/distribution;
Cloud-resolving models; Idealized models

1. Introduction

Microbursts and macrobursts (hereafter collectively referred
to as downbursts) emanating from weakly forced thunderstorms
(WFTs; Miller and Mote 2017a) are a well-documented hazard
to the aviation and wind engineering communities as well as so-
ciety at large due to the erratic low-level wind shear and strong
winds capable of tree and structural damage associated with the
thunderstorm outflow (Fujita 1981a; NTSB 1986; Fujita 1990;
Schoen and Ashley 2011). Downbursts are formally described as
an intense downdraft emanating from convection that rapidly
spreads out radially upon reaching the surface (Fujita 1990). The
starburst outflow pattern typically observed with downbursts
can pose wind risks away from the primary downdraft, including
areas displaced well outside of the parent storm’s path. Down-
bursts can occur in clusters or in isolation and are often catego-
rized based on the diameter of their outflow: 4 km or less is
deemed a microburst, while .4 km is considered a macroburst
(Fujita 1981b). More concentrated “burst swaths” may occur
within a downburst and are typically on the order of around
100 m (Fujita 1981b). These swaths often feature the most in-
tense horizontal winds, which have been documented exceeding
the National Weather Service (NWS) severe (SVR) thunder-
storm warning criteria [25.7 m s21 or 50 kt (1 kt ’ 0.51 m s21),
hereafter rounded to 26 m s21 for simplicity] [Fujita and
Wakimoto 1981; Wakimoto 1985; Caracena and Maier 1987;
Atkins and Wakimoto 1991 (hereafter AW91); Wheeler and

Spratt 1995]. In rare cases, downburst winds have been ob-
served up to 67 m s21 (Fujita 1985).

Romanic et al. (2022) found that downburst environments
were most common during the summer months across the
southwest and southeastern United States when conditioned
on lightning occurrence, though the thermodynamic environ-
ments and storm morphologies of these two regions can differ
considerably. Dry downbursts [downbursts in which precipita-
tion does not reach the surface (Wakimoto 1985)] are more
common across the High Plains and southwest due to the
propensity for warmer, drier surface conditions and steeper
midlevel lapse rates emanating off the nearby terrain. These
thermodynamic conditions promote deep, well-mixed bound-
ary layers favorable for evaporating falling precipitation
(McCarthy et al. 1982; Wakimoto 1985). Southeast downburst
environments are typically characterized by higher moisture
content (i.e., greater surface dewpoints and precipitable water
values) due to closer proximity to the Gulf of Mexico, result-
ing in lower cloud bases and shallower subcloud layers com-
pared to dry downburst environments (AW91). As a result,
most downbursts across the southeast feature precipitation
reaching the surface and are considered “wet” downbursts.

Motivated by a series of fatal airliner accidents due to
downburst events, multiple field campaigns during the late
1970s and 1980s documented the low-level flow patterns asso-
ciated with both wet and dry downbursts as well as the mor-
phology of the parent thunderstorm and the convective
environment (Fujita 1978; McCarthy et al. 1982; Dodge et al.
1986; Rinehart and Isaminger 1986; Caracena and Maier
1987). The results from these field studies were expanded
upon by subsequent data analyses (Hjelmfelt 1988; Wakimoto
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and Bringi 1988; Kingsmill and Wakimoto 1991; Lee et al.
1992; Wakimoto et al. 1994) and numerical simulations (Proctor
1988, 1989, 1994; Orf and Anderson 1999; Chay et al. 2006; Kim
and Hangan 2007; Mason et al. 2009; Anabor et al. 2011; Orf
et al. 2012; Oreskovic et al. 2018), which provided further insight
into the near-surface flow patterns of downbursts and the mecha-
nisms by which they occurred.

This early work laid the foundation for a number of convec-
tive parameters and indices that attempt to forecast the occur-
rence of downbursts to alert aircraft of low-level shear and
aid in severe wind forecasting (Wakimoto 1985; AW91;
McCann 1994; Pryor and Ellrod 2005; Pryor 2015; Romanic
et al. 2022). While some work has been done to explicitly
forecast maximum wind speeds from downbursts (Foster
1958), many of these parameters were designed with a focus
on the aviation community given the history of downburst-
related air disasters rather than aiding in severe wind forecasting.
Consequently, forecasting the occurrence of severe downbursts
from WFTs remains a challenge for both operational severe
weather forecasts (Guillot et al. 2008; Herman et al. 2018) and
numerical weather prediction (Jirak et al. 2014; Lagerquist et al.
2017; Bolgiani et al. 2020).

One possible reason for this operational challenge is the po-
tential for mischaracterization of downburst events and their re-
spective environments. Many of the surface observing networks
employed by these early field campaigns were on the meso-
gamma scale (2–200 km) with an average station separation of
2–4 km. While this spatial scale is adequate to capture the broad
nature of downburst outflows, it may be too coarse to capture
the burst swaths that have been documented on the misoscale
(1021

–101 km) (Fujita 1978, 1981b; McCarthy et al. 1982; Fujita
and Wakimoto 1981; Wakimoto and Bringi 1988; AW91).
Doppler radars employed in these studies alleviated the coarse
nature of the observing networks to a degree, but often could
not sample winds near the surface (especially at long distances).
Peak horizontal wind velocities in downburst simulations (Chay
et al. 2006; Kim and Hangan 2007; Mason et al. 2009; Orf et al.
2012) occurred within the lowest 100 m of the atmosphere, and
observational studies have found peak velocities between 50
and 200 m above ground level (AGL) (Fujita and Wakimoto
1981; Gunter and Schroeder 2015; Canepa et al. 2020), well be-
low the scanning capabilities of most operational radars except
at very close ranges. As a result, downbursts previously classi-
fied as subsevere may have in fact contained small wind swaths
exceeding NWS severe wind criteria.

These sampling problems persist today and have not been
alleviated by modern observing networks. Table 1 gives the
average station spacing of several in situ observing networks
across the country. Most mesoscale networks have an average
station spacing O(30) km, which achieves the recommended
network density for capturing most mesoscale phenomena
(Dabberdt et al. 2005). However, these scales are likely insuf-
ficient to reliably capture storm-scale phenomena such as the
peak winds of a downburst, and some stations may suffer
from sheltering effects, resulting in unrepresentative wind
measurements (Cook 2022). Similarly, the modern WSR-88D
network is likely too coarse to adequately sample near-
surface wind speeds beyond approximately 10 km. These
deficiencies, combined with human observer tendencies to
overestimate wind speeds (Adgas et al. 2012; Miller et al.
2016a; Edwards et al. 2018) and the potential for wind dam-
age due to subsevere winds (Frelich and Ostuno 2012; Miller
et al. 2016b), likely perpetuate the misclassification of se-
vere downbursts and maintain the challenge of anticipating
such events with substantial lead time and minimal false
alarm.

Better understanding the spatial and temporal distribution
of near-surface wind speeds and the probability of observing
the peak wind speed with modern mesoscale observing net-
works may help forecasters reframe their assessment of con-
vective environments, help determine the relative frequency
of severe versus subsevere winds in damaging downburst
events, and provide better guidelines for developing forecast-
ing tools and techniques. These benefits are especially perti-
nent to forecasting wet downbursts across the southeast, which
experiences a high frequency of WFTs conducive for wet
downbursts (Miller and Mote 2017b) and has well-documented
vulnerabilities to natural hazards (e.g., Emrich and Cutter
2011; Strader and Ashley 2018), but may provide utility for
other regions that experience wet downbursts (Romanic et al.
2022). Furthermore, such information may be beneficial to the
strategies and techniques of SVR warning issuance. This study
will attempt to bolster this effort by achieving the following
goals through a series of idealized high-resolution cloud model
simulations:

• Describe the spatial and temporal distribution of down-
burst wind speeds in WFT environments associated with a
damaging wind event, including the frequency of severe
winds.

TABLE 1. Average station spacing of various U.S. surface observing networks.

Network Average station spacing Reference

ASOS/AWOS network 44 km Horel et al. (2002)
West Texas Mesonet 35 km Schroeder et al. (2005)
Oklahoma Mesonet 30 km Brock et al. (1995), McPherson et al. (2007)
New York State Mesonet 27 km Brotzge et al. (2020)
MesoWest 15 km Horel et al. (2002)
ARS Micronet 5 km Fiebrich and Crawford (2001)
Oklahoma City Micronet 3 km Basara et al. (2011)
CINDE Micronet 2–10 km Wilson et al. (1988)
Recommended 10–25 km Dabberdt et al. (2005)
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• Quantify the probability that a modern mesoscale surface
observing network will sample winds reaching or exceeding
severe thresholds given a severe downburst.

2. Methodology

a. Model selection and configuration

High-resolution numerical models have long been utilized
to simulate both dry and wet downbursts. Many early studies
used a cooling function to force negatively buoyant air parcels
to the surface to replicate the surface outflow patterns of ob-
served downbursts (Proctor 1988, 1989; Orf et al. 1996; Orf
and Anderson 1999; Anabor et al. 2011). More recently, the
Bryan Cloud Model (hereafter CM1; Bryan and Fritsch 2002)
has been used to simulate both dry and wet downbursts (Orf
et al. 2012; Oreskovic et al. 2018; Schumacher et al. 2023).
CM1 has been used extensively for simulating convection on
very fine spatial scales (,1 km) (e.g., Lane and Sharman
2014; Coffer and Parker 2015; Markowski 2016; Parker 2017;
Orf et al. 2017; Chandrakar et al. 2021; Hiris and Gallus 2021;
among others), making it an ideal choice for analyzing surface
wind distributions in high detail. An additional benefit of the
CM1 is the ability to control model settings across a series of
simulations initialized from a variety of initial conditions.
Running a series of simulations with a static model configura-
tion (but differing initial conditions) of the same atmospheric
phenomenon can lead to insightful statistics. One such exam-
ple is Coffer et al. (2017), which examined tornadogenesis
probabilities from a statistical perspective utilizing 30 unique
CM1 simulations of tornadic and nontornadic supercells. To
date, no studies have attempted to examine the statistical dis-
tribution of surface winds from WFTs using output from mul-
tiple high-resolution simulations in a manner similar to the
Coffer et al. (2017) study.

This study utilizes CM1 Release 20, version 3 (https://
github.com/george-bryan/CM1/blob/main/CHANGES), with an
80 km3 80 km horizontal grid at a grid spacing of 0.1 km. The
model depth is set at 15 km and utilizes 84 vertical levels. Ver-
tical grid spacing is held constant at 0.1 km below 2 km,
stretched between 2 and 9 km, and held constant at 0.25 km
from 9 to 15 km. CM1 utilizes a staggered velocity grid
to help maintain numeric stability and preserve accuracy
(Armfield 1991). Consequently, the use of 100-m vertical grid
spacing below 2 km places the lowest model level at 50 m
AGL, though diagnosed 10-m wind and 2-m temperature and
moisture fields are output as well. A 1-s time step is used
with model data output every 60 s. Each simulated storm
is initiated in a horizontally homogeneous environment
(determined by an input environmental sounding) via a single
warm bubble with a positive 2-K thermal perturbation. The
physical dimensions and starting location of the warm bubble
are held constant between each simulation with a horizontal
width of 10 km, vertical depth of 1.5 km, and starting vertical
location of 0.5 km at the center of the model domain. This
warm-bubble configuration was selected to replicate near-
surface-based convective initiation and to maximize the
number of successful simulations based on iterative testing, as

done in previous large-eddy simulations of downbursts (Straka
and Anderson 1993; Orf et al. 2012). For this study, the Morri-
son double-moment scheme (Morrison et al. 2005) is used
since it accounts for both the mixing ratio and number concen-
tration of rain, snow, graupel, and hail}all of which are im-
portant for resolving hydrometeor drag and the evaporative
cooling processes that help drive the negatively buoyant down-
draft (Wakimoto 1985; Wakimoto and Bringi 1988; Lee et al.
1992; Atlas et al. 2004). This microphysics scheme was used in
the Orf et al. (2012) CM1 study of dry microbursts and yielded
realistic results. Additional model configuration settings are
outlined in Table 2 and are held constant between each
simulation.

The cold pools of observed WFTs are typicallyO(10–100) km
in diameter with embedded burst swaths O(100) m (Fujita 1978,
1981b; Wilson et al. 1984; Caracena and Maier 1987; Proctor
1994). The 80 km 3 80 km domain was selected in order to
capture the peak velocities associated with the embedded
burst swaths (rather than the evolution of the cold pool itself)
while conserving computational time and space. A brief sensi-
tivity analysis was performed to investigate the impact of hori-
zontal grid spacing on the resulting outflow. Four simulations
were initialized with the same input sounding, but used hori-
zontal grid spacing of 0.05, 0.1, 0.2, and 0.5 km. The maximum
50-m horizontal wind speed decreased as a function of grid spac-
ing with reductions of 2.4%, 8.4%, and 12.8% associated with
the 0.1-, 0.2-, and 0.5-km simulations, respectively. Wind speed
coverage decreased logarithmically as a function of grid spacing
at the 20 m s21 threshold, but coverage at the 24 m s21 threshold
was comparable between the 0.05- and 0.1-km simulations (the
0.2- and 0.5-km simulations had maximum winds below this
threshold).

Similarly, a brief sensitivity analysis was performed to as-
sess the influence of vertical grid spacing on the simulated
convection. Three simulations were run with 84 (i.e., the con-
figuration outlined in Table 2), 140, and 150 vertical levels, all
using a 100-m horizontal grid. The 140-level simulation fea-
tured 50-m vertical resolution below 1 km and 150-m resolu-
tion above 9 km (a stretched grid was used between 1 and
9 km). The 150-level simulation used a constant vertical grid
spacing of 100 m through the entire profile. Maximum 50-m
wind speeds for both the 140- and 150-level simulations were
within 1.5 m s21 of the standard 84-level simulation, showing
little sensitivity to vertical resolution. Interestingly, areal

TABLE 2. Additional CM1 settings.

Horizontal advection scheme Sixth order
Vertical advection scheme Fifth order
Lower boundary condition Semislip
Diffusion scheme Sixth order
Subgrid turbulence Deardorff TKE scheme

(Deardorff 1980)
Lateral boundary conditions Open radiative
Upper boundary condition Free slip
Radiation scheme None
Surface layer scheme MM5 similarity theory
Land-use type Low-intensity residential
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coverage of 50-m winds at or above 24.0 m s21 decreased by
25% in the 150-level simulation, with more substantial reduc-
tions (70%) found in the 140-level simulation. Qualitatively,
the overall structure and evolution of the convective cell itself
and its precipitation footprint were similar. Closer inspection
of vertical velocity fields within the lowest 0.5 km reveals that
these areal coverage differences are likely attributable to the
intensity and size of the initial downdraft (the 140-level sim-
ulation produced a radially smaller downdraft with weaker
downward velocity compared to the 84- and 150-level
simulations).

These sensitivities to both horizontal and vertical grid spac-
ings are not surprising based on the work of Proctor (1988)
and Bryan et al. (2003), who found similar variations with grid
spacings O(0.01–1) km. While realistic downbursts have been
generated in previous studies using a 0.5-km grid resolution
(Straka and Anderson 1993), the 0.1-km horizontal and verti-
cal (below 2 km) grid spacings were chosen for this study as a
deliberate compromise between sufficient resolution to cap-
ture the peak winds of most downburst events and saving
computational time and storage space, which were practical
limitations given the large datasets associated with this study.
This horizontal grid spacing is similar to the grid spacing used
by Schumacher et al. (2023) (0.125 km), which produced a re-
alistic severe macroburst, and meets the recommendation of
Bryan et al. (2003) who advocate for at least 0.1-km grid spac-
ing for properly resolving the turbulent structures within con-
vective clouds. However, the model domain and sensitivity
tests indicate that this configuration may be too small to cap-
ture large outflows (.80 km in diameter) and/or too coarse to
accurately resolve very fine-scale burst swaths (,0.2 km in di-
ameter). Further implications are discussed in the summary
and discussion.

Furthermore, it is acknowledged that the initial starting
height and thermal perturbation of the warm bubble may not
be optimal to produce the strongest possible convection for a
given environment. However, the warm-bubble properties are
held constant between simulations to minimize the degrees of
freedom introduced into the study. A brief exploration into
the sensitivity of the warm-bubble thermal perturbation on
the resultant downburst was investigated through a series of
five simulations roughly following the methodology of Brooks
(1992). While some variability in peak wind coverage and in-
tensity was noted as the thermal perturbation increased from
2 to 6 K (not shown), the variability of the resultant convec-
tion/downburst was considered sufficiently small to apply the
default 2-K warm-bubble perturbation across all simulations.

It is also acknowledged that this experimental design will
most closely simulate weakly forced, single-cell convection
that is described well by Byers and Braham (1948) and Miller
and Mote (2017a), which likely accounts for only a subset of
all wet downburst events. However, this convective mode is
relatively common across the southeastern United States dur-
ing the summer months (Miller and Mote 2017b) and is
known to cause the strong-to-severe wet downbursts that are
the focus of this study (Caracena and Maier 1987; Kingsmill
and Wakimoto 1991; Smith et al. 2013).

b. CM1 input sounding filtering and selection

Rather than focusing on individual convective events, this
study aims to examine damaging WFT environments in a ho-
listic sense by randomly selecting input soundings from a large
sample of candidate environments. This large sample of envi-
ronments was generated by first collecting 49 181 local storm
reports (LSRs) that exclusively featured wind damage from
the National Oceanic and Atmospheric Administration
(NOAA) Storm Data database during the period 1 January
2018–31 August 2021. Nonmeteorological biases and artifacts
associated with the Storm Data wind LSR dataset have been
well documented (Weiss et al. 2002; Doswell et al. 2005;
Edwards et al. 2018) and include LSR practices and methods
that vary by region across the United States as well as unnatu-
rally high frequencies of wind estimates ending in “0” or “5.”
However, this dataset is one of the most comprehensive
collections of wind impacts currently available. The period
1 January 2018–31 August 2021 was chosen to reduce the
potential influence of biases noted by Weiss et al. (2002) and
Doswell et al. (2005) while still collecting a large sample of re-
ports. Since these LSRs are not associated with measured
wind speeds, it is likely that this sample consists of wind dam-
age caused by both severe and subsevere wind speeds (Tirone
et al. 2024).

For each report, a nearest grid hour and nearest grid point
were assigned from the RUC/RAP-based (Benjamin et al.
2004), hourly, 40-km Storm Prediction Center (SPC) surface
objective analysis (sfcOA; Bothwell et al. 2002). At each point
and hour, most unstable convective available potential energy
(MUCAPE) and effective bulk wind difference (EBWD)
were recorded as measures of buoyancy and deep-layer wind
shear. Composite environmental soundings derived from a cli-
matology of WFTs in Miller and Mote (2017b) generally fea-
ture 0–6-km bulk wind difference (BWD) values , 10 m s21

(19.4 kt), and Thompson et al. (2007) found that an EBWD
value of 12 m s21 (23.3 kt) discriminated between the 75th
and 25th percentiles of all nonsupercellular and marginal
supercell storms (respectively) in their study sample. Since
the goal of this study is to simulate unorganized convection in
environments similar to those described by Miller and Mote
(2017b), the LSRs were filtered to retain only reports that fea-
tured MUCAPE values above 100 J kg21 (to ensure that a
buoyant parcel is present in the environment) and EBWD
values below 10.2 m s21 (20 kt). For each of the 13 069 reports
that satisfied these criteria, an environmental profile of tem-
perature, dewpoint, wind speed, and direction was collected
at the corresponding grid point and hour with a vertical reso-
lution of 25 mb from the surface to 100 mb (1 mb 5 1 hPa).
While the exact storm mode associated with each report is un-
known, these candidate profiles represent environments asso-
ciated with damaging wind events. Based on the results of
Miller and Mote (2017b), this represents a relatively small
(0.6%) subset of all WFTs.

Using environmental profiles from the sfcOA dataset has a
couple of distinct advantages. The spatial and temporal reso-
lution of the sfcOA dataset is considerably higher than the ob-
served rawinsonde network and allows for data collection
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closer to the time of the actual severe event compared to
observation-based networks. This allows for better resolution
of the diurnal heat maximum, which tends to correspond with
the most frequent time of occurrence of downbursts (Wakimoto
1985; AW91). Additionally, sfcOA profiles have been utilized
extensively in previous work and their potential limitations and
biases have been well documented. For example, Thompson
et al. (2003) and Coniglio (2012) documented surface-based
CAPE (SBCAPE) [mixed-layer CAPE (MLCAPE)] errors
on the order of 2300 to 500 (2200 to 250) J kg21 as well as a
1–2 m s21 high bias in low-level winds compared to observed
soundings. However, Coniglio (2012) acknowledged that the
sfcOA profiles improved upon 1-h RUC forecast soundings
due to the incorporation of surface observations in the hourly
analyses. More recently, Coniglio and Jewell (2022) found a
2–4 m s21 low bias in near-ground winds when comparing
sfcOA soundings to observed field study soundings but noted
nearly unbiased dewpoint values near the surface with a slight
dry bias above 1 km. Thermodynamic errors throughout the
profile will propagate into other measures of convective poten-
tial, such as any buoyancy parameter. These errors could be
detrimental when studying low-buoyancy environments where
an error of a few 100 J kg21 can influence a forecaster’s inter-
pretation of convective potential. As it will be shown later, the
environments in this study generally feature high values of
MUCAPE (over 1000 J kg21), so such errors will be less influ-
ential in the subsequent simulations and analyses. Previous
work on downbursts suggests that outflow generation is pri-
marily a function of the thermodynamic properties of the
environment rather than low-level kinematics. Hence, the
small errors in the sfcOA wind profiles documented by prior
studies (e.g., Coniglio and Jewell 2022) should not be overly
detrimental.

One known source of error in this study involves the calcu-
lation of convective parameters as compared to known sfcOA
values. A more thorough environmental assessment of each
candidate profile was completed using the MetPy version 1.6
software (May et al. 2022). This meteorological analysis li-
brary utilizes slightly different methods for determining buoy-
ancy metrics (such as MUCAPE) than the methodology
employed by sfcOA (Hart and Korotky 1991). Similarly, as of
version 1.6, MetPy does not offer a way to directly calculate
the effective inflow layer or any related variables such as
EBWD. A methodology for determining the effective inflow
layer (and related variables) was custom written based on the
definition of the effective layer found in Thompson et al. (2007).
A comparison of the sfcOA EBWD values to the custom,
sounding-derived EBWD values found a bias of 1.2 m s21,
which was considered sufficiently small to not mischaracterize
the nature of the convective environment. However, this did re-
sult in some profiles near the 20-kt sfcOA threshold being recal-
culated above the threshold.

Additional sfcOA profile limitations are highlighted by
Thompson et al. (2012), who noted the tendency for convec-
tive storms to develop in the vicinity of baroclinic zones,
which may lead to an unrepresentative sfcOA profile if the
underlying RUC/RAP model inaccurately analyzes the posi-
tion of the thermal gradient. Similarly, Potvin et al. (2010)

focused on potential problems with choosing proximity
soundings too close or too far from a target storm as a repre-
sentation of the storm environment. In light of these concerns,
it is acknowledged that creating a profile at the grid point and
hour closest to the wind damage LSR does not necessarily
guarantee a profile that perfectly represents the target con-
vective environment. However, as with previous studies
(Grams et al. 2012; Brotzge et al. 2013; Anderson-Frey et al.
2016; Brown et al. 2021), these concerns are mitigated by uti-
lizing a large sample size such that errors in individual profiles
should not have a significant impact on subsequent analyses.
This assertion is supported below by comparing the environ-
mental distribution of the candidate profiles to documented
WFT environments.

The spatial distribution of candidate soundings (Fig. 1)
reveals the highest concentration of reports across the mid-
Atlantic, with decreasing density southwestward along the
Appalachians into the southeastern United States. Candidate
soundings become increasingly sparse west of the Mississippi
River and into the High Plains and the southwestern United
States, where thermodynamic profiles tend to favor dry down-
bursts (Wakimoto 1985). The LSR maximum across the mid-
Atlantic region may be influenced to some degree by higher
population density, but is more likely influenced by local
Weather Forecast Office (WFO) LSR reporting practices
(Weiss et al. 2002; Doswell et al. 2005) and higher forest den-
sity (i.e., more potential damage indicators) compared to
other regions east of the Mississippi River (Woodall et al.
2006). This idea is consistent with the findings of Smith et al.
(2013), who noted that the greatest concentration of wind
LSRs shifted from the southern Appalachians to the central
High Plains when only considering measured wind reports,
implying that most wind reports east of the Mississippi River
were associated with wind damage rather than measured se-
vere wind speeds. Although not the maximum, high kernel
density values are noted across the southern Appalachians
and into the southeastern United States, which has been the
focus of multiple previous wet downburst studies (Dodge et al.
1986; AW91; Miller and Mote 2017b) and compares well with
the frequency of days with wind-damage-producing WFTs
noted in Miller and Mote (2018; hereafter M18).

Although no geographic restrictions were placed on the lo-
cations of the candidate soundings, the goal of this study is to
primarily focus on wet downbursts. Therefore, certain ther-
modynamic restrictions are required to filter out soundings
that may be described as a dry downburst environment rather
than a wet downburst environment. While no clear selection
criteria emerge from previous studies, Wakimoto (1985)
found that dry downbursts are typically associated with envi-
ronments that feature a deep, well-mixed boundary layer (the
prototypical “inverted-V” profile) with dry-adiabatic lapse
rates between 9.08 and 10.08C km21 extending from the sur-
face (where a shallow superadiabatic layer may be present) to
the cloud base. Conversely, AW91 found that wet microburst
environments tended to feature warmer cloud bases, lower
midlevel lapse rates, and shallower subcloud layers with
higher relative humidity compared to dry microburst environ-
ments. The climatological studies of Miller and Mote (2017b,
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2018) more fully described environments associated with
weakly forced thunderstorms and similarly found lower
(mid)-tropospheric relative humidity values on the order of
75%–80% (50%–70%), as well as equivalent potential tem-
perature (theta-e) deficits (the difference between the maxi-
mum theta-e value in the lowest 700 mb and the lowest theta-e
value above 700 mb; AW91) between 20 and 30 K and
MLCAPE values generally between 1000 and 2000 J kg21.

To create a dry/wet environmental filter, a mean profile of
temperature and dewpoint was compiled from the 13 069 can-
didate soundings (not shown). This profile featured a surface
to 3 km AGL lapse rate of 5.08C km21}considerably less
than the 9.08–10.08C km21 lapse rates found by Wakimoto
(1985). Furthermore, the surface to 850 mb (850–500 mb)
mean relative humidity value was 66% (62%) with a theta-e
deficit of 21.0 K and MLCAPE value of 1214 J kg21. These
metrics more closely align with the characterization of a wet
downburst environment outlined by AW91 and Miller and
Mote (2017b, 2018), lending confidence that a considerable
portion of the candidate soundings are likely wet downburst
environments. Since the lower-tropospheric relative humidity
profiles of dry and wet downburst environments tend to be dis-
similar, a measure of low-level relative humidity was chosen to
differentiate between “dry” and wet candidate soundings.
More specifically, the standardized deviation (or Z-score) of
the 0–3 km AGL mean relative humidity from each candidate
sounding is computed against the same metric of the mean
profile. This allows for an objective measure of how much the
candidate deviates from the target environment. A Z score of
62 was chosen as a cutoff to eliminate profiles that were too
moist (likely due to convective contamination) or too dry to
be considered a wet downburst environment. This eliminated
530 candidate soundings from consideration.

The remaining candidate soundings were randomly sam-
pled without replacement to be used as the initializing sound-
ing for a CM1 simulation. Each selected sounding was plotted
and inspected for any overt errors prior to the simulation. A

successful CM1 simulation was defined as a simulation in
which convection was generated, the initial downburst oc-
curred within the model domain, and numerical stability was
maintained during the full 2-h model integration time. Some
simulations featured outflow winds that spread beyond the
model domain after the initial downburst. In such cases, it was
subjectively determined whether the wind field within the do-
main was representative of the downburst as a whole. A gen-
eral guideline was whether the maximum wind swath was
captured within the model domain. If not, the simulation was
omitted from further consideration. This method was chosen
to expedite the simulation-generating process after tests using
moving domains yielded only marginal improvements, largely
due to convective outflow outpacing the mean storm motion
used to determine the domain motion. Furthermore, simula-
tions that began to autoconvect during the 2-h simulation
time were omitted from the study; this was an infrequent oc-
currence associated with deeply mixed environments with no
inhibition. Candidate soundings that were too close spatially
(within 18 latitude or longitude) and temporally (same grid
hour) to a previously successful CM1 simulation were not
used. This process was repeated until 97 valid simulations
were generated for analysis.

c. Environmental distributions of input soundings

Environmental distributions of the 12 539 candidate sound-
ings and the 97 CM1 input soundings were compiled (Fig. 2)
and compared to previously documented wet downburst envi-
ronments to ensure that the target phenomena can be accu-
rately simulated. The analyses of WFT environments by M18
provide useful metrics for comparison. For example, the inter-
quartile ranges of MLCAPE (Fig. 2b), vertical totals (VTs;
Fig. 2g), total totals (TTs; Fig. 2h), theta-e deficits (TEDs;
Fig. 2i), and downdraft CAPE (DCAPE; Fig. 2j) fall within
similar ranges as the “severe-wind-supporting” WFT events
in M18. One caveat to consider is that the environmental
climatology produced by M18 did not explicitly differentiate

FIG. 1. The kernel density estimate (number of LSRs per square kilometer over a 40-km grid; fill) of all candidate
wind damage LSRs (blue dots) during the period 1 Jan 2018–31 Aug 2021, as well as the locations of the CM1 initiali-
zation soundings for this study (black stars).
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between downburst- and nondownburst-related damaging
wind events. Nonetheless, the environments in this study ap-
pear to be consistent with the fact that the candidate profiles
were all associated with wind damage of some form. The 25th
percentile of theta-e deficits (Fig. 2i) is near (above) 20 K for
the candidate profiles (CM1 initialization soundings), which
indicates that at least 75% of the environments are above the
20-K criteria for a wet microburst environment proposed by
AW91.

Additional environmental comparisons are made by generat-
ing a composite profile from the 97 CM1 initialization soundings
(Fig. 3). This mean profile shares similarities with previously
documented wet microburst profiles (Kingsmill and Wakimoto
1991; McCann 1994; Wheeler and Spratt 1995; Atlas et al. 2004)
and the wet microburst model profile developed by AW91.
One of the more important features of this mean sounding is
the relatively shallow (below 800 mb) mixed-layer LCL height
with a 0–3-km lapse rate of 7.48C km21 and layer-average rela-
tive humidity of 68%. This is in contrast with the deeper, drier
boundary layers found in dry downburst environments that typ-
ically feature steeper low-level lapse rates (Wakimoto 1985;
Wakimoto et al. 1994). Additionally, a mean EBWD value of
6.2 m s21 (12 kt) suggests low potential for organized convec-
tion (i.e., supercells) based on Thompson et al. (2007), and the
mean theta-e profile (not shown) is similar to previously docu-
mented wet downburst environments (Kingsmill andWakimoto
1991; AW91; Wheeler and Spratt 1995). The 97 CM1 initializa-
tion soundings span the months of May through October with
the majority (90%) of the soundings occurring during the sum-
mer months of June, July, and August. Temporally, the sound-
ings ranged from 1400 to 0100 UTC, with 74% occurring within
the 1800–2200 UTC period. These temporal statistics fall within

the period of peak diurnal heating for the eastern CONUS sum-
mer and are comparable to the most common downburst occur-
rence times documented by AW91 (1500–1600 CDT). These
comparisons lend confidence that the environmental distribu-
tions characterized by Figs. 2 and 3 and the CM1 input sound-
ings are representative of wet downburst environments.

3. CM1 simulation results

a. CM1 simulations compared with reality

Prior to drawing statistical inferences from the results of
the 97 simulations, a qualitative assessment was performed to
ensure that the simulated downbursts are reasonably repre-
sentative of reality. Convection generated by each of the CM1
simulations generally adheres to the definition of “weakly
forced thunderstorms” or “air mass thunderstorms” estab-
lished within the meteorological community (Miller and Mote
2017a). Convection in all simulations produced rainfall at the
surface with an average maximum rainfall amount of 2.56 cm
(1.01 in.). All but two simulations resulted in rainfall amounts
over 0.25 cm (0.1 in.), and four simulations produced rainfall
amounts over 5.08 cm (2.0 in.). Time-series analyses of both
composite reflectivity and maximum vertical velocity (not
shown) indicate that nearly all simulated storms reached peak
intensity within the first 3600 s of model integration, followed
by a gradual weakening as the convective cold pool expanded.
One example of this process is given in Fig. 4, wherein the ini-
tial warm-bubble-driven updraft reaches peak intensity around
1800 s. This is followed by a rapid intensification and expan-
sion of the cold pool, which undercuts the initial cell and
initiates the weakening trend. Attempts at reintensification of

FIG. 2. A comparison of the environmental distributions between all CM1 candidate soundings (ALL; N5 12539) and the soundings used
to initialize the CM1 simulations (CM1;N5 97), which are both subsets of the wind damage LSR dataset.
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the convective cell are noted between 3600 and 5400 s on the
southern periphery of the cold pool as parcels are lifted along
the outflow boundary. However, the absence of vertical wind
shear and diminishing ascent along the weakening outflow
boundary prohibit storm maintenance. This evolution is com-
mon for weakly forced thunderstorms based on past literature
(Byers and Braham 1948; Markowski and Richardson 2010;
Miller and Mote 2017a) and is observed in weakly sheared en-
vironments in nature. One such example is given in Fig. 4d,
which depicts the evolution of a weakly forced thunderstorm
along the Mississippi/Tennessee border on 12 July 2018.

Closer inspection of the CM1 simulations reveals further
similarities with previously documented downburst character-
istics. For instance, the outflow emanating from one of the
strongest simulated downbursts (which featured peak near-
surface wind speeds above 30 m s21) displays asymmetrical
characteristics, with the strongest winds found on the down-
wind side of the downburst relative to the environmental
wind field (Fig. 5a). This pattern is identical to the numerical
results of Orf and Anderson (1999) and Mason et al. (2010),
the experimental results of Romanic and Hangan (2020), and
observations by Kingsmill and Wakimoto (1991) and Caracena
and Maier (1987). A cross-sectional analysis across the cold
pool reveals a classic rotor on the upwind edge (e.g., Fig. 5b), a
well-documented phenomenon in both observed and simulated
microburst and downburst studies (Rinehart and Isaminger
1986; Hjelmfelt 1988; Proctor 1988; Kingsmill and Wakimoto
1991; Anabor et al. 2011). A less coherent rotor is noted in the

potential temperature perturbation field on the downwind
side of the gust front, and while not formally described or
investigated, it was qualitatively noted that the symmetry of
the rotor around the cold pool varied as a function of the
low-level wind profile. However, this is expected based on
the results of Mason et al. (2010). In the simulation depicted
in Fig. 5, the peak radial velocities were associated with the
passage of the downwind gust front and attendant rotor,
though it was not investigated whether this was the case for
all simulations.

Multiple numerical simulations of downbursts (e.g., Chay
et al. 2006; Kim and Hangan 2007; Mason et al. 2009, 2010;
Vermeire et al. 2011; Orf et al. 2012; Oreskovic et al. 2018)
have documented the shallow nature of the outflow winds
with peak radial velocities generally occurring within the low-
est 100 m AGL. Sampling the vertical wind profile from
within the gust front reveals a similar structure; the strongest
winds were found at 50 m AGL, quickly decreasing to below
10 m s21 above 250 m (Fig. 5c). Similar vertical wind profiles
within the gust front were observed in the other 96 simula-
tions, with peak radial velocities found at either 50 or 100 m
AGL. A time series of 10- and 50-m wind speeds (Fig. 5d)
shows the rapid onset of outflow winds associated with the
passage of the gust front, followed by additional outflow
surges of diminishing amplitude in a fashion similar to previ-
ous observational (Wakimoto 1985; Wakimoto et al. 1994;
Wheeler and Spratt 1995) and simulated studies (Orf and
Anderson 1999; Kim and Hangan 2007; Vermeire et al. 2011;

FIG. 3. A mean sounding compiled from the 97 CM1 input soundings. The temperature and dewpoint profiles are
denoted by the red and green lines, respectively; virtual temperature and wet-bulb temperature by the dashed dark
red and light blue lines, respectively; and surface-based and mixed-layer parcel profiles by the dashed light blue and
dashed black lines, respectively, with MLCAPE filled in red. Wind barbs and hodograph winds are in units of knots.
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Orf et al. 2012; Romanic and Hangan 2020). These results
suggest that the simulated surface wind fields can be consid-
ered representative of actual downburst wind fields.

b. 50- versus 10-m winds

CM1 maintains a record of the maximum horizontal wind
speed at the lowest horizontal velocity level at every time step
(1 s) during model integration. This record is output at every
output time step (60 s) as a “maximum wind swath” grid. As
previously mentioned, using a 100-m vertical spacing below
2 km AGL places the lowest model level at 50 m AGL. In-
stantaneous surface diagnostic variables are also generated at
every output time step, which includes U and V winds at 10 m
AGL. A maximum 10-m wind speed grid can be created by
recording the maximum 10-m wind magnitude at each grid
point across all output time steps, which allows for a compari-
son of the 10- and 50-m wind speed distributions. Across all

simulations, the 10-m winds were weaker than the 50-m
winds, with an average 50:10-m wind speed ratio of 1.97. This
result is not surprising and has been reported in both high-
resolution numerical studies of downbursts (e.g., Orf et al.
2012) and observational studies of thunderstorm outflows
(Gunter and Schroeder 2015).

Although this ratio is reasonably comparable to observed
thunderstorm gust ratios (Choi and Hidayat 2002; Shu et al.
2015; Mohr et al. 2017), there are limitations to utilizing maxi-
mum 10-m wind speeds. Unlike the 50-m maximum wind
swath grids, the diagnostic surface variables are instantaneous
measures at the output time step (60 s) rather than a maxi-
mum or mean value derived from each model time step (1 s).
Consequently, the maximum 10-m wind speed may occur
between output time steps and go undocumented. This mani-
fests as a “ripple” effect in the maximum 10-m wind fields
and can easily be observed by comparing the 50- and 10-m

FIG. 4. The life cycle of a simulated air mass thunderstorm from CM1 and a comparison to an observed downburst on 12 Jul 2018. Each col-
umn shows (a) composite reflectivity; (b) instantaneous 50-m horizontal wind magnitude (fill), vectors (arrows), and 25-dBZ contour (black
line); (c) accumulated 50-m horizontal wind magnitude (fill) at simulation times 1800, 3600, 5400, and 7200 s (shown from top to bottom); and
(d) KNQA (Memphis, Tennessee) 0.58 reflectivity imagery valid at times 1802, 1904, 1932, and 2008 UTC (shown from top to bottom).
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maximum wind swath fields at the end of each model simula-
tion; one such example is given in Fig. 6.

Additionally, Markowski and Bryan (2016) demonstrated
that an LES simulation using a semislip lower boundary con-
dition that does not invoke turbulent eddies during model
initialization may suffer from unrealistically high surface fric-
tion, resulting in muted wind speeds near the ground. This cri-
terion applies to this study, suggesting that the 10-m winds
may be unrealistically low. Comparisons with the vertical
wind speed profiles observed by Gunter and Schroeder (2015)
lend credence to this idea. The 50:10-m wind speed ratios in

the Gunter and Schroeder (2015) analyses appear lower than
the 1.97 ratio found here. For these reasons, the 50-m winds
are preferable for analysis over the 10-m winds and are inter-
preted as a proxy for surface wind gusts rather than sustained
wind speeds.

Observational studies lend support to this method, as Gunter
and Schroeder (2015) documented a few instances of 10-m
winds matching 50-m wind speeds, and Canepa et al. (2020)
found instances of similar thunderstorm outflow wind speeds at
20 and 120 m AGL. Such an interpretation is not without pre-
cedent in the modeling and wind engineering communities. For

FIG. 5. (a) Instantaneous 50-m wind magnitude (fill), velocity vectors (arrows), and 25-dBZ contour (black line) of a downburst simula-
tion at model integration time 2220 s. The black dashed line denotes (b) the location of the cross-sectional analysis of potential tempera-
ture perturbation (fill), the 25-dBZ reflectivity contour (black), and velocity vectors (arrows) below 1 km, while the black dot denotes
(c) the location of the concurrent vertical wind profile and (d) the location of the 10- and 50-m wind speed time series. Note that the
domain in (a) is zoomed to focus on the outflow wind field.

FIG. 6. An example of (a) the 50-m maximum wind swath compared to (b) the 10-m maximum wind swath valid at the end of the simula-
tion (7200 s). The domain is zoomed to focus on the region of strongest 10- and 50-m winds.
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example, the Warn-on-Forecast System (WoFS) uses 80-m
winds as a proxy for 10-m wind gusts (Dahl et al. 2022), and
Oreskovic et al. (2018) analyzed 50-m gusts to assess the peak
winds experienced by structures and transmission towers.
Hereafter, all wind speed analyses will utilize the 50-m wind
field (which will be referred to as “near-surface” winds) and
should be interpreted as 10-m gusts rather than sustained
winds.

c. Temporal duration of winds

At each time step, the maximum 50-m wind speed within
the model domain is recorded, resulting in a history of the
peak near-surface winds over the course of each simulation
(Fig. 7). In general, these time series follow the documented
evolution of downburst wind fields, with a clear ramp-up pe-
riod as the initial downdraft reaches the surface, followed by
a gradual dissipation period (Romanic and Hangan 2020).
Thirty-four simulations reached or exceeded the NWS SVR
threshold, and nearly all simulations experienced their peak
wind velocity roughly within 1000 s after the initial downburst
reached the surface. Two simulations experienced secondary
peaks later in the run as a result of convection initiating along
the initial outflow boundary. The average (though not neces-
sarily continuous) duration of winds above 26 m s21 at any
point in the domain was 5.2 min, with a minimum of 1 min
(the smallest output time step) and a maximum duration of
17 min. This average duration of severe winds compares well
with the duration of maximum surface winds in other numeri-
cal studies of microbursts (Orf and Anderson 1999; Orf et al.
2012) as well as some observed cases (Wilson et al. 1984). The
total duration of winds exceeding 20 m s21 is much longer,

lasting on average 25 min; likewise, winds exceeding lower
thresholds persisted for even longer durations.

d. Severe downburst frequency

Spatial analyses of the downburst wind fields are conducted
using the final 50-m maximum wind swath field valid at the
end of each simulation. To focus the analyses on the down-
bursts themselves, it was desirable to isolate the downburst
wind field from the surrounding environmental wind field. En-
vironmental winds were removed from each maximum wind
swath field by masking wind speeds below the median value
of the field. Given the weak environmental winds (generally
,10.0 m s21), this effectively isolated the downburst wind
fields as desired. The frequency at which wind thresholds
were reached at any grid point across the 97 simulations can
then be determined.

Such frequencies are given in Fig. 8 for an assortment of
wind speeds of 10 m s21 and higher. The inverse relationship
between wind magnitude and frequency of occurrence is
worth noting. This trend follows previous studies of severe
wind, such as Edwards et al. (2018), which found a similar in-
verse relationship between wind magnitude and LSR fre-
quency. A similar relationship was found by Lombardo and
Zickar (2019) who noted a positive relationship between
yearly return intervals with increasing wind speed (i.e., stron-
ger wind speeds had smaller annual probabilities of occur-
rence). Also noteworthy is the fact that 80% of the simulated
downbursts featured winds at or above 20 m s21, and over
half (53%) produced winds at or above 24 m s21. While
subsevere by NWS criteria, such wind speeds have been docu-
mented to inflict tree damage (Frelich and Ostuno 2012).

FIG. 7. A time series of the domain maximum 50-m wind speed for each simulation. Bold lines indicate simulations that reached severe
wind criteria.
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Thirty-five percent of the simulated downbursts produced
winds at or above severe criteria, the occurrence of which cor-
roborates previous observational studies with in situ measure-
ments of severe winds from poorly organized, short-lived
convection (e.g., AW91).

Downburst wind speeds can be aggregated across all simu-
lations to create a probability density function (PDF) that de-
scribes the likelihood of observing a wind speed range at any
location on the grid. Such a PDF is given in Fig. 9 and takes
on the shape of a gamma distribution, which has been docu-
mented in other convective wind studies (Mohr et al. 2017;
Edwards et al. 2018). Damaging wind speeds reside well
within the tail of this distribution. For example, a wind speed
of 15 m s21 is in the 90th percentile of the distribution, while
a wind speed of 21 m s21 is at the 99th percentile. Likewise,
NWS severe wind criteria (26 m s21) have a percentile rank of
99.9%. Although severe winds were recorded from at least
one grid point in 35% of the simulations, this percentile rank
indicates that the probability of observing such wind at any

given point in the downburst wind field is very small. The
peak wind speed from any downburst is 37 m s21 and only oc-
curred in a single simulation. However, this result compares
well to maximum wind gusts in observed microbursts (Caracena
and Maier 1987) as well as previous numerical simulations of
wet microbursts (Anabor et al. 2011). The maximum of the
wind speed distribution may also hint at the inherent intensity
limitation of wet downbursts, though this hypothesis is not ex-
plicitly tested here.

e. Spatial coverage of winds

To further illustrate the low probability of observing severe
winds, the spatial coverage of wind speeds reaching or ex-
ceeding set thresholds was assessed (Fig. 10). The areal cover-
age of a given wind threshold was determined by first
assuming that the area surrounding each grid point can be
approximated as a square with the same dimensions as the
horizontal grid spacing (in this case, 0.1 km 3 0.1 km). This
methodology overapproximates the domain area slightly by

FIG. 8. Frequency counts depicting the number of simulations that reached or exceeded a given
wind threshold.

FIG. 9. PDF of 50-m downburst wind speeds across all simulations.
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assuming grid points on the edge of the domain have the
same area as grid points inside of the domain, but this error
was found to be very small. By using simulations that feature
outflows that exit the model domain, the spatial coverages of
some wind speeds (mainly lower wind speeds away from
the primary burst swaths) may be underestimated to some
degree.

Across all simulations, the spatial coverage decreased as a
function of the wind speed threshold, which generally follows
the same trend outlined in Fujita and Wakimoto (1981).
The aggregate coverage of winds reaching or exceeding the
10–16 m s21 thresholds is comparable and is O(102–103) km2.
Increasing the threshold to 18–24 m s21 decreases the cover-
age by roughly one order of magnitude, and the median cover-
age falls further to 100 km2 when considering the 26 m s21

threshold. Of the 34 simulations with 10-m wind speeds over
severe criteria, only eight (23%) exhibited swaths of severe
winds . 101 km2. This result supports the implications of
Fig. 9, suggesting that the probability of severe winds impact-
ing any damage indicators (such as trees, power lines, and/or
buildings) is considerably reduced compared to lower wind
speed thresholds given the very small spatial footprint. Cover-
age of 301 m s21 winds continues the downward trend, but
sample sizes above this threshold fall off considerably to 11
simulations or less, which limits confidence in drawing further
conclusions regarding spatial trends.

Such small swaths of severe winds tie directly into the oper-
ational warning challenge. Drawing from a collection of SVR
warnings from across the contiguous United States, Harrison
and Karstens (2017) found that the national average SVR
warning area was 1802 km2. A severe wind swath with an area
O(101) km2 would verify only 0.9% of this warning area, while
the maximum severe wind coverage (102 km2) would verify
9.2%. Conversely, 99.91% and 90.8% of the warning area, re-
spectively, would experience a false alarm. These metrics are
intended for illustrative purposes rather than a robust quanti-
fication of SVR warning performance in WFT events, but

they help convey the challenge of issuing SVR warnings for
WFT downbursts and highlight the potential for considerable
false alarm area.

f. Environmental predictors

Although not the primary focus of this paper, environmen-
tal parameters that may discriminate between severe and sub-
severe downbursts are briefly explored here given the
potential applicability to operational forecasts. Figure 11 gives
the same environmental parameters as Fig. 2 with samples
parsed between CM1 initialization soundings that resulted in
severe downburst winds versus subsevere downburst winds.
As found by M18 and Romanic et al. (2022), traditional met-
rics for severe thunderstorm potential such as MLCAPE and
deep-layer wind shear (e.g., EBWD) were poor discriminators
between severe and subsevere environments. Some differentia-
tion is noted in TTs (Fig. 11h), TEDs (Fig. 11i), and mixed-
layer LCL (MLLCL) (Fig. 11k) between severe and subsevere
classes, which supports previous work on environmental dis-
crimination (M18; AW91; Romanic et al. 2022). However, the
overlap in the interquartile ranges between these variables sug-
gests that using set thresholds for either variable may provide
limited utility for operational forecasts.

Interestingly, surface-based convective inhibition (SBCIN)
and most unstable convective inhibition (MUCIN) (Figs. 11d,f,
respectively) both appear to show some discrimination be-
tween the two classes. (It is worth noting that these distribu-
tions are similar owing to the fact that most profiles were
sampled during the mid- to late afternoon hours when the sur-
face-based parcel is the most unstable parcel.) One possible
explanation for this result is that convective inhibition could re-
duce updraft intensity of surface-based/most unstable parcels,
possibly resulting in less hydrometeor production and subse-
quently less precipitation drag and evaporative cooling of the
downdraft, though exploring this theory is beyond the scope of
this study. However, the fact that the median values of SBCIN
and MUCIN for both classes are zero suggests that convective

FIG. 10. Distribution of wind magnitude coverage (km2) by wind threshold (m s21). The median
of each distribution is denoted by the orange bars; the mean is denoted by green triangles.

M OORE 1077JULY 2024

Brought to you by NOAA Library | Unauthenticated | Downloaded 12/05/24 04:53 AM UTC



inhibition alone may not be sufficient for successful discrimina-
tion between severe and subsevere environments.

4. Probability of sampling severe wind: Simulated
network experiments

a. Creating simulated networks

The wind swaths found in the eight downburst simulations
with the largest spatial extent (101 km2 or greater) of severe
winds imply that a surface observing network with a maxi-
mum station separationO(3) km would be required to sample
winds over 26 m s21. While most research micronets have an
average station spacing of around 2–5 km (AW91; Fiebrich
and Crawford 2001; Basara et al. 2011; Gramsch et al. 2020),
typical operational mesonets have average station spacings
O(30) km (see Table 1). By these metrics, the probability of
observing a severe downburst wind gust by most modern ob-
servation networks is low. To quantify this probability more
formally, three simple experiments are conducted in which a
series of simulated observing networks are constructed over
the 80 km 3 80 km model domain. Each experiment is de-
signed to replicate a typical mesonet (MESO), a typical re-
search micronet (MICRO), and a replication of the observing
network deployed during the MIST field campaign (AW91).
In each experiment, 100 simulated networks are constructed
with arbitrary station placement, but similar network density,
over each of the 34 maximum wind swath grids that recorded
severe winds. The number of simulated networks that
“observe” severe winds is recorded and yields a rough estimate
of the probability that a MESO, MICRO, or MIST observing
network with random station placement would sample winds
exceeding 26 m s21. Additional details of each experiment are
given in Table 3.

The procedure for generating each simulated network and
their respective “observations” is as follows. For each experi-
ment, the minimum station spacing S of the simulated net-
work is selected to reflect the desired network type. Koch
et al. (1983) give a formula [Eq. (1)] for determining the aver-
age spacing between stations placed in a regular grid nr over a
domain with area A. Although the simulated networks in this
study are not regularly spaced, this formula can be modified
to yield an initial guess at the number of stations N needed
for each network based on the desired network density. The
primary modification is to assume Eq. (1) converges to
Eq. (2) as N becomes large. It is then trivial to solve for the
number of stations [Eq. (3)]:

Dnr 5 A1/2 (1 1 N1/2)
(N 2 1)

[ ]
, (1)

Dnr ’
A1/2

N1/2 , (2)

N ’
A
Dn2r

: (3)

A random X, Y point on the 80 km 3 80 km model domain is
chosen as a candidate location for an “observing station.” The

FIG. 11. As in Fig. 2, but classes are divided into CM1 initialization profiles that resulted in a simulation with SVR or subsevere (SUB) winds.

TABLE 3. Simulated network experiment configurations.

Experiment
name

Average station
spacing

Number of
stations

Number of
networks

MESO 33.4 km 6 100
MICRO 5.2 km 170 100
MIST 2.3 km 800 100
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distances between this candidate point and all other stations
already in the network are determined, and if the minimum
separation distance is greater than S, then the candidate sta-
tion is added to the network. If this check fails, then another
random point is selected, and the process repeats until there
are N stations in the network. (Note that the distance check is
not required for the first station added to the network.)

After there are N stations in the network, the average mini-
mum distance between stations is checked. If this average
minimum distance does not match the desired network den-
sity, N is iteratively tuned to achieve the desired network den-
sity. Once S and N are determined, they are held constant to
create 100 simulated networks with identical number of sta-
tions and network densities, but unique station placements.
The maximum wind swath grid value at the nearest grid point
was used as the “observed” wind. This process was repeated
for each of the 34 simulations that produced winds in excess
of 26 m s21, giving 3400 unique observing networks for each of
the MESO, MICRO, and MIST experiments, a grand total of
10 200 observing networks across all three experiments. One
such example from each network is presented in Fig. 12.

b. Simulated network results

After the observed winds are generated for the 3400 simu-
lated networks, the probability that a MESO, MICRO, or
MIST network would sample severe winds (or winds of any
other threshold) can be determined. If a network contained at
least one station that reached the threshold, then the network
is considered a “hit.” If no stations within the network
reached the threshold, then it is considered a “miss.” The
number of networks that hit a certain wind threshold can be

expressed as a percentage of the total number of networks for
each maximum wind swath grid. This percentage is inter-
preted as the probability that an observing network with an
average station spacing of S, but random station placement,
will sample a given wind speed for a given downburst event.

The probabilities of sampling 15, 20, 22, and 26 m s21 winds
at different spatial scales for each experiment are given in
Fig. 13. The average probability of sampling severe winds
across any spatial scale is 43% in the MIST experiment, de-
creasing to 18% for the MICRO experiment and 0.7% for the
MESO experiment. Figures 8 and 9 both support the idea that
subsevere winds are more common in downbursts than severe
winds, and Fig. 13 suggests that they have a higher probability
of being sampled as a result. For example, nearly all networks
in the MIST and MICRO experiments and 34% of the MESO
networks sampled winds of at least 15 m s21. One caveat
worth reiterating is that these experiments use 50-m wind
speeds as a proxy for 10-m gusts. While observational studies
support the idea that winds above the surface can mix down
to typical surface-station observing heights in thunderstorm
outflows (Gunter and Schroeder 2015; Canepa et al. 2020), it
is not well documented how frequently this occurs and over
what spatial scales for localized downbursts as opposed to
other convective modes.

Nonetheless, two distinct relationships emerge from these
results. The first is that for a given spatial coverage of winds
at or above a set threshold, the probability of sampling the
target threshold decreases with increasing station spacing.
Comparing the percentage of networks with a successful sam-
ple across a given spatial threshold in Fig. 13 illustrates this
idea. For example, the probability of sampling 26 m s21 winds

FIG. 12. An example of a simulated network with (top) random station placement and (bottom) gridded station placement for the
(a),(d) MIST, (b),(e) MICRO, and (c),(f) MESO networks. Stations are denoted by the black “X” marks; the black contour denotes
swaths of wind exceeding 26 m s21.
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over an area of 101 km2 decreases from approximately 80% in
the MIST experiment to around 20% and ,5% for the
MICRO and MESO experiments, respectively. Similarly,
sampling winds at or above any given threshold with an areal
coverage of 102 km2 is nearly guaranteed with the MIST and
MICRO networks, but falls precipitously to below 25% for
the MESO network.

The second relationship is that for a given wind speed
threshold, the probability of sampling increases as a function
of the spatial coverage of wind at or above the threshold, re-
gardless of network density. This relationship can be observed
in each of the experiment plots in Fig. 13 and is best described
by a logistic equation (note that the MESO experiment
did not contain enough data points to accurately fit a sigmoid
curve). The only variable is at what spatial scale the probabil-
ity of sampling begins to increase, and this appears to be di-
rectly related to station spacing within the observing network.
For instance, note that the spatial scale at which sampling
probability is 50% increases from 100 km2 in the MIST
(2.3-km spacing) experiment to 101 km2 in the MICRO exper-
iment (5.2-km spacing) and 102 km2 in the MESO experiment
(33.4-km spacing).

This relationship also suggests that there exists a spatial
threshold [hereafter referred to as the minimum required
area (MRA)] of a thunderstorm outflow at which sampling a
target wind threshold is nearly guaranteed for each network.
From signal processing, the Nyquist frequency dictates that
the sampling frequency required in order to fully resolve a sig-
nal is 1=2 the frequency of the target signal (Landau 1967).
This concept is applicable to fully resolving atmospheric phe-
nomenon as well. For example, consider a cross section of a
circular downburst cold pool with a diameter of 6 km. The en-
hanced winds within the cold pool could theoretically go

unsampled if they occurred within an observing network with
a station spacing of 6 km or greater. However, if the station
spacing is reduced by at least 0.5–3 km, then the cold pool is
guaranteed to be sampled by at least one station. This exam-
ple reflects a real-world scenario described briefly by Fujita
(1981b). In other words, multiplying the station spacing S by
two gives the smallest cold pool diameter that can be reliably
resolved by the observing network in a single dimension. To
account for the two-dimensional nature of downburst out-
flows at the surface, the product of 2S can be squared to give
the minimum required area outflow winds at a certain thresh-
old must achieve to be sampled [Eq. (4)]:

minimum required area 5 (2S)2: (4)

Consequently, this gives MRA values of 21.2, 108.2, and
4462.2 km2 for the MIST, MICRO, and MESO networks,
respectively, based on the average station spacings given in
Table 3. These theoretical values are supported by the network
simulation results in Fig. 13, although it is noted that the thresh-
old value for the MESO experiment is off the abscissa of the
figure as no simulation resulted in a coverage of 15 m s21 $

4462.2 km2. For the MIST and MICRO networks, these MRA
values can be input into their respective fitted logistic functions
to yield probability values of 98% and 100%, respectively,
which appears to validate the concept of an MRA. This rela-
tionship can be beneficial in network planning if the typical spa-
tial scale of a target meteorological phenomenon (such as a
convective downburst) is known. In more practical terms for se-
vere weather verification, this result implies that a swath of se-
vere downburst winds must be nearly 4500 km2 to guarantee
being sampled by most mesonets.

The probability of sampling severe winds by all networks
might be improved slightly by utilizing a perfectly regular

FIG. 13. Percentage of simulated networks that successfully sampled given wind thresholds (markers) using the
(top) MIST, (middle) MICRO, and (bottom) MESO network configurations and the fitted logistic functions for the
MIST and MICRO experiments (solid black line).
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gridded network. For each of the MIST, MICRO, and MESO
experiments, a gridded network with a set station spacing of
2, 5, and 30 km, respectively, was created for each downburst
wind field (e.g., Figs. 12d,e). Essentially, this yields the same
simulated observation network sampling 34 different wind
fields, which can then be used to answer the question: “Given
a regular gridded network with station spacing S, what is the
probability of sampling a certain wind threshold for any ran-
dom severe downburst wind field?” The regularly gridded
MIST network sampled winds at or above 22 m s21 in every
downburst wind field and captured 50% of the severe wind
swaths. The other networks had worse performance, sampling
severe winds in only 21% (MICRO) and 6% (MESO) of the
downbursts. However, these statistics represent the potential
for improved performance over networks with arbitrary sta-
tion placement.

5. Summary and discussion

In this study, the statistical distribution of near-surface
wind speeds within single-cell wet downburst outflows is
amalgamated from a collection of 97 high-resolution CM1
simulations. Such statistical descriptions may give forecasters
and researchers a better understanding of the potential im-
pacts from wet downbursts and their propensity for producing
winds above certain thresholds. These simulations also pre-
sent the opportunity to assess the capabilities of modern ob-
serving networks to adequately sample 261 m s21 winds
associated with severe downbursts via a series of simulated
observing network experiments. The results from the simu-
lations and network experiments point to three main
conclusions.

First, the CM1 simulations suggest that the frequency of
damaging downbursts featuring severe winds is only 35%.
Another way to interpret this result is that if a WFT produces
a wind damage report, then there is a 35% chance that the
downburst produced severe winds. Miller and Mote (2017b)
noted that only 0.6% of all WFTs in their sample were associ-
ated with a severe report of any kind. If one knowingly makes
the incorrect assumption that all reports were associated with
damaging winds, then severe WFTs would account for only
0.2% of all WFTs, though the true number is likely lower.
Such a small percentage of the total WFT population and the
considerable environmental overlap between severe and sub-
severe downburst environments (Fig. 11) underscore the diffi-
culty in correctly identifying severe WFTs. The small spatial
and temporal footprints of severe wind swaths further compli-
cate the SVR warning decision-making process.

Second, the simulated network results suggest that an aver-
age station spacing of 1.58 km or less would be required to re-
liably sample swaths of severe winds in WFT downbursts.
Few operational observing networks meet this criterion, and
the low (0.7%) probability for a typical mesoscale network to
measure a wind gust over 26 m s21 in a severe downburst in-
troduces the potential for mischaracterizing a severe thunder-
storm as subsevere. However, a combination of different
observing networks deployed over the same geographic re-
gion may meet these 1.58-km criteria and help alleviate the

potential for undersampling. A real-world example is given
by Childs et al. (2021), who documented the destructive mac-
roburst over Akron, Colorado, on 9 June 2020. Although the
thermodynamic and kinematic environments in the 9 June
event were considerably different than those studied here, a
single convective cell produced a swath of nearly 51 m s21

(100 kt) winds that were undersampled by regional ASOS sta-
tions, which were approximately 40 km apart. Instead, peak
wind speeds were observed by a denser clustering of agricul-
tural and home weather stations. In the absence of a suffi-
ciently dense network, surface observations should be used
with caution when making judgments on WFT events.

Finally, the higher frequency of occurrence and greater spa-
tial footprints of subsevere winds found in this study suggest
that wind damage}especially tree damage}is more likely
attributable to subsevere winds rather than severe winds, ow-
ing to the higher probability for subsevere winds to impact a
potential damage indicator. Frelich and Ostuno (2012) and
Schindler et al. (2012) explored how a myriad of factors
(species, age, health, diameter, soil type and moisture, root
anchoring, etc.) can result in tree damage at subsevere wind
speeds, and numerical studies by Gardiner et al. (2000),
Schelhaas et al. (2007), and Dupont et al. (2015) indicate that
tree damage can begin with canopy-level wind speeds be-
tween 10 and 20 m s21. This has implications for SVR warning
decision-making since impacts can occur at wind speeds that
are below the current NWS severe wind threshold but consti-
tute a large portion of a typical downburst wind field. This
also challenges the use of tree damage reports as verifying re-
cords for SVR warnings based on the current wording of
NWS Directive 10-511, which states that a SVR warning should
be issued “when there is radar or satellite indication and/or reli-
able reports of wind gusts equal to or in excess of 50 kt [58 miles
per hour (mph)] and/or hail size of 1 in. (U.S. quarter size) in di-
ameter or larger.” Flexible warning criteria and/or different
warning or messaging strategies may be needed to better serve
the public depending on the propensity for native vegetation to
experience impacts at subsevere wind speeds. Explicit details re-
garding regional impacts and warning criteria are beyond the
scope of this study but should be investigated to augment NWS
warning service to the public.

Comparisons to observed downbursts lend reasonable con-
fidence to the validity of these three conclusions. However,
several factors could influence the exact quantifications pre-
sented herein. While the impact to peak wind speed was small
(2.4%), increasing the grid spacing did yield a stronger down-
burst with a larger outflow radius. This suggests that peak
wind velocities may be underresolved in these simulations.
The influence of terrain was not considered but could have a
substantial impact on near-surface wind speeds (Abd-Elaal
et al. 2018). Furthermore, sensitivity to the semislip lower
boundary condition and friction parameterization utilized in
the simulations were not explicitly tested but may influence
low-level velocities (Vermeire et al. 2011). Each of these fac-
tors represents an opportunity for future research, but no sin-
gle factor is expected to be influential enough to significantly
alter the overarching findings of this study.
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The fact that severe winds were simulated within WFT
downbursts is not inherently new nor unexpected based on
past observational and simulated studies, but the quantifica-
tion of the frequency, duration, and spatial coverage of severe
wind swaths bolsters our understanding of WFT downburst
events. In turn, this exposes the weakness of modern observa-
tion networks in their ability to sample the peak winds of a
downburst. Future observational studies endeavoring to sam-
ple downburst winds in the same spirit as the early field cam-
paigns should now have a better understanding of the station
spacing requirements. This also demonstrates the need for,
and potential benefit of, denser observational networks, in-
cluding the use of regional agricultural networks or private
weather stations as in Childs et al. (2021). The results from
this study also highlight the warning challenges associated
with WFT downburst events. Even when correctly identified,
the average SVR warning may contain considerable false
alarm in both time and space. This is compounded by the like-
lihood that tree damage is occurring at wind speeds below
current NWS SVR warning criteria. By extension, this calls
into question the current practice of using tree damage re-
ports as verifying events for warnings and the appropriateness
of using a 26 m s21 wind threshold to capture true societal im-
pacts. Finally, this study presents future opportunities to test
previously proposed parameters and methodologies for se-
vere WFT downburst forecasting, as well as develop new met-
rics and tools that will ultimately aid in the forecast process.
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