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Introduction

Although drought is recognized as an important and 
overarching driver of ecosystem change, its occurrence 
and effects have been difficult to describe over large 
geographic areas (Hogg and others 2008, Panu and 
Sharma 2002). In forests, drought contributes to tree 
stress and mortality through the direct impacts of 
reduced moisture and high temperatures (Anderegg 
and others 2013, Wang and others 2012), and through 
indirect pathways such as increased disturbance 
from insects or fire (Martínez-Vilalta and others 2012, 
Mattson and Haack 1987, Meyn and others 2007, 
Raffa and others 2008, Schowalter and others 1986, 
Trouet and others 2010). Detecting drought effects 
on plant species demands detailed knowledge of 
where those species occur, but with few exceptions, 
only coarse vegetation maps are available for broad 
areas (Allen and others 2010). Long-term monitoring 
is helpful, but longer term assessments struggle with 
causal attribution. Numerous meteorologically based 
drought measures have been constructed to depict 
moisture deficits in agricultural contexts, but they may 
not accurately portray the effects of those deficits on 
forests, grasslands, or other natural vegetation types, 
where the constituent species may have diverse 
drought responses (Mishra and Singh 2010, Vicente-
Serrano and others 2012). Furthermore, in order to 
examine those responses, meteorologically based 
approaches must make an inference about the impact of 
a given level of moisture deficit on the plants. Remote 
sensing-based measures are also available that exploit 
known differences in reflected radiation among stressed 
and unstressed vegetation (Peters and others 1991, 
Peters and others 2002, Zhang and others 2013), yet 
short-term stress may not be a precursor for ecological 
impacts that could take multiple seasons or even years 
to materialize.

Measures available from meteorological station data 
can be used to infer likely moisture and temperature 
impacts on trees or other vegetation (Vicente-Serrano 
and others 2012). When summarized for different time 
periods deemed relevant (e.g., with respect to tree 
mortality, multiple consecutive years of severe drought) 
(Guarín and Taylor 2005, Millar and others 2007), they 
can better approximate impacts like vegetation loss or 
cover change. Further assessments can come from 
direct measurements from remotely sensed or plot 
data (Ji and Peters 2003, Vicente-Serrano and others 
2012, Vicente-Serrano and others 2013, Wullschleger 
and Hanson 2006, Zhang and others 2013). With 

advances in near-real-time meteorological and remotely 
sensed response technology, it is now possible to 
generate reasonable coarse-scale forecasts of certain 
drought effects, such as declines in crop yields (Arshad 
and others 2013, Hao and others 2014, Luo and 
Wood 2007). However, finer-scale translation of such 
expectations for forested areas remains challenging 
due to a lack of species- and community-specific long-
term impact assessments (Carnicer and others 2011, 
Martínez-Vilalta and others 2012, Michaelian and others 
2011). This chapter reviews the status and role of data 
mining approaches using diverse ancillary data sets that 
can be brought to bear on monitoring and assessment, 
and clarifies ways in which they can be leveraged 
to reduce the uncertainties associated with drought 
impacts in forested ecosystems.

Fundamental Challenges
Drought can have a range of species- and community-
level consequences for forests, many of which are 
poorly understood (Hanson and Weltzin 2000, Mueller 
and others 2005). The drought responses that can be 
systematically monitored at regional scales are only 
a detectable subset of all those that likely occur or 
matter, and this introduces uncertainty into monitoring 
and assessment. Breadth and efficiency are often the 
practical tradeoffs of having depth of understanding. 
With such uncertainties, our expectations for broad-
scale monitoring are somewhat different from what can 
be obtained through local field-based observations.

Broad-scale monitoring is intended to describe the scope 
and relative severity of coarse drought impacts, rather 
than to quantify effects directly with precision that often 
depend on local knowledge of topography, weather, 
or species responses. The coarse-scale expectations 
of such efforts justify application of relative drought 
indices instead of actual biophysical measurements such 
as soil moisture, temperature, or precipitation. In turn, 
broad-scale drought monitoring produces only relative 
likelihoods, but such insights may be the most relevant 
for a particular set of management questions.

To progress as an applied science, broad-scale drought 
monitoring must confront four fundamental challenges 
that are described below. Meeting these challenges will 
improve our ability to comprehend, predict, and address 
the risks posed to forests by drought.

Challenge 1: Measuring drought in ways that 
matter for different forests—Our conventional 
perceptions of drought and its effects have primarily 
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developed from how drought impacts agricultural 
production and water supplies (Wilhite and Glantz 1985). 
Yet the conventional meteorological measures of drought 
that estimate effects to field or stream may be less than 
optimal for characterizing drought impacts to forests.

When a broad-scale drought response is detected for 
forests, its implications are far more complex than 
mono-specific crop yield reduction or lowered water 
levels in reservoirs, where there is a clearer expectation 
of loss. Forests and their constituent species are highly 
variable in their tolerance of and response to drought, 
such that no single metric or indicator is likely to capture 
expected impacts (Martínez-Vilalta and others 2012, 
Mishra and Singh 2010, Svoboda and others 2004). 
Unlike annual field crops, most perennials within forest 
communities are tolerant of one or more years of 
moderate drought stress, and so scientists contend that 
multiyear measures of drought are needed (Allen and 
others 2010, Mishra and Singh 2010, Niinemets 2010, 
Panu and Sharma 2002, Wilhite and others 2007).

Interpretations of drought responses are especially 
difficult in areas of high compositional or structural 
complexity, as the sensitivity of deciduous and 
evergreen trees, shrubs, and grasses are generally not 
equivalent (Hanson and Weltzin 2000). Interpretation of 
drought effects becomes more challenging in areas that 
have been recently disturbed as these landscapes have 
vegetation in various stages of successional recovery 
with dominant species that may differ in their response 
to drought from one decade to the next (Sousa 1984). 
Similarly, it can be difficult to make sense of broad-scale 
drought responses in highly fragmented landscapes 
where forest, field, and developed areas occur in close 
proximity (Ewers and Didham 2006, Laurance 2004). 
We need clearer drought response indicators for these 
types of landscapes.

The ramifications of drought for species depend on 
when the drought occurs with respect to species’ 
seasonal phenologies (Anderegg and others 2013). 
In the Eastern United States, spring and summer 
growth often responds to winter, spring, and summer 
temperature and precipitation, but summer and fall 
drought can shorten the growing season. A number of 
western tree species depend heavily on winter rains or 
snowpack to provide a pool of available soil moisture for 
the subsequent growing season, which is effectively 
shortened when this pool is reduced (Hanson and 
Weltzin 2000). The relative importance of heat and 
moisture stress may differ (Bréda and others 2006, 

Mueller and others 2005, Orwig and Abrams 1997) due 
to fundamental regional differences in the evolutionary 
climatic environment. Because of these inherent climatic 
differences, regional patterns of species adaptations 
affect how meteorological drought is experienced, and 
how effects are shown (fig. 9.1).

Challenge 2: Establishing context from historical 
data—In an operational sense, drought is more 
than heat and dryness (chapter 2). It involves some 
measure of departure from baseline conditions for a 
given location and specified time period. Both spatial 
and temporal aspects of this definition are critical for 
accurate recognition and prediction of broad-scale 
drought effects. Extended periods of seasonal and 
interannual dryness are a normal part of many forest 
environments, particularly across much of the Western 
United States (fig. 9.1). Multiyear or decadal averages, 
as reflected in the term “normal,” can mask this climate 
variability, yet depending on the frequency and intensity 
of droughts that occur, both species and community 
attributes may be adapted to climatic extremes as much 
as, if not more than, any measure of central tendency.

Historical climate data provide both meteorological 
and biologically relevant context. Long-term 
paleoclimatological insights help contextualize the 
duration and intensity of recent drought events (chapter 
2), but the relevance of historical drought patterns for 
contemporary forests and values can be difficult to 
ascertain where forest structure or composition have 
changed. From a meteorological perspective, the length 
of climatically meaningful baselines has been long 
debated (Lamb and Changon 1981, Livezey and others 
2007, Wilks 2013), yet determining the period that is 
appropriate for understanding forest change may be far 
more difficult.

Commonly used 30-year baseline conditions may not 
be representative of the climate that existed when 
the longest lived trees established or developed. Tree 
species that produce many vegetative sprouts (as 
opposed to slower growing seedlings) after disturbance 
may subsequently have so many saplings that they 
retain demographic dominance in a site for centuries, 
regardless of the age of existing stems, and sprouting 
trees dominate many forest landscapes (Bellingham 
and Sparrow 2000, Bond and Midgley 2001, Del 
Tredici 2001, Vesk and Westoby 2004). Moreover, the 
relevant climate context for old forests may be longer 
than for adjacent areas affected by disturbance and 
recent succession. For example, the timing of drought 
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Figure 9.1—Regional differences in normal seasonal precipitation can affect how forests respond to drought. These graphs show 
historical variability in monthly precipitation for five National Climate Data Center (NCDC) Climate Divisions, 1895–2013, compared 
to the mean land surface phenology of forested Moderate Resolution Imaging Spectroradiometer (MODIS) pixels in those divisions 
as measured by the Normalized Difference Vegetation Index (NDVI) for the period 2000–2012. Box-whisker plots show the mean, 
extremes, and upper and lower quartiles of precipitation. Biweekly NDVI (green line) was derived from a National Land Cover Data 
(NLCD-2006) conditional filtering of majority forested ForWarn-MODIS data that included the following count of randomly selected 
cells: CA-6, n=110; NC-1, n=480; NY-3, n=474; OR-8, n=571; TX-6, n=247.
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episodes during the late 20th century affected the 
establishment success of white pine (Pinus strobus) in 
old fields of the North-Central United States (Dovčiak 
and others 2005). Similarly, long-lasting cohorts of 
ponderosa pine (Pinus ponderosa) established during 
favorable climate windows in the Southwestern 
United States during the early 20th century (Savage 
and others 1996). Although forest changes caused by 
drought-associated mortality may be rapid (Mueller and 
others 2005, Wang and others 2012), we may need a 
long climatic perspective to make sense of observed 
changes over the lifespan of these forest dominants.

The relevance of past forest responses to drought 
for understanding those of the present is sometimes 
questionable, as the structure and composition of many 
forests has changed over the last century in response 
to logging, invasive insects, diseases and plants, fire 
exclusion, and livestock grazing (Norman and Taylor 
2005, Nowacki and Abrams 2008). Increases in stand 
density and a decline in drought-tolerant species such 
as pines, oaks, and chestnut can make forests less 
resilient today than they were decades ago to drought 
or drought-associated disturbances such as fire (chapter 
7). This potential shift in the implications of a given 
drought erodes the predictive capacity of efforts that 
rely only on meteorological data.

Trends in climate can pose serious problems for 
developing meaningful baselines (Wilks 2013). Such 
gradual transitions may reflect the progressive effects 
of a drying climate, and that rate of change is difficult to 
detect without long-term monitoring or broad-scale plot 
data (Woodall and others 2009). Mesophytic species 
may be expanding in importance from fire management, 
which could increase forest vulnerability if severe 
drought returns (Nowacki and Abrams 2008). Forests 
may be more vulnerable because of the increased 
water needs of denser stands or more mesophytic, 
less drought-tolerant species composition (Allen and 
Breshears 1998, Guarín and Taylor 2005, Savage 1997). 
While meteorological data provide insights into where 
meteorological trends are occurring (fig. 9.2), our 
knowledge of long-term trends in forest susceptibility is 
more limited.

Our primary broad-scale insights into how forests 
respond to drought comes from satellite observations, 
yet high-resolution satellite data have only been available 
for a third of the time that meteorological data have 
been collected on a wide scale. This shorter observation 
window limits what we can learn from historical 

drought responses as shown through comparison of 
growing-season drought duration during the Moderate 
Resolution Imaging Spectroradiometer (MODIS) satellite 
period with prior baseline periods (fig. 9.3). In this 
example, drought duration was derived from monthly 
National Oceanic and Atmospheric Administration 
(NOAA) National Climate Data Center (NCDC) Climate 
Division data (Guttman and Quayle 1996). Satellites 
that pass overhead frequently, such as Terra and Aqua 
that carry the MODIS sensor, can be used to identify 
short-term stress and longer term recovery or type 
conversion; however, their coarser resolution makes 
them less useful for monitoring species-specific stress 
in mixed stands over broad areas than less frequent, but 
higher resolution data. Derived products from satellite 
observations can help characterize similarities and 
differences among droughts, as observations coarsely 
quantify how forests are affected by drought and 
drought-associated disturbances.

Challenge 3: Capturing diverse drought effects—
As an indicator for a suite of other potential drought 
impacts, vegetation stress monitoring is efficient, even 
if it does not predict specific individual tree responses. 
Such efforts only capture a fraction of drought-induced 
effects to forests, but those aspects that can be 
monitored can be strong indicators of system dynamics 
overall. For example, morphological adaptations, such as 
deeper rooting, are nearly impossible to quantify from 
either a remote-sensing or field-based perspective, but 
defoliation or canopy stress can be readily monitored.

It is difficult to translate community-level observations 
to species- or population-level responses when the 
constituent species in a region vary in their susceptibility 
and tolerance to drought (Bigler and others 2007, Floyd 
and others 2009, Hanson and Weltzin 2000, McDowell 
and others 2008, McDowell and others 2011). Individual 
species drought responses can be wide-ranging, 
divergent, or delayed (chapter 3) (Archaux and Wolters 
2006). Community-level responses include reduced 
productivity and altered composition or structure 
largely through selective mortality (chapter 4) (Archaux 
and Wolters 2006). Drought can also have secondary 
effects on the population dynamics of insects and 
diseases (chapter 6) (fig. 9.4), or on the occurrence, 
attributes, or consequences of wildfire (chapter 7), 
since stressed trees are often more susceptible. 
Drought stress induces ponderosa pine to leave 
stomates open at night, increasing exposure to ozone 
and other airborne pollutants (Grulke and others 2004). 
Grulke (2011) reported that drought stress increases 
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Figure 9.2—Long-term trends (black line) in the mean April–September Palmer Modified Drought Index (PMDI), 1895–2013, by 
National Climate Data Center (NCDC) Climate Division for the conterminous United States. Selected climate divisions are shown. 
The representativeness of the Moderate Resolution Imaging Spectroradiometer (MODIS) period relative to the past is suggested by 
the blue bar in the lower right of each inset graph. 
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Figure 9.3—Annual departure, by National Climate Data Center (NCDC) Climate Division, of mean April–September Palmer 
Modified Drought Index (PMDI) drought duration for the Moderate Resolution Imaging Spectroradiometer (MODIS) period 
(2000–2013) compared to historical drought duration for three baseline periods: (A) 1900–1999, (B) 1950–1999, and (C) the 
14 pre-MODIS years, 1986–1999. Differences at two levels of drought severity are shown: severe drought (PMDI <-2.0) and 
moderate (PDMI <-1.0).
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Figure 9.4—Variation in regional Palmer Hydrological Drought Index (PHDI) for northwestern Colorado and its relationship 
to outbreaks of the spruce beetle (Dendroctonus rufipennis). Regional drought is strongly influenced by hemispheric-scale 
variation in sea surface temperatures, particularly the Atlantic Multi-decadal Oscillation (AMO). 
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susceptibility to many pathogens that may be emerging 
with climatic change. While community-level response 
may not represent all impacts of concern, it provides the 
spatial pattern of likely effects across the landscape.

Variation in community-wide growing season stress 
may be the easiest drought-sensitive indicator to 
measure using remote sensing technologies. High-
frequency observations can detect drought progression 
or near-real-time stress or mortality from wildfire or 
insects and disease (Hargrove and others 2009). From 
programmatic high-frequency datasets, measures of 
temperature and moisture-sensitive phenomena can 
be derived such as change in the onset of spring and 
fall and the duration of the growing season. These 
community-level measures of observed land surface 
phenological changes can be related to the responses 
of individual species and seasonal disturbances such as 
wildfire.

Some drought effects are difficult to recognize or 
track without ancillary information. The drought 
responses of different vegetation types are known to 
vary (Lobo and Maisongrande 2006, Sims and others 
2014), so knowing the vegetation composition within 
particular remotely sensed grid map cells is critical for 
understanding both drought response and multiyear 
drought effects. Tree mortality can be delayed for years, 
and reduced vigor can invite second-order effects 
(Bigler and others 2007). This potential lag in response 
makes attribution more difficult without long-term 
datasets and modeling. Impacts from disturbance 
such as wildfire, insects, and diseases can be difficult 
to attribute to drought, since these are often a natural 
part of forests. With complex drivers in play, ancillary 
datasets can improve interpretations and predictions.

Conceptual models provide a graphical means of 
communicating these complex direct and indirect 
interactions. Figure 9.5 shows two example conceptual 
models for drought: a basic model of the direct 
relationships between drought, other drivers of forest 
disturbance, and their impacts (fig. 9.5A), as well as 
a more detailed model of the indirect relationships 
between drought and other landscape-level processes 
in the Interior West (fig. 9.5B). Within such models, 
contingencies can be structured as management 
options that can mitigate or prevent undesirable 
drought-associated effects. For example, in California’s 
Yosemite National Park, where tree mortality has 
been associated with drought, drought susceptibility 
may have increased due to a fire management history 

that has resulted in uncharacteristically dense stand 
structures that affect competition and water stress 
(Guarín and Taylor 2005). Thus, silvicultural methods 
such as mechanical thinning or fire may be viable 
options for improving stands and reducing the likelihood 
of drought-related tree mortality.

Challenge 4: Making drought-effect monitoring 
more applied—Broad drought-monitoring efforts 
capture changes to vegetation rather than impacts to 
individual trees. Detection of local effects is inferential 
due to the coarse nature of broad-scale observations. 
Local forest managers are usually aware when drought 
and drought-associated stresses are affecting their 
forests, yet recognizing and tracking drought effects 
becomes more difficult over States or regions. When 
large areas are affected by drought, the broad-scale need 
is often to identify those areas that are hardest hit and 
to prioritize areas for response. Such decisions can be 
greatly informed by relatively straightforward measures 
derived from systematic drought monitoring efforts.
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Composition & 
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Burn 
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Figure 9.5—Conceptual models show how outcomes can result 
from direct and indirect climate effects or from unrelated 
nondrought drivers, such as land use change, management 
actions, or succession or other biological processes (A). For 
specific environments such as the dry forests of the Interior 
West, causal models can organize and communicate more 
explicitly the complex interconnectedness of landscape 
processes such as drought, fire, beetles, and management on 
tree mortality (B).
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Near-real-time drought-effect monitoring has been 
implemented for agricultural and grazing systems that 
are sensitive to seasonal and short-term drought effects 
(Brown and others 2008). Efforts have also been 
developed to improve fire hazard assessments using 
near-real-time information about the state of drought-
sensitive fuels (Schneider and others 2008). These 
systems are highly applicable to areas with relatively 
homogenous, drought-sensitive vegetation types, but 
where land use is mixed, drought-effects monitoring 
systems are less likely to provide clear information 
for forest managers. Forests, especially those with 
an evergreen component, are generally less sensitive 
to drought than are grasslands or crops. In areas of 
more fragmented land use, this variable sensitivity 
makes it far more difficult to interpret drought effects. 
Geographic patterns in observed stress responses 
could result from actual differences in drought intensity 
or they could be from different sensitivities caused 
by the mix of cover type. Year-to-year changes in land 
use make interpretation more difficult. Use of ancillary 
datasets can help to filter out these less reliable areas 
entirely, or can be used to develop vegetation-specific 
models calibrated to their drought sensitivities (Lobo 
and Maisongrande 2006).

Finer resolution imagery can be useful for identifying 
specific drought responses, particularly for localized 
areas. While even fine-resolution imagery can harbor a 
mix of cover types that can hamper interpretations of 
drought effects, the mixture of grass, shrub, trees, or 
crops generally decreases at finer spatial resolutions 
(fig. 9.6). Small inholdings of drought-sensitive 

vegetation could also be important drought indicators 
in mixed landscapes, particularly where meteorological 
station data are lacking.

While local needs often benefit from high-resolution 
drought monitoring products, these come at a 
computational cost, which usually involves reduced 
product frequency (fig. 9.7). To detect and monitor 
forest drought stress, coarse-resolution products can 
be effective, but for questions of tree mortality or 
other detailed impacts, finer resolution research may 
be necessary. Such local management questions 
may require local assessments that are calibrated and 
tempered with information gathered in the field.

Existing Approaches Used  
for Broad-Scale Drought Impact 
Detection and Monitoring

Extended periods of extreme drought result from 
persistent continental- to global-scale climate patterns 
that affect landscapes and regions. The large extent 
and contiguity of potential drought impacts helps us 
identify where drought is occurring because long-term 
meteorological or stream gauge data are sparse and their 
use normally requires interpolation. Drought can also be 
inferred from satellite-based observations of temperature 
or precipitation, though not without difficulties. Further 
insights into drought occurrence can be harvested from 
drought effects to sensitive vegetation as observed from 
satellites, yet vegetation change can also be caused by 
factors other than drought, such as disturbance. While 
these individual approaches for detecting and tracking 

1000 m 232 m 30 m 

   (A) (B) (C)     

Figure 9.6—Mixed vegetation or land cover types that can result from different spatial resolutions, including: (A) 1000 m, (B) 232 m, 
and (C) 30 m grid cell widths. Products delivered at these resolutions would only provide one value for each unit area above, which 
typically decrease in diversity from left to right depending on the patch size of the vegetation.
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drought have limitations, integrated monitoring systems 
can combine their particular strengths (Lawrimore and 
others 2002, Steinemann 2003, Svoboda and others 
2002, Svoboda and others 2004, Tadesse and others 
2005). It should be noted, however, that none of these 
integrated systems specifically focus on drought stress 
in forested ecosystems.

Meteorology-Based Measures of Drought
Primary meteorological measurements are not 
themselves the strongest predictors of drought effects. 
Various combinations of mostly temperature and 
precipitation measurements have been formulated 
into indices that are designed to provide drought-
specific interpretations (table 9.1). These indices can 
be calculated directly at the locations of meteorological 
stations, producing a point-based map, or from gridded 
datasets (e.g., interpolated station data or reanalysis 
files). Although all of the indices in table 9.1 estimate 
the degree of moisture deficit in some context, they are 
typically associated with a particular class of drought—
meteorological, agricultural, or hydrological drought 
(chapter 2). Some indices, such as the Surface Water 
Supply Index (SWSI), have distinctive formulations that 
are clearly applicable to one drought class (hydrological 
drought, in this case). For other indices, however, 
these class associations appear to derive from subtle 
differences in how the indices operate through time. 
For instance, the Palmer Hydrological Drought Index 
(PHDI) rebounds less quickly from moisture surpluses 

or deficits than the similarly calculated Palmer Drought 
Severity Index (PDSI), which is generally considered a 
meteorological drought index (Palmer 1965). Likewise, 
the related Palmer Z-index (considered an index of 
agricultural drought) is more responsive to short-term 
moisture anomalies than either the PHDI or PDSI.

Most of the indices in table 9.1 are, like the PDSI, 
calculated using a water-balance approach between 
precipitation and potential evapotranspiration (PET). 
Indeed, many of the indices in table 9.1 represent direct 
modifications of the PDSI in response to perceived 
limitations. For instance, Heddinghaus and Sabol (1991) 
introduced Palmer Modified Drought Index (PMDI), a 
revised version of the PDSI. Their revision addressed 
one of the major areas of criticism regarding the PDSI: 
the determination of wet and dry spells. The PMDI 
yields a continuous measure that is less volatile than 
the PDSI, such that it can accurately capture a linear 
combination of temperature and precipitation effects 
across broad geographic regions (fig. 9.8).

A notable departure from the PDSI and other water-
balance-based indices is the Standardized Precipitation 
Index (SPI). The SPI characterizes moisture conditions 
during multiple, well-defined time windows; it is also 
considered more consistent across geographic space. 
Nonetheless, it only uses precipitation data, which 
could be an important limitation in the face of increasing 
recognition that high temperatures exacerbate drought 
impacts on forest mortality (Allen and others 2010, 
Breshears and others 2005, McDowell and others 
2008, Mitchell and others 2014, Vicente-Serrano 
and others 2013, Williams and others 2013). The 
Standardized Precipitation Evapotranspiration Index 
(SPEI) incorporates temperature into the water-balance 
equation via PET, but also follows the multi-temporal 
implementation of the SPI. The SPEI has outperformed 
the PDSI for monitoring drought impacts on “vulnerable 
systems” (i.e., for capturing impacts on indicator 
variables such as streamflow, soil moisture, forest 
growth, and crop yields), and appears to be better 
than the SPI at capturing drought conditions during the 
summer, when drought monitoring is arguably most 
critical (Vicente-Serrano and others 2012).

Ultimately, no meteorology-based drought index—
regardless of its specific strengths or limitations—is 
appropriate in all circumstances. For national- or 
regional-scale analysis of drought, no single indicator 
is likely to be sufficient (Steinemann 2003). The U.S. 
Drought Monitor (DM), developed by the National 
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Figure 9.7—Potential tradeoffs between spatial and temporal 
resolution measured in terms of the number of pixels per 
year needed to cover the conterminous United States with a 
remotely sensed product set of a given frequency and spatial 
resolution. Standard vegetation products from Landsat are 
at 30-m resolution, while products from Moderate Resolution 
Imaging Spectroradiometer (MODIS) are 232-m resolution, and 
products from Advanced Very High Resolution Radiometer are 
1000-m resolution. 
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Drought Mitigation Center (NDMC) with cooperation 
from the U.S. Department of Commerce and U.S. 
Department of Agriculture (Svoboda and others 2002), 
and the related North American Drought Monitor 
(NADM) (Lawrimore and others 2002), were designed 
to integrate six key and numerous supplementary 
indicators—some from station data, others via 
remote sensing—to estimate drought severity, albeit 
subjectively. The PDSI and the SPI are key indicators 
in the U.S. and North American Drought Monitors, 
while the Crop Moisture Index (CMI), the Keetch-
Byram Drought Index (KBDI), and the Surface Water 
Supply Initiative (SWSI) are among the supplementary 
indicators (see table 9.1).

Strengths and weaknesses of meteorology-based 
indices—The primary strengths of meteorology-based 
indices are that precise monthly meteorological data 
are widely available for most portions of the United 
States, and regional data extend back in time a century 
or more to provide a relatively consistent climate 
context. Individual monthly temperature station records 
in the Global Historical Climatology Network (GHCN) 
date to as early as 1701 (Lawrimore and others 2011). 
Observations from 69 countries and territories were 
available by 1880. A fairly robust station network was in 
place for the continental United States (and Hawaii) by 
the late 1800s (Menne and others 2012).

Satellites are comparatively expensive to manage and to 
maintain a calibrated and continuous record (Lawrimore 
and others 2011, Mendelsohn and others 2007, Menne 
and others 2012). However, the low spatial density of 
meteorological stations necessitates the use of spatial 
interpolation, which, despite significant methodological 
advances in recent decades (Daly and others 2002, 
Daly and others 2008), can fail in heterogeneous 
terrain and microclimates. The GHCN daily dataset 
has data from more than 80,000 weather stations 
worldwide, but about two-thirds of the stations only 
record precipitation, and not temperature (Menne and 
others 2012). By comparison, the GHCN monthly mean 
temperature dataset provides data for 7,280 stations 
from 226 countries and territories, plus ongoing monthly 
updates for more than 2,000 stations (Lawrimore and 
others 2011). The continental United States has one 
of the greatest temperature station densities, both 
historically and currently of any World region (Menne 
and others 2012). GHCN stations represent only about 
10 percent of all weather stations available in the United 
States (Daly and others 2008), although missing data 
are still an analytical impediment.

(A) Precipitation

(B) Temperature

(C) Palmer Modified Drought Index

Pearson’s r values
-1.00 to -0.67
-0.66 to -0.34
-0.33 to 0.00
0.01 to 0.33
0.34 to 0.66
0.67 to 1.00

Figure 9.8—Correlations (Pearson’s r) between mean March–
September Moderate Resolution Imaging Spectroradiometer 
(MODIS)-based ForWarn Normalized Difference Vegetation 
Index (NDVI) and National Land Cover Data Climate Division 
mean monthly March–September for (A) temperature, (B) 
precipitation, and (C) Palmer Modified Drought Index (PMDI), 
2000–2012, based on 250,000 random points sampled with a 
1-km buffer.
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Another issue is that the formulations of most 
meteorology-based indices are biased in favor of crops 
that are harvested after a single growing season. Few 
of these indices carry much information about historical 
conditions, and when they do, it is on the order of 
months rather than years. For example, the SPI considers 
a 12-month history; the SPEI is the longest, with a 
24-month “memory.” Trees are more resilient to drought 
effects, making it necessary to track antecedent moisture 
conditions over the prior several years (see fig. 9.4). 
Few researchers have devised and regularly employed 
drought indices that include multiyear prior conditions of 
the sort needed when gauging forest impacts. Koch and 
others (2013a, 2013b, 2014, 2015) have used a set of 
drought indices consisting of 1-, 3-, and 5-year histories 
for an annual chapter in the last four national reports 
issued by the U.S. Department of Agriculture, Forest 
Service, Forest Health Monitoring program.

Fundamentally, with a meteorology-based approach to 
characterizing drought, impacts are inferred rather than 
measured directly. Anderegg and others (2013) argued 
that we have yet to link any meteorology-based drought 
measure to forest damage or mortality at broader spatial 
scales. Drought indices are not designed to predict 
levels of drought damage or mortality in forests or 
any other vegetation type—just moisture deficit, in an 
abstract sense. This problem is universal, regardless of 
the selected drought index or the spatial and temporal 
coverage provided by stations for the area of interest. 
Impacts on vegetation due to drought conditions can 
only be inferred, since vegetation responses are not 
measured by stations.

Nevertheless, Mitchell and others (2014) highlighted 
a possible way to employ meteorology-based indices 
to identify geographic areas where drought-induced 
tree mortality is most likely. They looked at 41 different 
forest die-off events across Australia (in different 
forest types over a period of about 80 years) and 
found 3 things they had in common: (1) water deficits, 
(2) maximum temperatures outside of 98 percent of 
the observed range in drought intensity, and (3) the 
presence of at least 1 heat wave (3 consecutive days 
above the 90th percentile for maximum temperature). 
While these specific threshold values may not translate 
to new locations—Australian ecosystems are more 
water-limited than many U.S. forest ecosystems—
the concept laid out by Mitchell and others (2014) is 
worth further research. Toward this end, moisture 
and temperature extremes for the United States are 
reasonably well documented from weather station 

data or from spatially interpolated products such as the 
gridded maps produced by the PRISM Climate Group 
at Oregon State University (Daly and others 2002, Daly 
and others 2008).

Remote Sensing-Based Measures 
of Drought Impacts
Various remote sensing-based indices have been 
proposed and utilized to detect drought occurrence and 
severity (table 9.2). The continuous gridded nature of 
these remotely sensed indices is an innate advantage 
over the meteorological indices shown in table 9.1, 
which are derived from dispersed meteorological 
stations. This advantage is counterbalanced, however, 
by the relatively brief observational history that any 
particular class of satellite sensors provides. New orbital 
sensors have substantially different characteristics, 
yet may not share overlapping periods of operation 
to calibrate with the sensors that they are replacing. 
The decade-or-more service lifetimes of MODIS and 
Advanced Very High Resolution Radiometer (AVHRR) 
are considered long records for remote sensing 
platforms, yet they are short with regard to tree 
lifetimes and forest successional dynamics.

In contrast to meteorology-based measures of 
drought, remote sensing indices measure certain 
impacts of drought to vegetation and disturbance 
directly (Deshayes and others 2006). Sensors 
integrate vegetation conditions across the entire grid 
cell at the resolution of the sensor, averaging across 
vegetation types and plant species. Because of these 
basic distinctions from ground-based measurements, 
and because these indices represent an emergent 
vegetation property, the trajectory of such integrating 
measures across seasons has been referred to as Land 
Surface Phenology (LSP) (de Beurs and Henebry 2004), 
and interannual differences in the timing and magnitude 
of LSP have been suggested as potential indicators of 
environmental change.

Conceived initially by Rouse and others (1973) but 
popularized by Tucker (1979), the Normalized Difference 
Vegetation Index (NDVI) has proven to be useful both 
alone and as a component of other indices, and also as 
a fertile starting point, since many variants of this index 
have been devised. Chief among its advantages is the 
automatic normalization for differences in sun-and-
sensor geometry that is provided by the “difference-
over-sum” format of its arithmetic construction, a 
form that has been frequently borrowed for other 
indices. NDVI is colloquially referred to as “greenness” 
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Table 9.2—Remote sensing indices for drought detection and monitoring

Index Formula Purpose Strengths Weaknesses Reference

Normalized 
Difference 
Vegetation 
Index (NDVI)

(NIR-Red)/ 
(NIR+Red)
National Inventory Report 
(NIR)

Monitor vegetation 
condition and health

Self-normalizing 
across different sun-
sensor geometries

Affected by soil color; may 
saturate at high vegetation 
densities

Tucker (1979)

Normalized 
Difference 
Vegetation 
Moisture Index 
(NDMI)

(NIR-MIR)/ 
(NIR+MIR)
Miscellaneous Inventory 
Report (MIR)

Uses MIR, which 
is sensitive to leaf 
moisture

Measures 
vegetation 
water relative to 
chlorophyll

Not all sensor platforms 
have MIR band

Wilson and 
Sader (2002)

Ratio to Mean 
NDVI 
(RMNDVI)

((NDVIi-NDVImean)/ 
NDVImean) * 100%

Percentage change 
relative to mean of last 
n years

Depicts current 
status relative to a 
multi-year history

Mean greenness may not 
show sensitivity to drought 
impacts

Vegscape

Ratio to 
Previous NDVI
(RPNDVI)

((NDVIi-NDVIi-1)/ 
NDVI) * 100%

Percentage change 
relative to this time last 
year

Depicts current 
status relative to 
prior year

Prior year may not 
be representative of 
“normal”; seasonal timing 
may be shifted

Vegscape

Enhanced 
Vegetation 
Index (EVI)

((NIR-Red)/ 
(NIR+6Red-7.5Blue+1)) * 
2.5

Lower saturation risk Lessens soil 
background effect

Atmospheric effects; 
requires standardization

Huete and 
others (2002)

Soil-Adjusted 
Vegetation 
Index (SAVI)

((NIR-Red)/ 
(NIR+Red+L)) * (1+L)
Correction Factor (L)

Corrects NDVI when 
vegetative cover is low 
and soil color is visible

Adds a soil 
“brightness” 
correction factor, 
L; when L=0, 
SAVI=NDVI

Must know amount of 
vegetation to set L, and 
this is somewhat circular

Huete (1988)

Vegetation 
Condition Index 
(VCI)

((NDVIi-NDVImin)/ 
(NDVImax-NDVImin)) *
100%

Shows current value 
relative to dynamic 
range of previous years

Normalizes current 
value to past range

Shows other disturbances 
besides drought; Divisor 
grows with additional 
history

Kogan (1995)

Mean-
Referenced 
Vegetation 
Condition Index 
(MVCI)

((NDVIi-NDVImean)/ 
NDVImean) * 100%

Shows current value 
relative to mean of 
previous years

Normalizes current 
value to past mean

Change from mean of 
past years is relatively 
insensitive

Vegscape

MODIS Global 
Disturbance 
Index (MGDI)

(LSTmax, i/EVIpost LST max, i)/ 
(LSTmax, n-1/EVIpost max, n-1)
Land Surface Temperature 
(LST)

Detects large-scale 
vegetation disturbances; 
separate annual and 
historical formulations

Disturbances cause 
LST and EVI to 
exceed normal 
variability

Requires annual and 
historical maximum 
composite LST and EVI 
data; current year excluded 
from denominator

Mildrexler and 
others 2007), 
Mildrexler and 
others (2009)

Note: All are calculated on a cell-by-cell basis, often with respect to past values in that same cell. There are many variants of the Normalized Difference Vegetation Index 
(NDVI) not covered here, including the Normalized Built-up Index (NDBI), the Normalized Difference Water Index (NDWI) and Modified NDWI (MNDWI), the Normalized 
Difference Soil Index (NDSI), the Modified Soil Adjusted Vegetation Index (MSAVI and MSAVI2), the Transformed Soil Adjusted Vegetation Index (TSAVI), the Anomaly 
Vegetation Index (AVI), the Crop Moisture Index (CVI), and uncounted others. We treat the modeled multivariate VegDRI and GIDMaPS indices separately as Drought 
Detection System entries in table 9.3 (Zhang and others 2013).
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although Tucker (1979) never used this term himself. 
A majority of remote sensing indices attempt to track 
drought impacts on growth by tracking changes in this 
“greenness” using the logic that observed changes in 
photosynthetic machinery can be used to infer drought 
impacts indirectly (albeit more directly than the purely 
meteorological indices shown in table 9.1). Classical 
NDVI, however, saturates at high vegetation densities, 
giving rise to the “Enhanced” and “Soil-Adjusted” 
variants (table 9.2).

Most of the remote sensing indices rely on changes in 
“greenness” (sometimes in concert with leaf moisture 
or land surface temperature) relative to the same value 
calculated for the equivalent time interval in a previous 
year or years. This common construction represents an 
intention to compare a current value with an historical 
“normal.” This “normal” may be the local value at 
the same time the previous year [i.e., NDVI or Ratio 
to Previous NDVI (RPNDVI)]; it may be the ratio to 
mean (or RMNDVI), median, or maximum value from 
a number of prior years; or it may be scaled to the full 
dynamic range of the local value (i.e., VCI). Differences 
in the mechanism used to characterize this normal 
baseline are responsible for much of the proliferation 
of variant forms of these basic indices. Indeed, it 
may be more challenging to quantify the normal, 
expected trend than it is to monitor the current status. 
Development of the standard against which drought 
or greenness departures are measured may represent 
the most difficult part of drought detection, whether by 
meteorology-based or remotely sensed impact metrics.

The appropriateness and temporal equivalency of a 
“same date” comparison strategy across years relies 
on the stationarity of seasonal progressions in LSP. 
However, LSP is known to shift dynamically across 
years (Hargrove and others 2009). The degree of these 
seasonal phenology shifts will affect the detection 
sensitivity of drought indices based on such interannual 
comparisons, yet an earlier-than-normal fall season may 
be an indicator of drought (Hwang and others 2014). 
In the spring, where greenup is typically temperature 
limited, drought could result in either higher or lower 
values or both depending on what portion of the 
spring is considered. Such broad swings in detection 
sensitivity serve to demonstrate the confounded nature 
of drought impacts with other types of disturbances, 
including climatic effects (see Challenge 3 above).

Several indices evaluate the current situation relative 
to the mean of prior years. While the mean may 

characterize the entire prior distribution, the goal of a 
detection index is unlikely to be detection of a shift in 
the entire distribution itself. Comparisons with multiyear 
median may be only marginally more sensitive. It may 
be more effective to detect an onset of drought based 
on comparisons with maximum historical greenness, 
but this comparison will show increasing sensitivity 
as current greenness is compared with ever-higher 
values from particularly verdant prior years experiencing 
unusually favorable conditions.

A key need is to translate remotely observed changes in 
vegetation to actual impacts on the ground, such as tree 
mortality, annual growth reduction, or changes related 
to secondary disturbance risks, such as annual fuels 
for wildfire or insect and disease responses. Because 
short-term vegetation responses may not necessarily 
equate to long-term impacts, the multiyear monitoring 
capabilities that remote sensing provides are critical for 
detecting substantive lasting change apart from short-
term drought responses related to immediate reductions 
in seasonal greenness.

Limitations of Remote Sensing-Based 
Approaches: An Illustrative Example
Remote sensing-based methods for drought detection 
and monitoring are not a panacea. Interpretation of 
results shown by remotely sensed products may 
not be straightforward, and interpretations can be 
complicated by both the technical aspects of the 
sensor technologies, as well as by the intricacies and 
interconnections of the ecological processes.

A recent example highlights the magnitude of 
controversy that is possible surrounding interpretation 
of forest drought impacts from remote sensing 
observations. Impressed by global simulation results 
with the Hadley Center model in particular (Cox and 
others 2004), the Intergovernmental Panel on Climate 
Change (IPCC) AR4 report (IPCC 2007) issued warnings 
suggesting that the rain forests of the Amazon might 
collapse under climatic change, being replaced by 
savanna-like vegetation (Nepstad and others 2008). In 
addition to the radical transformation of the ecosystem 
and loss of biodiversity, Phillips and others (2009) 
claimed that massive Amazon tree mortality would 
temporarily change the forest from a carbon dioxide 
(CO2) sink (2 billion tons absorbed yearly) to a carbon 
monoxide (CO) source (3 billion tons released).

In part to test short-term predictions of decreases in 
forest photosynthesis following drought, Saleska and 
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others (2007) examined MODIS Enhanced Vegetation 
Index from 2000–2006, and reported that Amazon 
forests actually became greener during the severe 
drought that occurred in the region in 2005. Myneni 
and others (2007) found that Amazon forests become 
greener in the dry season due to an increase in leaf 
area index. Huete and others (2006) suggested that 
photosynthesis in Amazon forests might be limited 
by light availability, and that the observed increase 
of greenness during the dry season is stimulated by 
increased sunlight. Huete and others (2006) speculated 
that the normal dry season may be the forests’ most 
productive time of year because the rain clouds clear 
up and more sunlight reaches the forest, in the same 
way that some areas in the United States show positive 
correlations between drought and NDVI (see fig. 9.8). 
They also suggested that soil water content was not 
a limiting factor for Amazon greenness. Saleska and 
others (2007) concluded that Amazon forests might 
be more resilient to climate changes than ecosystem 
models assume.

These counterintuitive findings were immediately 
challenged by other studies, which concluded that 
the 2005 drought had no impact on the greenness 
of Amazon forests. Samanta and others (2011) found 
“no evidence of large-scale greening of intact Amazon 
forests during the 2005 drought.” They suggested that 
the previous findings were attributable to artefacts 
resulting from contamination of satellite-based 
observations by clouds and aerosols. Zhou and others 
(2014) showed widespread decline in greenness of 
Congolese forests over the last decade, even though 
such forests are probably more drought-tolerant, with 
their drier conditions and higher composition of semi-
evergreen trees.

Recently, Morton and others (2014) showed that the 
apparent increase in greenness in Amazon forests 
could be explained by seasonal variations in lighting 
caused by changes in sun-sensor geometry. They 
suggested that it is soil moisture rather than light that 
determines the balance between photosynthesis and 
respiration in Amazon forests [summarized in Soudani 
and François (2014)]. These results tip the balance 
back toward interpretations that the Amazon is very 
sensitive to rainfall and, as the IPCC report indicated, 
may be prone to conversion and loss in a warmer, drier 
future in the tropics.

The emergence of such a surprising amount of 
controversy might discourage those considering a 

remote sensing perspective on drought detection and 
monitoring. However, tropical forests represent one of 
the most challenging of all locations for remote sensing 
work (Asner and Alencar 2010). A combination of 
complicating factors in tropical forest exacerbates the 
interpretation of remote imagery in these locations. 
High tree diversity in Amazonian forests leads to mixed 
responses from differential plant sensitivity, and there 
are potential saturation issues for some greenness-
based indices. Clouds are nearly ever-present, and 
aerosols and terpenes may be in high concentration, 
as are particulates, soot, and smoke from fires. Most 
importantly, not many long-term ground observations 
and datasets exist, with few exceptions (Phillips 
and others 2009). This alignment of challenges may 
make tropical locations one of the worst-case remote 
sensing scenarios (Huete and Saleska 2010). More 
straightforward and direct interpretations of drought 
might be expected in temperate or boreal locations. An 
all-data approach, where remote sensing methods are 
leveraged with other ancillary data streams, including 
ground-based measurements, may represent the 
most promising approach for detecting and monitoring 
drought in these and other, less-challenging locations.

Existing Systems for Drought 
Detection and Monitoring
Table 9.3 shows 11 existing systems for detecting 
and monitoring drought, all of which include remote 
sensing as a fundamental component. The geographic 
extent that is monitored ranges from single countries to 
continents to the globe. Systems can be identified that 
are primarily the product of meteorologists, agricultural 
scientists, computational scientists, remote sensing 
specialists, and even political and social policy analysts. 
Not surprisingly, each system retains and exhibits the 
approaches, interests, and perspectives of the group 
producing and operating it. Some have a practical 
emphasis, while others are more research-oriented. 
Systems benefiting from the participation of more 
than a single one of these domain perspectives are 
likely to be the most useful in the long term. Although 
the oldest system has been operational for nearly 3 
decades, the majority have been initiated within the last 
5 years. There is a clear tendency among these newer 
systems to take a multivariate approach to drought 
detection rather than relying on one or a few indicators. 
Many of the drought systems are designed primarily for 
detecting food and agricultural drought effects, including 
verification for crop insurance settlements. Some of 
the tree-based systems are aimed at carbon accounting 
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Detection system Operated by Year started
Spatial 
extent

Release 
frequency Input data

Famine Early Warning 
Systems Network 
(FEWS Net)

U. S. Agency for International 
Development (USAID)

1985 Africa, Asia, 
Central 
America, and 
the Central 
Tropics

Every 
20 days; 
predictions 
6–12 months 
ahead

Subjective combination of agro-climatology, 
production, market data, nutrition, and 
scenario development

Vegetation Drought 
Response Index (VegDRI)

USGS (Earth Resources 
Observation Systems) (EROS), 
Univ. of Nebraska Lincoln, USDA 
Forest Service Resource and 
Monitoring Analysis (RMA)

7 States 
in 2006, 
CONUS in 
2009

Conterminous 
United States

Weekly AVHRR and eMODIS NDVI, combined with 
PDSI and SPI drought indices, land cover, soil 
water capacity, elevation, ecological setting, 
using three seasonal Regression Tree models

ForWarn Forest Service, National Aeronautic 
Space Administration (NASA) 
Stennis Space Center (SSC)

2010 Conterminous 
United States

Every 8 days Moderate Resolution Imaging 
Spectroradiometer (MODIS), Modis 
Vegetation Index Algorithm (MOD13), 
Vegetation Indices for Operational Drought 
Monitoring (eMODIS)

Forest Disturbance 
Mapper (FDM)

Forest Service Remote Sensing 
Application Center (RSAC)/ 
Forest Service Forest Health 
Technology Enterprise Team 
(FHTET)

2010 Conterminous 
United States

Every 8 days Forest type map, USGS map zones, local 
MODIS downloads

United States Drought 
Monitor

Forest Service, NOAA, and Univ. 
Nebraska Lincoln

1999 Conterminous 
United States

Weekly Rain, snow, observer reports on wildlife and 
crop effects

North American 
Drought Monitor

USDA, NOAA, University of 
Nebraska-Lincoln (UNL), National 
Meteorological Service (SMN) 
Mexico, National Water Commission 
(CNA) Mexico, Agrifood Canada, 
Meteorological Service Canada

2002 Canada, 
Mexico, 
United States

Bi-weekly Subjective maps from the three member 
countries, which may not line up at 
international borders

Global Drought Monitoring 
Portal (GDMP)

NOAA NCDC 2012 startup, 
seeking global 
participation

Global Monthly Thresholded Global Precipitation Climatology 
Center SPI with up to 24-month history, other 
metrics where available

Vegscape Vegetation 
Condition Explorer/
CropScape

USDA National Agricultural 
Statistics Service (NASS)/ 
George Mason

2013/ 
2011

Conterminous 
United States

Daily, weekly, 
bi-weekly 
composites

MODIS NDVI, Enhanced Vegetation Index 
(EVI)

Global Agricultural 
Monitoring (GLAM) 
Production System/Global 
Inventory Monitoring and 
Modeling Studies (GIMMS))

NASA Goddard, USDA Foreign 
Agricultural Service (FAS)

2001 Terra, 
2002 Aqua

Global Every 8 days MODIS Terra and Aqua, treated separately

Global Integrated Drought 
Monitoring and Prediction 
System (GIDMaPS)

Univ. California, Irvine 2013 Global, 1980–
2014, coarse 
resolution

Monthly Precipitation and soil moisture from 
simulations and remote sensing, including 
Modern Era-Retrospective Analysis for 
Research and Applications (MERRA), North 
American Land Data Assimilation System 
(NLDAS), Global Drought Climate Data 
Record (GLDAS), and Global Drought Climate 
Data Record (GDCDR) historical data sets

ALERTS 1.0/ 
Planetary Skin

NASA Ames, Univ. of Minnesota, 
National Space Research Institute 
(INPE) Brazil, Planetary Skin Institute

In 
development, 
beta available

Global, 1 km Biweekly MODIS NDVI, Land Surface Temperature 
(LST)

http://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf
http://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf
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Purpose

Meteorology 
or vegetation 
effects Algorithm Web site URL

Drought effects 
on food security

Vegetation, 
specifically 
food

Based originally on AVHRR in Northern 
Africa; has grown beyond a strictly remote 
sensing system

www.fews.net

Monitor 
vegetation stress 
to improve 
preparedness 
and response

Vegetation AVHRR and eMODIS VegDRI index from 
CART; Percent of Average Seasonal 
Greenness (PASG) ratio is relative to 20-
year mean Seasonal Greenness

vegdri.unl.edu, vegdri.cr.usgs.gov; 
Web viewer at 
   vegdri.cr.usgs.gov/viewer/viewer.
htm

Broad forest 
change 
detection, 
tracking, and 
recovery

Vegetation % NDVI difference between current NDVI 
versus given NDVI baseline

forwarn.forestthreats.org; 
Web viewer at 
   forwarn.forestthreats.org/fcav

Assist IDS flight 
planning and map 
disturbances

Vegetation Difference of current vs. historical spectral 
reflectances, followed by calculation of 
NDMI in Western United States, or NDVI 
in Eastern United States

foresthealth.fs.usda.gov/portal; 
Web viewer at 
   foresthealth.fs.usda.gov/portal/Flex/
FDM

Monitor broad-
scale drought 
impacts

Meteorology/
Vegetation 
(inferred)

Subjectively combine inputs into five 
Drought Intensity categories

droughtmonitor.unl.edu

Monitor broad-
scale drought 
impacts at 
continental scale

Meteorology/
Vegetation 
(inferred)

Experts balance conflicts from three 
countries into five subjective Drought 
Intensity categories

www.drought.gov/nadm; 
Web viewer at 
   gis.ncdc.noaa.gov/map/drought/NA

Provide a global 
snapshot of 
water scarcity

Meteorology A combination of existing continental-
scale drought systems, with efforts to 
harmonize at country borders

gis.ncdc.noaa.gov/map/drought/Global

Monitor crop 
vegetation 
conditions

Vegetation Compares NDVI change ratio to previous 
year, to median and to mean NDVI

nassgeodata.gmu.edu/vegscape

Monitor global 
food production

Vegetation % NDVI anomaly, calculated from 
historical all-year mean NDVIs

glam1.gsfc.nasa.gov

Drought 
prediction and 
probability that 
drought will 
persist

Meteorology SPI, SSI, or Multivariate Standardized 
Drought Index (MSDI), mapped as five 
levels of wetness and five levels of 
drought

drought.eng.uci.edu

Improve 
detection, 
awareness, and 
decisionmaking

Vegetation Multi-resolution Global Water Stress Index 
Algorithm

www.planetaryskin.org, www.
planetaryskin.org/rd-programs/
resource-nexus/global-land-change-
detection, viewer at ourplanetaryskin.
org/ps/is/cs/run.php?uid=guest

Table 9.3—Existing operational 
and experimental systems for 
detecting the extent and severity 
of drought Forest Service Forest 
Inventory Analysis (FIA), Insect 
and Disease Survey (IDS), 
National Oceanic and Atmospheric 
Administration (NOAA) Historical 
Climatology Network (HCN) 
meteorological stations, U.S. 
Geological Survey (USGS) Stream 
Gauge network, and SNOwpack 
TELemetry (SNOTEL) are related 
networks that, while providing 
invaluable ancillary information, 
are not specifically designed to 
detect or monitor extent, duration, 
or impact of drought

http://www.fews.net
http://vegdri.unl.edu
http://vegdri.cr.usgs.gov
http://vegdri.cr.usgs.gov/viewer/viewer.htm
http://vegdri.cr.usgs.gov/viewer/viewer.htm
http://forwarn.forestthreats.org
http://forwarn.forestthreats.org/fcav
http://foresthealth.fs.usda.gov/portal
http://foresthealth.fs.usda.gov/portal/Flex/FDM
http://foresthealth.fs.usda.gov/portal/Flex/FDM
http://droughtmonitor.unl.edu
http://www.drought.gov/nadm
http://gis.ncdc.noaa.gov/map/drought/NA
http://gis.ncdc.noaa.gov/map/drought/Global
http://nassgeodata.gmu.edu/vegscape
http://glam1.gsfc.nasa.gov
http://drought.eng.uci.edu
http://www.planetaryskin.org
http://www.planetaryskin.org/rd-programs/resource-nexus/global-land-change-detection
http://www.planetaryskin.org/rd-programs/resource-nexus/global-land-change-detection
http://www.planetaryskin.org/rd-programs/resource-nexus/global-land-change-detection
http://www.planetaryskin.org/rd-programs/resource-nexus/global-land-change-detection
http://ourplanetaryskin.org/ps/is/cs/run.php?uid=guest
http://ourplanetaryskin.org/ps/is/cs/run.php?uid=guest
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or global deforestation, while others monitor drought 
effects on forests, particularly tree mortality.

Integrating Broad  
Monitoring With  
Assessment

Remote sensing platforms see everything; this is 
simultaneously both an advantage and a drawback 
of these methods. Observing all vegetation types, all 
disturbances, and all locations synoptically on a regular 
interval maximizes the likelihood of understanding the 
local situation. Nevertheless, remote sensing methods 
also see nondrought disturbance effects, both abiotic 
and biotic, and these can be difficult to distinguish and 
disentangle. Local information, history, and expertise 
can greatly inform the conclusions made from remote 
data, and may be a requisite for the successful use of 
remote sensing to detect drought impacts. Remote 
sensing platforms alone are insufficient for most 
drought assessment purposes. However, as discussed 
in the following sections, they can be extremely useful 
for drought assessment when combined with ancillary 
datasets.

Land Surface Phenology Datasets
Phenology, the timing of foliage greenup and 
browndown, can provide one of the earliest indications 
of drought effects. In particular, comparison of current 
greenness with historical phenological behavior can show 
departures from expected trajectories caused by drought 
(Hargrove and others 2009). However, such phenological 
differences might be caused by other, nondrought 
effects, or might be delayed significantly from when 
original drought events occurred. These operational 
difficulties mirror the conceptual difficulties in isolating 
indirect from direct drought stressors (fig. 9.5).

Drought detectability using remote sensing is variable 
over time and space. Drought response is not just 
a function of weather, but also of spatial variation in 
phenological cover types and fractional vegetation 
cover, which is often imperfectly known. Conifers 
remain green even while dormant, while deciduous 
woody plants and grasses can have an extended period 
of brown dormancy that can mimic drought conditions 
(Volaire and Norton 2006). Vegetation response to 
drought is muted outside the growing season, although 
winter drought can cause needle loss and reduction in 
net primary productivity in conifers that can theoretically 
be detected remotely (Berg and Chapin 1994). This 
disparate responsiveness of land surface phenology can 

be isolated, but drought effects become confounded 
when the composition of a grid cell is mixed. It can be 
challenging to know when the remote sensing signal is 
changing due to disturbance or successional recovery 
and when it is changing from drought.

High-frequency land surface phenology datasets provide 
a means to interpret drought responses, particularly for 
reliably drought-sensitive vegetation types. In open-
canopy forests, savannas, or forest edges, increased 
grass, shrub, or herb cover can increase drought 
sensitivity. Deciduous trees may respond to drought 
by earlier leaf senescence (Hwang and others 2014). 
Although senescence can also be triggered by frost 
(Vitasse and others 2009), an unusually early onset of 
leaf browning and/or abscission may serve as a season-
specific indicator of drought in some forests. High-
frequency land surface phenology datasets may provide 
a number of drought indicators that can distinguish 
drought responses among cover types.

In high-elevation or mountainous areas, winter variation 
in snowpack extent and duration provides an important, 
albeit temporally delayed source of precipitation that 
can be monitored. At high elevations, limited snowpack 
has been associated with the early onset of spring 
green-up (Hu and others 2010), although this may 
result from warmer temperatures. Winter drought can 
extend the subsequent wildfire season and can reduce 
fuel moisture (Littell and others 2009, Westerling 
and others 2006). Early green-up may also affect 
drought-associated insects and diseases (Ayres and 
Lombardero 2000). The delayed effects of snowpack 
variation are captured in the next growing season by 
existing phenological datasets that track NDVI and other 
vegetation indices (table 9.4).

Insect and Disease Surveys
The Insect and Disease Surveys (IDS) aerial survey 
program (table 9.4), administered by the Forest Service 
Forest Health Protection (FHP) program could serve as 
a national-scale source of geospatial data about biotic 
impacts triggered by drought. In some cases, IDS 
data also document direct impacts from drought and 
other abiotic disturbance agents. Under the program, 
surveyors use aerial sketch-mapping hardware and 
software to delineate geospatial features (typically 
polygons) that depict forest health impacts such as 
tree mortality or defoliation. The surveyors assign 
disturbance agent codes, as well as certain measures 
of the intensity of the impact (e.g., trees per acre 
defoliated), to each feature. The IDS data are compiled 
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http://www.mrlc.gov/
http://www.nohrsc.noaa.gov/nsa
http://activefiremap.fs.fed.us
http://www.mtbs.gov
http://www.geomac.gov
http://www.inciweb.org
http://www.fs.fed.us/foresthealth/technology
http://www.fs.fed.us/foresthealth/technology
http://waterdata.usgs.gov
http://www.landfire.gov/disturance.php
http://www.fia.fs.fed.us
http://phenology.cr.usgs.gov
http://forwarn.forestthreats.org
http://forwarn.forestthreats.org
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on an annual basis, and so they are not sources of near-
real-time information.

Meddens and others (2012) noted several additional 
obstacles to using the IDS data. First, the amount 
of forest surveyed varies from year to year, and not 
all forests are surveyed; flights are targeted at areas 
where disturbances are most likely to have occurred 
(in response to ground reports), so it is possible that 
some affected areas are missed. Second, IDS polygons 
are delineated broadly, and they typically also include 
healthy trees. Hence, the severity of a disturbance is not 
reported consistently. IDS observations are recorded 
by different observers having a wide range of skills and 
experience, which introduces further variability in the 
reported severity and extent of a disturbance.

A related obstacle is a lack of standardized causal 
attribution. Depending on the aerial surveyor, IDS 
polygons could be labeled as having been caused by 
drought, or instead, by insect activity driven by drought. 
Causal attribution is assigned from the air, with limited 
field validation. IDS data users must consider multiple 
agents when trying to ascertain the extent of an 
impact. For instance, when analyzing pinyon and juniper 
mortality in the Southwestern United States, Breshears 
and others (2005) combined IDS polygons attributed to 
various bark beetles as well as drought. To circumvent 
these ambiguities, IDS data are probably best used to 
delineate general geographic regions where multiple 
years of forest damage and/or mortality have been 
attributed to a complex of biotic and abiotic agents 
associated with drought (Huang and Anderegg 2012). 
These regions can then be adopted as the setting for 
further retrospective analysis into relationships between 
the agents, using ancillary data sources (Williams and 
others 2010, Williams and others 2013).

Wildfire Mapping Datasets
Wildfire often causes tree mortality and initiates 
successional recovery that destabilizes the historical 
pattern of climate sensitivity of communities within 
burned areas. Despite being an indirect outcome of 
drought (Westerling and others 2006), burned areas 
are likely to provide a less consistent measure of direct 
drought effects than are adjacent undisturbed areas. 
Increases in grass or shrub cover after fire may make 
burned landscapes more climate-sensitive than when 
they were dominated by dense conifers. Existing 
wildfire datasets (see table 9.4) can be used to isolate 
burned portions of the landscape that may differ in their 
drought response for a more accurate understanding 

of the system in post-fire years. As with insect and 
disease data, burned areas can be selectively masked 
for regional interpretations of drought responses, or 
they could be targeted for understanding the cumulative 
effects of drought and disturbance.

The 2011–12 Texas drought and drought-associated 
fires illustrate how remote-sensing-based change 
monitoring can be better interpreted with ancillary 
wildland fire data. This Texas drought was remarkable 
(Nielson-Gammon 2012) because of its severity and 
duration, and because of the extensive area burned 
during the 2011 wildfire season (fig. 9.9). Where and 
when they co-occur, drought and wildfire may have 
additive or redundant effects on reducing NDVI. For two 
nearby MODIS pixels in figure 9.10, the effects of fire 
and drought are at least partially additive. The NDVI of 
these two pixels tracks each other closely for years prior 
to 2011, suggesting they had quite similar vegetation, 
and the 2011 drought effects were likely identical given 
their proximity. However, the immediate reduction from 
burning and drought clearly exceeded that of drought 
alone, and this effect persisted through 2012.

Retrospective analyses of drought effects across 
different vegetation types provide coarse-filter insights 
into differential responses. For a random sample of 
MODIS pixels across west Texas, annual variation in 
NDVI clearly varies by majority vegetation type, as 
filtered by the National Land Cover Database (fig. 9.11). 
Shrub- and grass-dominated areas have greater year-
to-year amplitude in NDVI, which is consistent with 
expectations of their greater climate sensitivity than 
forests. All vegetation types show a general decline that 
could be an indication of widespread mortality caused 
by the 2011 Texas drought.

Land Use/Land Cover Datasets
Changes in land use and land cover are typically so 
fine-scale that they are unlikely to influence more 
coarse-scale estimates of climate departure. But taken 
over decades, extensive areas of certain regions have 
experienced substantive urban and infrastructural 
development (Riitters and others 2002, Riitters and 
Wickham 2003). Conversion from forest to nonforest 
land cover often increases dominance by grass, shrubs, 
and ruderal or early-successional species that are 
generally more responsive to drought than are many 
forests. In areas that have experienced these changes, 
baselines from long-term, remotely sensed time series 
may be less desirable than efforts to model effects 
based on recent land cover over shorter periods. For the 
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Figure 9.9—ForWarn change in Normalized Difference Vegetation Index (NDVI) from the All Year Mean Baseline for the 3-week 
period ending August 28, 2011, showing the severity of drought and wildfire on nonagricultural lands across northcentral Texas. 
Wildfire boundaries for 2011 are shown by dashed white lines.
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Figure 9.10—A comparison of two nearby woodland ForWarn pixels in west Texas on similar sites, one that burned 
and one that did not during 2011. Note that effects persisted through 2012 on both sites, but that the cumulative 
effects of drought and wildfire were more pronounced than drought alone. Site locations: unburned site location 
31.8295, -100.6636; burned site location: 31.8390, -100.6455.
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Figure 9.11—Mean NDVI for a random sample of unburned majority forest, shrub, or grass pixels within Texas 
climate divisions 1, 2, 5, and 6 (west Texas) using the ForWarn dataset. Note the extreme decline in NDVI during  
the 2011 drought that affected all vegetation types.
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United States, the National Land Cover Database 
(NLCD) (see table 9.4) provides complete national 
coverage for multiple time steps (1992, 2001, 2006, 
and 2011), allowing analysts to distinguish patterns of 
land cover change that may be pertinent for interpreting 
drought response.

More subtle changes in forest management, crop type, 
or livestock grazing intensity can be difficult to monitor 
and assess. Crop types and livestock grazing intensity 
can fluctuate with changes in market prices in ways that 
confound drought response. Similarly, broad-scale forest 
restoration that involves stand thinning via mechanical 
means or prescribed fire has the potential to reduce a 
forest’s sensitivity to drought as grass and shrubs are 
removed; yet restoration efforts are rarely extensive 
enough to be widely detected except when they involve 
wildfire use. Far less logging has occurred over the last 
decade on most Forest Service lands, suggesting that 
there was far more drought-sensitive early successional 
habitat during the 1980s than exists in the 2000s. As 
large wildfires become increasingly common in the 
West, extensive areas of forest could become far more 
drought-sensitive than they were earlier. Certain derived 
land use/land cover datasets, such as the percent tree 
canopy cover layer developed by the Forest Service 
for the 2011 NLCD, may offer limited insight into these 
landscape dynamics.

“Big Data” Integration:  
A Contextual Learning  
Approach to Drought

To understand broad-scale drought impacts, both 
meteorology-based measures of drought and remote 
sensing observations need interpretation, and, as we 
have seen, interpretations are not straightforward. Many 
ancillary spatial datasets may be useful for selecting, 
masking out, or simply interpreting different effects that 
are observed (table 9.4). As noted above, identifying 
areas that have been affected or not affected by 
disturbance provides an effective way to isolate direct 
and indirect drought effects. Comparisons of different 
vegetation types, whether as specific dominant forest 
species types, or generally as evergreen, conifer, or 
mixed forest types, are useful for understanding how 
drought responsiveness and effects differ on the ground.

At a national scale, conditional filtering of sites based 
on their drought sensitivity and disturbance history 
can provide insights into the regional relationships 
between drought and NDVI (fig. 9.12). While the 

MODIS NDVI period is limited to 2000–present, 
most filtered or masked vegetation types show a 
strong response of reduced NDVI with increasing 
drought, with some exceptions. The NDVI response 
of northeastern hardwood forests runs counter to 
expectations, perhaps because this area has not 
experienced the drought and temperature extremes 
as have hardwood forests of the Southeast (figs. 9.2 
and 9.8). With their evergreen attributes, conifers 
only show some sensitivity to drought stress (fig. 
9.12). In contrast, grass and shrublands show as 
highly sensitive to drought, particularly in areas that 
have experienced extreme drought during the MODIS 
period. The sensitivities described here, of course, 
are with respect to the speed and magnitude of NDVI 
responses. Such responses are useful to the degree 
that they reflect actual vegetation impact from realized 
drought stresses.

Using a random sample of 250,000 MODIS-
ForWarn grid cells out of the 14.6 million cells in 
the conterminous United States, we found that 
20.4 percent of the continental U.S. forest area 
was mapped as disturbed by wildfire, insects, or 
diseases between 2000 and 2012 (estimated using 
IDS, Monitoring Trends in Burn Severity (MTBS), and 
GeoMac data; see table 9.4). The drought response 
of these areas may be misleading for certain analyses, 
particularly when disturbance or drought occurs 
nonuniformly during the analysis period. For example, 
a gradual increase in NDVI associated with post-
disturbance succession and recovery may overwhelm 
any reduction in NDVI caused by drought (see fig. 
9.10). By masking out disturbed forests, however, the 
response of the remaining areas is more likely to relate 
to direct drought effects (fig. 9.12A).

The majority of the remote sensing indices in table 
9.2 scale or proportionalize the absolute changes in 
greenness into relative terms. Usually the scaling 
divisor is some metric of total greenness (or range of 
greenness) in this location. Such formulations suggest 
a conceptual model (implicit or otherwise) that trees, 
which are “greener” than grasses, for example, 
are somehow better able to withstand a particular 
absolute decrease in greenness than their less-green 
grass counterparts. Thus, the estimated impact of a 
drought that causes a uniform absolute decrease in 
greenness will be reported by such indices as relatively 
more severe for grasses, since it represents a greater 
proportion of their total greenness, and relatively less 
severe for trees.
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Figure 9.12—Correlations (Pearson’s r) between mean March–September Moderate Resolution Imaging Spectroradiometer 
(MODIS)-based ForWarn Normalized Difference Vegetation Index (NDVI) and National Land Cover Data Climate Division mean 
monthly March–September Palmer Modified Drought Index (PMDI) for majority land cover types derived from the NLCD showing 
areas of known disturbance by wildland fire or biotic insect or disease in black for (A) all forests, (B) majority conifer, (C) majority 
hardwood, (D) majority shrub, (E) majority grassland, and (F) majority crops, 2000–2012. Wildland fire was derived from http://
www.MTBS.gov (2000–2012) and http://www.GeoMac.gov (2013) (accessed September 1, 2014); insect and disease disturbance 
was compiled from Forest Service Forest Health Protection (FHP) Insect and Disease Survey (IDS) data. Data shown are based on 
250,000 random points, sampled with a 1-km buffer.
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Yet such relative sensitivities are diametrically opposite 
to the differential drought response patterns across 
vegetation types demonstrated here (Lobo and 
Maisongrande 2006, Sims and others 2014; see also 
Challenge 3). Figure 9.12 shows a version of fig. 9.8C 
that has been filtered by vegetation type. Small stature, 
low biomass vegetation types like grasses and shrubs 
are the quickest to show decreases in greenness 
under drought conditions, but grass and herbaceous 
perennials can recover quickly following an end to 
drought. In contrast, when drought leads to tree or 
shrub mortality, full recovery may take decades. Thus, 
grasses are a sensitive indicator vegetation type that 
may be useful as a harbinger of regional drought stress 
(Sims and others 2014). The NDVI of conifer-dominated 
forests are relatively unresponsive to drought. For 
example, at higher elevations, the coastal Northwest, 
and in New England, NDVI may actually increase as 
PMDI decreases (fig. 9.12). Weighting the severity of 
effects by scaling with absolute greenness would seem 
to be counter-indicated, and also acts to reduce the 
sensitivity of indices to drought effects on trees.

As noted earlier, remote sensing provides a coarse-filter 
type approach. Observations are frequent, extensive, 
and continuous in space, but are not detailed (fig. 9.7), 
and average across many vegetation types. Sensors are 
not species-specific and integrate across all vegetation 
growing in an area to produce a single value. Such 
integration may actually be advantageous, averaging 
out noise and measuring land surface phenology as a 
repeatable, emergent property of the entire vegetated 
ecosystem. An ideal drought detection approach 
would leverage both the extent and the temporal 
completeness of remote sensing approaches, while at 
the same time utilizing the longer historical record of 
meteorological records, which offer longer histories than 
remote sensing platforms. Ironically, the length of the 
MODIS or AVHRR record is considered long by remote 
sensing standards, yet it is very short relative to the 
depth of the climatic records, much less tree lifespans 
within forests. For even longer comparisons, one must 
employ other, even more-removed proxies, like tree-ring 
data (Herweijer and others 2007).

Combining Remote Sensing 
With Context-Based Learning
The broad spatial coverage and frequent, multiyear 
temporal sampling are powerful strengths of remote 
sensing approaches to the analysis of drought effects. 
It is not possible to do experiments on drought at the 
landscape scale. The extent is too large to randomize, 

to replicate, or to apply droughts as experimental 
treatments [but see the Walker Branch Throughfall 
Displacement Experiment near Oak Ridge, TN, 
described by Hanson and others (2003)]. An inability 
to apply the classical scientific method does not, 
however, prevent a remote sensing approach to drought 
effects from making progress (Hargrove and Pickering 
1992). Scientific progress on drought effects at large 
scales is simply limited to inference, based on what 
we can see happening. In this, remote sensing of 
drought is similar to a scientific field like astronomy, in 
which rich observation without the possibility of direct 
manipulation is the only avenue for advancement.

We suggest that a filtering approach that carefully 
considers both vegetative and climatic conditions 
can leverage the strengths of extensive drought data 
collected with remote sensing to best advantage. 
The identification of past situations whose drought 
outcomes might be informative or discriminating forms 
the keystone of this approach. A cycle starting with the 
postulation of an hypothesis, followed by identification 
and selection of relevant past “natural” experiments, 
followed by observation of the outcomes that resulted 
could be expected to produce inferences about the 
general principles at work, which would, in turn, result 
in refinement or rejection of hypotheses, beginning the 
cycle anew.

Such context-based learning, involving the isolation 
and examination of relevant prior circumstances, 
would leverage the availability of “big data” volumes 
of historical observations. Essentially, it is a form of 
empirical data mining. This type of time sequence 
approach is sometimes called space-for-time 
substitution, an approach that has been employed 
elsewhere in large-scale ecology (Pickett 1989). Figure 
9.12 demonstrates the utility of such a filtering approach 
by showing the differential responses of various 
vegetation types to drought.

Empowered by ancillary datasets, powerful post hoc 
opportunistic analyses of drought may be possible 
when advantage can be taken of past droughts that are 
embedded within these specific relevant contexts of 
particular past times and locations. Such observation-
based approaches carry with them the dangers of 
pseudoreplication, or at least an inability to replicate at 
will (Hurlbert 1984). Nevertheless, a strategy of coarse 
filtering by vegetation type, antecedent conditions, 
and drought severity could obtain targeted insights 
based on the weight of evidence from past outcomes. 
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Searching an extensive database of observations for 
the occurrence and review of particularly relevant 
chronosequences in time and space might be an 
effective way to make observation-based progress in 
our understanding of drought effects.

We advocate a data-mining, “big data” approach for 
detection and monitoring of drought impacts, relying 
primarily on remote sensing platforms, but also 
leveraging the longer term meteorological data and 
ancillary datasets for context-based interpretation. 
Figure 9.13 shows a conceptual model of how a “big 
data” approach might be used in developing a system 
for monitoring drought impacts in forests. This type 
of circumstantial data harvesting is the method most 
likely to increase our understanding of the impacts of 
drought stress on forests. Such a cycle might even 
advance our scientific understanding of landscape-scale 
drought effects with greater efficiency than classical 
experimental approaches (Tilman 1989). The strategy is 
empirical, allowing patterns to emerge passively from 
the data, without preconceived notions or hypotheses. 
Despite their neutrality and passive observational 

nature, space-for-time filtering approaches can be 
highly constructive, as they will generate large numbers 
of testable hypotheses for the next round of conditional 
analysis.

Unambiguous establishment of causation (even in 
a limited pragmatic sense of learning to recognize 
correlated antecedent conditions) is difficult using 
these observational methods. Drought impacts 
are confounded and are difficult or impossible to 
disentangle without the use of relevant ancillary data 
(see fig. 9.13). With drought, however, this difficulty 
in separating proximate from ultimate drivers may not 
matter. Managers may be satisfied to monitor combined 
cumulative primary and secondary drought effects, 
unless they feel that they possess management options 
that would be effective against one or more of the 
separated drivers. Managers will want to recognize 
individual drivers only if they believe that they know 
how to relieve or mitigate some of the potential drivers. 
Otherwise, in practical terms, it is the sum total of the 
cumulative effects that acts to reduce the productivity 
of their forests.
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Figure 9.13—Conceptual model of how a “big data” integration approach might be 
employed in a system for monitoring drought impacts in forests. Fundamentally, areas 
of potential impacts occur where and when signals from both the remotely sensed 
and meteorological data streams coincide. Because the remotely sensed data stream 
documents all kinds of departures from normal vegetation conditions, the integration 
phase must include ancillary data that can distinguish departures unrelated or only 
indirectly related to drought. Detailed confirmatory analyses might include, for example, 
using Forest Inventory and Analysis (FIA) data retrospectively to look for tree growth 
declines or increases in tree mortality in areas where drought impacts were predicted. 
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Many of the newest generation of remote-sensing-
based drought monitoring systems (table 9.3) are 
adopting such multivariate approaches. These 
multivariate approaches mirror appropriately the 
multivariate nature of drought effects and impacts 
themselves (as shown in fig. 9.5B). However, we must 
avoid subjective or quantitative “black box” solutions 
that infer impacts. We must move beyond such blind 
methods if we are to increase our basic understanding 
of complex drought impacts and the processes 
controlling them. A filtering approach that isolates 
particular conditions of vegetation and weather before, 
during, and after drought can, by looking across space, 
provide needed “experiments” that can yield insights 
into drought responses under more stringent conditions, 
isolating particular effects. Combined with ground-
based sampling and monitoring data, such a hybrid 
approach can inform and enlighten our understanding of 
drought effects on forests.

Embedding Local Monitoring
Large-scale drought monitoring may not be capable 
of addressing local drought effects with the desired 
precision, even when the portions of broad landscapes 
that are likely to be hardest hit can be efficiently 
identified by large-scale monitoring efforts. Intensive 
local assessments can fill in the gaps that are not 
captured by coarse-scale monitoring (fig. 9.13). These 
efforts may consist of detailed mapping using high-
resolution imagery that may or may not be calibrated 
with plot data or systematic plot inventories to capture 
changes of concern, such as reduced growth or tree 
mortality.

The Forest Inventory and Analysis (FIA) program 
administers an annualized system of field plot 
inventories. Under this system, first implemented in the 
late 1990s, plots are remeasured systematically on a 
cycle ranging from 5 (Eastern United States) to 10 years 
(Western United States). Thus, in the Western United 
States, one-tenth of the established FIA plot locations 
in any given State are sampled each year. These annual 
samples attempt to be free of geographic bias (Shaw 
and others 2005), appear to be sufficient for annual 
time series analysis of forest growth and mortality, and 
are able to detect relatively low levels of forest change 
(Shaw and others 2005). However, because of the 
temporal remeasurement interval, it may be impractical 
to link a short-term (e.g., single-year) drought event to 
mortality or any other impact observed on a plot, since 
the timing of that impact (i.e., exactly when during the 
several years since the plot was last visited) cannot 

be determined (Liknes and others 2012). Long-term 
trends (i.e., more than a decade) typically must be 
studied using a combination of annualized and older 
periodic inventory data between which there may have 
been methodological differences. In addition, there is 
roughly 1 FIA plot per 6,000 forested acres, and there 
are about 130,000 forested plots nationwide. FIA data 
are probably best suited to analysis of status and trends 
at broader spatial scales (Shaw and others 2005). Plot 
density may be insufficient to detect impacts that are 
patchy in nature, even if they are manifested over a 
relatively large geographic region (Liknes and others 
2012). Unfortunately, drought-induced tree mortality is 
often patchy (Allen and others 2010).

Despite such limitations, Gustafson and Sturtevant 
(2013) concluded that a drought-induced tree mortality 
signal in the upper Great Lakes region could be 
uncovered using FIA data. Gustafson (2014) similarly 
used FIA data to construct predictive models of drought-
induced tree mortality (based in part on correlation with 
the NDSI and SPI) in the Northeastern United States. 
He found that the reliability of these models varied 
substantially; models for drought-intolerant tree species 
performed most poorly. Gustafson hypothesized that 
this may have occurred because long drought periods 
did not occur in the Northeast during the period when 
FIA inventories were available.

A major challenge when using FIA data is the inability 
to ascertain the actual cause of mortality or any other 
forest health change (Gustafson and Sturtevant 2013). 
If plots are disturbed, FIA field crews do have the 
option to assign damage agent codes, and drought is 
one possible code. However, these codes are reported 
inconsistently, and, as with the IDS data, field crews 
may label a disturbed plot according to the primary 
agent (drought) or the secondary disturbance agent 
(insect or disease activity). They can also assign 
multiple agent codes, which might provide some 
data filtering opportunities. The coarse temporal FIA 
remeasurements probably lead most field crews to 
assign secondary damage agents, concealing that these 
impacts may have been triggered initially by drought.

Ultimately, the best use of FIA data may be for 
retrospective analyses linking tree mortality and 
reduced growth to possible explanatory drivers, 
including drought. For this approach, FIA data might be 
used in concert with a variety of other data sources, 
including tree-ring data, remote sensing, meteorological 
drought index maps, and others. A number of studies 
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have employed this multivariate approach (Dietze 
and Moorcroft 2011, Klos and others 2009, Shaw and 
others 2005, Williams and others 2013). Additionally, 
through specially commissioned FIA remeasurement 
surveys, it may be possible to quantify areas 
experiencing major forest impacts in terms of trees lost 
and extent of the affected area, as was done by the 
Texas A&M Forest Service after the exceptional Texas 
drought in 2011. Final estimates of tree losses and 
subsequent economic impacts were released within a 
year (Nielson-Gammon 2012).

Summary

There is much recent interest in understanding how 
drought effects forests in part because drought and 
drought-associated forest disturbances are expected 
to increase with climatic change (Adams and others 
2009, Allen and others 2010, Anderegg and others 
2012, Breshears and others 2005, Breshears and 
others 2009, Carnicer and others 2011, Martínez-Vilalta 
and others 2012, Westerling and others 2006). Yet 
our ability to systematically and accurately recognize 
drought effects to forests over broad scales is limited. 
The most compelling research efforts mostly focus on 
catastrophic droughts rather than episodic droughts of 
moderate severity. The collective outcomes of more 
routine occurrences of moderate drought may be just 
as important and as impactful as rare, exceptional 
drought events. In any case, better tools, systems, 
and indices for dealing operationally with more 
commonplace drought events of moderate intensity 
are needed by forest managers and other resource 
professionals.

Drought is a value-laden term as concerns about 
particular impacts are implicit in the measures designed 
and baselines employed. No standard or universal 
definition is possible or even desirable, given the range 
of possible effects. Disentangling the various impacts 
of drought with different measures and ancillary data 
is part of the extraordinary challenge of dealing with 
drought effectively. With broad-scale monitoring, it is 
not possible to cleanly distinguish the effects of drought 
from the recipients of those effects, as moisture stress 
is not expressed uniformly across vegetation types 
(fig. 9.12). The relative composition of vegetation types 
must be considered in order to gauge the impact of 
any drought event accurately. In addition to utilizing 
nonforest species as indicator types that can be used to 
show what drying or wetting effects trees may be 

experiencing, it may become possible to utilize the 
extreme sensitivity of grasses to drought as a means 
to “standardize” drought intensity universally across 
all vegetation types, including trees. Understanding 
drought impacts on trees may require a longer history 
and a longer period of calculating baselines. Similarly, 
drought metrics for trees may require a longer, multiyear 
“memory” of antecedent conditions in order to be 
useful. New indices specific to trees are needed, 
because while metrics repurposed from agricultural 
crop use may work well for forests, these drought 
indices could be adapted in ways that increase their 
relevance for forests, in particular. Adaptations might 
include reformulating drought measures to capture 
long-duration multiyear drought, targeting drought 
measures to the sensitive seasons of the year based 
on phenological insights, or embracing baselines that 
relate better to the nonequilibrium nature of forested 
ecosystems.

Taking a broad view, drought effects to forests include 
direct and secondary effects that must all be addressed 
to understand each individually and the effects of 
climate extremes more fully. While wildfire, insects, and 
diseases can only partially be attributable to drought 
(fig. 9.5B), a change in drought-sensitive disturbance 
regimes may be the primary means by which drought 
alters forests in coming decades. While some drought-
sensitive disturbances can be monitored using the 
same types of systems used for monitoring changes 
in productivity or mortality, attribution back to drought 
as the prime mover often requires integration of 
independent wildfire and insect and disease inventories 
and datasets.

Because of their inherently multivariate nature, efforts 
to characterize drought effects on forest landscapes 
will necessarily involve the integration of information, 
as knowledge of species, communities, disturbances, 
and mitigating factors are obtained from a multitude 
of different programmatic efforts. Interpretation is not 
inherent in monitoring when indicators are sensitive 
but coarse, and “big data” help translate observations 
to effects of specific concern (fig. 9.13). To make 
large-scale drought monitoring and assessment more 
accessible, we need an integrating framework for 
organizing knowledge that efficiently narrows down 
what is and is not likely to be a drought effect. This 
knowledge can help prioritize applied efforts for 
drought mitigation, adaptation, or response more 
generally.
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