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RADIATION BALANCE

Incoming Radiation

Global Energy Balance (1-2)Q

Outgoing Radiation

a(Q Reflected Solar Radiation (« is Albedo)
E outgoing, Long Wave, Black Body Radiation

R=(1-o)Q-E

Bryden and Imawaki (2001)

Net heat loss at mid and high latitudes ==> Meridional heat transport




Atlantic Ocean Heat Transport :
(Bryden and Imawaki, 2001) Atlantic Ocean Heat Transport

The Atlantic Ocean heat transport
across 26.5°N accounts for 25%
of the maximum poleward heat
transport.

Annual Net Surface Heatflux (W/m2)
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Climate variations / climate change:
What is the role of the Atlantic Meridional overturning circulation?

Will the MOC change in response
to anthropogenic forcing? How
much, how fast, and when?
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What is the role of MOC change
in interannual to multidecadal
climate variability (AMO/AMV)?




RAPID-MOC/MOCHA

Monitoring the Atlantic Meridional Overturning at 26.5°N

Why 26.5°N?
 Maximum heat transport
 History of measurements
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Goal: “To setin place a system for
continuous observation of the meridional
) overturning circulation and northward
Mid-Atlantic . hez?lt transport in thg AtIan_tic_C_)cean, yvith
“"" Ridge moorings — which to document its variability and its
relationship to observed climate
fluctuations, and to assess climate model
predictions.”

Specific Objectives:

* Determine the “present day” mean
MOC & MHT at 26°N and year-to-year
variability

cablé

3000 western  Determine the spectrum of MOC
7 array variability, and related mechanisms, to
] help optimize MOC observing systems
5000
e * Provide a benchmark of MOC strength

and variability for climate and ocean
synthesis models

Louise Bell!M=il White, C5IR0



Flow Decomposition




Flow Decomposition

Light blue:
Velocity
determination
from density
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Flow Decomposition

Green: Velocity
determination from ..
wind
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Flow Decomposition

Florida

Earth magnetic
field




Flow Decomposition

Yellow: Uniform
correction for
mass
conservation

Validation:

 Tests in high-resolution models (Hirschi et al., 2005)

* Observed mass compensation by external
(barotropic) flow (Kanzow et al., 2007)




Western Boundary Array
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Eddies, sea-surface height,
dynamic height
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Longitude R R
SSH anomaly [cm] near Standard deviation of SSH and
western boundary dynamic height [cm]
=>»SSH fluctuations increase gradually from east to west,

yet decrease sharply with 100 km from the western boundary




The RAPID-MOC 26.5°N Array
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Western Boundary Time
Series (WBTS) program
funded by the NOAA
Climate Program Office
*Florida Current

*Abaco Hydrography
*DWBC transport

*High Density XBT lines
*Shiptime




Annual mooring
recovery/deployments
with ship time shared
by UK/NERC, NOAA

and NSF
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Five IES
moorings

added

Inverted echo sounders
can provide a low cost
alternative to current
meter moorings.

The RMS differences
between the PIES and
current meters

< 25% of the variability

< standard error

PIES transports agrees
with “dynamic height
moorings” similar to
those deployed in the

MOCHA/RAPID
experiment.
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Gulf Stream Transport through the Straits of Florida:

Transport profiles

Transports [Sv] are

Gulf Stream transport across 270N projected on empirical
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Total {incl. Ekman)
Geostrophic Variability

5 years
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Transport Compensation

Transport [Sv]

11% f \ f/L
mid-ocean / boundary .~V "'-U-’ i
B | transpert | | ] transport . |
01.May 01.Jul 01.Sep 01.Nov 01.Jan 01.Mar

Kanzow et al. (2007) 2004 2005

* Mid-Ocean transport variations compensated for by
Gulf Stream + Ekman transport
* Imbalance : + 3.7 Sv

=» Monitoring system works!!




Spectra of the meridional transport fluctuations

TS R - W GRS O

int+ axt int" ext gs ek| i B M |

Variance

AR,

N T L

2

10
Kanzow et al, 2007 Period [days]




Meridional tfransport fluctuations

(fime mean removed)
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MOC time series

Gulf Stream MOC —— Ekman

Upper Mid—Ocean|

Statistics

Gulf Stream
+31.9+ 2.8 Sv

MOC
+18.8 £ 5.0 Sv

Ekman
+ 3.3+3.5Sv

Upper Mid-Ocean
-16.3+ 3.0 Sv

Uncertainty in 2.5 year MOC mean: 1.9 Sv;
assuming 18 DOF, 1.5 Sv measurement error




MOC Spectrum
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« Ekman Transport dominates intra-seasonal variability

» Upper Mid-Ocean and Gulf Stream dominate seasonal variability




Seasonal Variability

Gulf Stream

MOC =—— Ekman
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Upper Mid—Qcean

01.Jul 01.Jan
2004

01.Jul
2005

Seasonal Cycle

Gulf Stream
1.5 Sv (14 %)

MOC
4.2 Sv (37 %)

Ekman
1.4 Sv (08%)

Upper Mid-Ocean
2.1 Sv (26 %)

* MOC seasonal cycle emerging, but not significant, yet (at 5 % error probability)




Mocha: Meridional Overturning

Circulation and Heattransport Array

Mid-Atlantic
Ridge maoorings

Interior volume transport - Kanzow et al., (2009)
Interior heat transport - Baringer and Molinari (1999)
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I\/IOC time series
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Gulf Stream MCC
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* Ekman Transport dominates
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Intra-seasonal variability
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Driving Florida
current Variability
with wind stress curl
(WSC) variations

DiNezio et al, 2009, JPO.
Meinen et al, 2009, JGR,
submitted

Correlation between WSC and the NAO

Five—year mean transport estimates, with statistical error bars based on distribution of samples
| | | | | |

30
29 ® Florida Current transport
g - B NAO index (rescaled)

& WSC (rescaled)
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Florida Current transport [ S




Heat Transport

Meridional Heat Transport: Qne (= j j pe, vO dx dz

Qpet = Qrc T Qpx T Qws T Ot

Qpc — Cable voltage calibrated for temperature transport, (Shoosmith
etal.,2005) r=0.94, 6=0.1 PW

Qpx — QuickScat wind stress (daily) * Reynolds SST (weekly)

Qg — Directly calculated from moored CM’s/thermistors in Abaco
WB array

Qnt — Zonally-averaged interior transport profile from endpoint
geostrophic moorings ¢ Seasonally-averaged interior hyrdographic
climatology (Hydrobase, R. Curry)

Missing: Contribution to Qpr by spatially correlated v, T variability across
interior: “Gyre/eddy” heat transport = f f pc, v'0" dx dz




Heat Transport & Components

RAPID-MOC Array 26.5N Ferica Current

Interior Geostrophic

Ekman
WB-Wedge(Abaco)
Total
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Mean MHT:
1.28+0.41 PW
(0.06 PW)

w/ Ekman
variability
removed: 1.28 +
0.27 PW

» Ekman
variability
accounts for
~57% of variance

» 7-day lowpass filtered; mass-compensation time scale




Gyre/eddy Heat Transport

ngre/eddy = JJ pcp Vv'e' dx dz
~0.10+0.03 PW

Cumulative Gyre/Eddy Heat Flux AX7

XBT
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Correlation with MOC

Heat Transport vs. MOC

MHT (PW) = 0.19 + 0.057*MOC
r=0.93
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Annual Mean Heat Transport

Quantity Mean Value Std. error Bias error
QMraly | + (0.06 + 0.08 (?)
ngre/eddy 0.10 :l: 0.03 -

1.36 + (.07 + (.08

* deseasonalized

— Q. =136+0.11 PW

“ RAPID/MOCHA | Recent Estimates at 24-26°N MHT
Ganachaud and Wunsch (2003) 1.27+0.15

Lumpkin and Speer (2007) 1.24 +0.25
Lavin et al. (1998) 1.27+0.26
Fillenbaum et al. (1997) 1.44 +0.33
Molinari et al. (1990) 1.21+0.34
Trenberth and Caron (2001) 1.1 (NCEP)




Conclusions

* Annual mean MOC transport = 18.8 £ 5 Sv is also slightly larger than
estimates from WOCE period (16-18 Sv).

eSeasonal cycle emerging... in agreement w/ prior climatological estimates
and model results. MOC dominated by FC and interior ocean while the MHT
dominated by Ekman annual cycle.

*Annual mean (2004-2006) MHT across 26°N = 1.36 £ 0.11 PW. Consistent with
previous direct estimates (within errors), but at upper end.

« Short term MHT variability is large. Range -> 0.1 — 2.5 PW, Std. Dev = 0.41
PW and. About half is due to Ekman transport variability, remainder due to
geostrophic variability. Range of variability is consistent with eddy-
permitting/eddy-resolving models, but geostrophic variability may play a bigger
role than previously suggested by models (— Hirschi et al., 2007)

eMean Volume and MHT estimates from the RAPID-MOC array should provide
one of the best constrained benchmarks for indirect estimates of the ocean
transports (from flux climatologies, TOA radiation, etc.), and for comparison
with numerical models.




Seasonal mid-ocean transport variations

Monthly averages of

mid-ocean transport profile
[10* m?s!]

Mid-ocean transport profile from
linear, forced Rossby waves

(e.g. Sturges and Hong, 1995) using
Seasonal cycle of wind stress curl

=>Phase agrees with observations,
but amplitude too small by a
factor of 4

courtesy of B. Johns



Mid-Ocean transports in water mass classes
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 Baroclinicity in deep water transports (where does it come from?)
« LNADW showed northward transport only once




Zonally integrated transport above 1000 m
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Influence of the RAPID-MOC and Gulf Stream cable

measurements on the ECCO-GODAE global state estimate

Time mean MOC Combined — Reference Time mean North Atlantic Meridional Heat Transport
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Connectivity of MOC and Deep Circulation?
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The National
Ocean Research
Priorities Plan
and

CHARTING THE Implementation
COURSE FOR Strategy presents

research priorities
that focus on the
most compelling
UNITED STATES issues in key areas
FOR THE of interaction
NEXT DECADE :

between society
and the ocean.

. W

AN OCEAN RESEARCH PRIORITIES PLAN
AND IMPLEMENTATION'STRATEGY

.1"“

NSTC JOINT SUBCOMMITTEE ON OCEAN 5CIENCE AND TECHNOLOGY
JANUARY 26, 2007




U.S. AMOC Scientific Objectives

* The design and implementation of an AMOC monitoring system
* An assessment of AMOC's role in the global climate
* An assessment of AMOC predictability

Recommended Activities

Develop an AMOC state estimate or “fingerprint”
Monitor AMOC transports

Evaluate coherence and connectivity of AMOC circulation and
transports

Assess AMOC observing systems with ocean models
Reconstruct AMOC variability and associated property fields
Model the ocean state during the instrumental period

Develop longer-term proxies for AMOC variability
Diagnose mechanisms of AMOC variability and change
Assess AMOC predictability

Determine impact and feedback of AMOC variability
Assess role of AMOC in producing observed changes




AMOC Open Science Meeting
May 4-6 2009, Annapolis, MD

www.atlanticmoc.org/AMOC2009.php

What is the current state of the AMOC?
How has the AMOC varied in the past on
interannual to centennial time scales?
What governs AMOC changes?

Is the AMOC predictable on 10-100 year
timescales?

What are the impacts of AMOC variability
and change?

Outcomes

What is the optimal observing system design for the AMOC?

Is there an identifiable and measurable AMOC fingerprint that can be used to
constrain the requirements for an AMOC observing system?

Provide comments for September Ocean Obs 2009 Conference on Observing
system recommendations.




