
Al i h D l Lib Algorithm Development Library
(ADL)(ADL)

July 20, 2010

ADL Vision

Provide a tool with a standardized input/output framework, based on operational code
and interfaces, into which algorithm scientists can “plug” their algorithms, in their
development environment, to develop and debug the algorithmsdevelopment environment, to develop and debug the algorithms
– The tool provides Input (“I”) and Output (“O”) interfaces for an algorithm under development

that are identical to those of an operationalized algorithm
Use will significantly decrease the time spent for science-to-operations (Sci2Ops) code
conversion
Will enable return of the operational algorithm to the science algorithm developer who
can then insert it back into their ADL environment for further enhancements

Code changes to algorithm processing code that are for operational aspects are made to a – Code changes to algorithm processing code that are for operational aspects are made to a
delegate class to segregate the ops changes to allow for plug and play

– Allows developer to always work to latest operational baseline
Increased efficiency for new algorithm developersy g p
– Auto-generation of code when developing a new algorithm

7/16/2010

ADL Background

Science algorithm to operational algorithm conversion (Sci2Ops) was difficult and
therefore costly
– Need for better coordination and process identified during multiple algorithm Sci2Ops Need for better coordination and process identified during multiple algorithm Sci2Ops

conversions
– Science algorithms don’t always follow any specific execution model, i.e intermixed input,

processing, and output
N i t t f t di t d d l ith d l– No consistent formats or coding standards across algorithm developers

– Widely varying algorithm designs
– Widely varying input and output product implementations

ADL Design is based on I-P-O (Input-Processing-Output) Model
– I (Input): Retrieval of Predefined Input Data

– Previously Created Data Products – RDRs, SDRs, EDRsy , ,
– Ancillary Data – Spacecraft telemetry, climatology data, etc.
– Auxiliary Data – Look Up Tables (LUTs), Configuration Guides, etc.

– P (Processing): Processing of Data to Create a Defined Data Product

7/16/2010

– O (Output): Storage of Defined Output Product(s) for Later Retrieval, Formatting, and Delivery

Science-to-Operations Algorithm Migration

Sci2Ops
Algorithm Migration

Process repeated for each algorithm module

S1

Rehost

S2

I-P-O
Conformance

S3

Error
Handling

& Data Quality

A B

S4

Latency
Optimization

S5

Graceful
Degradation

& Data Quality

S1.1

Drop
Assessment

S1.2

Code
Port

S1.3

Data
Conversion

S2.1

Code
Re-use

Evaluation

S2.2

I-P-O
Conversion

S3.1

Data
Quality

Additions

S3.2

Error
Handling
Additions

S4

Optimization

S5.1

Graceful
Degradation

S5.2

Unit
Testing

S5.3

OAD
Updates

S5.4

Results
Comparison

7/16/2010Circled steps denote areas of greatest savings

Algorithm Development Approach

File Based
CMD Line

File Based
CMD Line

Science

P I O P I
Algorithm Development
Integration/Operations

ADL Framework

O
Integration/Operations

I O P P I O
Operational Common Framework

P P

7/16/2010

DMS Memory
Defined APIs

DMS Memory
Defined APIs

Integrated
Algorithm

ADL Phase 1

• Build ADL as Category 3 software
– Full Cat 3 development including requirements definition design coding and testFull Cat 3 development, including requirements definition, design, coding, and test

• Assess likely savings to Science-to-Operation code conversion for MIS
algorithms through vendor use of ADL and associated practices

– Provide ADL to NGAS to use during development of Deep Blue aerosol algorithm– Provide ADL to NGAS to use during development of Deep Blue aerosol algorithm
– NGAS delivered Deep Blue to Raytheon for sci-2-ops conversion
– Perform all conversion efforts required to assess ADL savings

Write joint report with NGAS documenting results– Write joint report with NGAS documenting results

6

ADL Phase 1 Results

• Steps performed to build ADA compliant Deep Blue “science code”
– Hosting PGE04 at Space ParkHosting PGE04 at Space Park
– Converting Deep Blue LUTs and global surface reflectance database MODIS binary files into

IDPS formatted binaries
– Using the PRO XML editor GUI supplied with the ADL to generate XML product description

files for the Deep Blue LUTs and global surface reflectance databasesfiles for the Deep Blue LUTs and global surface reflectance databases
– Manually create the Deep Blue algorithm configuration and guide list XML files
– Manually create Imakefile to enable auto generation of algorithm I/O software
– Auto generate Deep Blue ADL source codeAuto generate Deep Blue ADL source code
– Modify Deep Blue driver to strip out all MODIS specific I/O
– Modify Deep Blue driver to map the ADL input and output pointers to the internal variables
– Modify internal logic in Deep Blue algorithm to use VCM flags for pixel screening
– Consolidate variable initialization of hard coded parameters into Deep Blue driver subroutine
– Rewrite EDR aggregation to conform to VIIRS Aerosol EDR HCS
– Run test cases

Compare output of test cases to MODIS Deep Blue product output– Compare output of test cases to MODIS Deep Blue product output

7

ADL Phase 1 Results

• Steps performed to convert Deep Blue “science code” to operational
codecode

– Initial assessment and port
– I-P-O Design
– I-P-O code and unit test

• Sci-2-Ops tasks not performed (unnecessary for assessment of ADL
savings)

– Error Handling/Data Quality Design
– Error Handling/Data Quality Code and Unit Test
– Optimization/Graceful Degradation Design
– Optimization/Graceful Degradation Code and Unit Test

8

ADL Phase 1 Results

• Output comparisons (one of four granules)
– Differences within IPACDifferences within IPAC

NPP001212077949 DEEP BLUE EDR RESULTS SUMMARY

Field Name
Difference
Count Total Pixel Count

AerosolOpticalDepth_at_412nm 1 19149

NPP001212077949 DEEP BLUE IP RESULTS SUMMARY

Field Name
Difference
Count Total Pixel Count

AerosolOpticalDepth 0 703504
AerosolOpticalDepth 0 703430

AerosolOpticalDepth_at_488nm 1 19142
AerosolOpticalDepth_at_672nm 95 3239
AerosolOpticalDepth_at_550nm 5 19172
SingleScatteringAlbedo_at_412nm 20 14137
SingleScatteringAlbedo_at_488nm 3 14070
SingleScatteringAlbedo_at_672nm 0 14274

AerosolOpticalDepth 0 703430
AerosolOpticalDepth 0 29420
AerosolOpticalDepth 58 704196
SingleScatteringAlbedo 1317 336245
SingleScatteringAlbedo 1317 336245
SingleScatteringAlbedo 0 336245
AngstromExponent 0 704119

AngstromExponent 1 12254
qf1_AOT_M1_Product_Quality 0 38400
qf1_AOT_M3_Product_Quality 0 38400
qf1_AOT_M5_Product_Quality 114 38400
qf1_AOT_550_Product_Quality 0 38400
qf2_SSA_M1_Product_Quality 0 38400
qf2_SSA_M3_Product_Quality 0 38400
qf2_SSA_M5_Product_Quality 0 38400
qf2_Angstrom_Exponent_Product_Quality 0 38400
AOT_Scale 0 1
AOT_Offset 0 1
SSA Scale 0 1

9

_
SSA_Offset 0 1
ANGEXP_Scale 0 1
ANGEXP_Offset 0 1

ADL Phase 1 Results

• Deep Blue algorithm sci-2-ops conversion effort (without ADL) was
estimated using standard CERsestimated using standard CERs

– Total effort 2,338 hrs
• Total effort was allocated to the five sci-2-ops steps
• Actual sci 2 ops hours (with ADL) were recorded for each of the steps • Actual sci-2-ops hours (with ADL) were recorded for each of the steps,

with extrapolation for sub-steps that were not performed
• Hours were compared and total efficiency calculated

TOTAL EFFICIENCIES

Expected
Hrs

Extrapolated/
Estimated

Hrs EfficiencyHrs Hrs Efficiency
Port 164 16 90%
IPO Design 210 28 87%
IPO CUT 772 79 90%
DQ/EH Opt/GD Design 327 306 6%
DQ/EH Opt/GD CUT 865 699 19%

Total: 2 338 1 129 52%

10

Total: 2,338 1,129 52%

ADL Phase 2

• The original goal of ADL was to provide algorithm developers with a tool
that reduces the cost of the science-to-operational conversion effortthat reduces the cost of the science to operational conversion effort

• Phase 1 accomplished this, with a multi-platform, endian neutral tool
– Supports AIX, linux, and Windows platforms
– Big endian or little endian– Big endian or little endian

• Phase 2 expands ADL to become useful for two-way algorithm
conversion efforts

Allow users to execute test and modify existing operational code on their home – Allow users to execute, test, and modify existing operational code on their home
systems

– Allows rapid incorporation of updated algorithms back into operational system

11

ADL Phase 2

• Tasks
– Support spacecraft diary RDRs (Phase 1 used TLEs)Support spacecraft diary RDRs (Phase 1 used TLEs)
– Convert ancillary files into appropriate IDPS gridded and granulated formats
– Update operation code to ADL compatibility

• Funding limitations prioritized to ATMS VIIRS and OMPS SDRs and VCMFunding limitations prioritized to ATMS, VIIRS, and OMPS SDRs and VCM
• Generalized endian-independent application packet reader

• Schedule
May 1 2010 through Sept 30 2010– May 1, 2010 through Sept 30, 2010

• Other enhancements desired (but not currently funded)
– Read from HDF-5 formatted files

M t d t h dli– Metadata handling
– Chaining ability
– Little-endian CrIS SDR

12

ADL Science Algorithm Developer Strategy

Algorithm Development steps with ADL:
1. Define the format of all algorithm inputs, SDR, IP, AUX (LUT), GranAnc, Geolocation using the

ADL XML GUI tool
– Tool produces XML that will meet schema for operational system

2. Define the format of all algorithm outputs using ADL XML GUI tool
3. After inputs and outputs are defined via XML an algorithm configuration guide needs to be

t d th t ifi th i t d t t d t f th l ith i created that specifies the input and output products for the algorithm via group names
specified when creating the XML products
– The algorithm configuration guide will contain the algorithm name and

inputs/outputs specified by group names that map to a specific file name
4. Compile the ADL software, which will auto generate the dictionary source code from the XML

product definitions and create corresponding C++/Fortran structures/modules
– The compile will also automatically produce an auto generated derived

algorithm class that will handle all of the I/O and pointer assignmentalgorithm class that will handle all of the I/O and pointer assignment
automatically

7/16/2010

ADL Science Algorithm Developer Strategy

Algorithm Development steps with ADL (continued):
5. A derived algorithm class will also be created if one does not exist as a starting point for

inserting the science code. Subsequent recompiles will not do this step, once a file exists
6. Algorithm developer proceeds to develop the science algorithm and makes use of the

available derived algorithm pointer data members
7. If during development new inputs are added or taken away in the algorithm configuration file a

recompile will be necessary to auto generate the algorithm class
– If inputs are taken away, they will be removed from the auto generated

algorithm class which may subsequently cause compile failures in the
derived algorithm class if references still exist

7/16/2010

ADL Operational Developer Strategy

Operational Development steps with ADL:
1. Operational developer is delivered software for algorithm that was developed

on ADL platform
– Operational developer compiles and runs algorithm software in local ADL

environment and confirms software produces results within specification
(port)

2. Operational developer inserts new XML for input and output definitions into
operational system if products don’t currently exist under appropriate
sensor directory

3. Operational developer copies the dropped algorithm configuration guide and
updates the file names specified to be actual operational collection short
names

4. Operational developer inserts binary data input files provided with drop into
DMS with proper metadata for operational system, granule id, granule
version, effectivity, etc.

Operational de eloper ma need to con ert dropped inp t data if not in– Operational developer may need to convert dropped input data if not in
operational format, or format has changed

– Science algorithm developer should try to develop algorithm with
correctly formatted operational data, otherwise the cost of doing
Sci2Ops is increased to accommodate the data conversion needed

7/16/2010

Sci2Ops is increased to accommodate the data conversion needed

ADL Operational Developer Strategy

Operational Development steps with ADL (continued):
5. Operational developer places all algorithm software except for auto

generated files into appropriate algorithm folder
6. Operational developer updates Makefile to point to operational auto

generation software for the algorithm
7. Operational developer compiles dictionary with new XML input and output

items and generates operational C++/Fortran structures and produces auto
generated derived algorithm class

8. Operational developer runs algorithm and validates results are within
specification

9. Operational developer adds operational functionality to the algorithm by
updating the “empty” implementation algorithm delegate class that was
created for metadata, data quality notification, graceful degradation, etc. but
isolating these operational changes in the class
– Operational developer should only make science code changes to the

deri ed algorithm class this allo s for the pl g and pla of the algorithmderived algorithm class, this allows for the plug and play of the algorithm
between ADL and the operational environment

– It is conceivable that Operational developers could enhance the
science or output format by implementing quality flags as an
example that weren’t in the original algorithm drop

7/16/2010

example that weren t in the original algorithm drop

Return ADL Operations Code to Developers

Process of returning updated code from operations to algorithm developers:
1. Operational developer makes updates to algorithm processing code to

implement quality flags and/or bug fixes. Code changes that are for
operational aspects must be made to the delegate class to segregate the ops
changes to allow for plug and play

2. Operational developer re-tests the algorithm in ADL environment by taking
the updated derived algorithm and any XML changes to input or output
f tformats

3. Operational developer compiles ADL dictionary with updated XML input and
output items and generates C++/Fortran structures and produces auto
generated derived algorithm class

4 O ti l d l l ith i ADL i t d lid t4. Operational developer runs algorithm in ADL environment and validates
results are within specification of the operational results

5. Operational developer prepares updated ADL software delivery to algorithm
developer

Algorithm de eloper ill need to merge code changes ith an ne– Algorithm developer will need to merge code changes with any new
changes (if working on parallel changes from operations) and potentially
resolve any XML input/output format issues

6. Algorithm developer runs delivered code in local ADL environment (re-port)

7/16/2010

ADL Benefit Summary

Use of ADL will reduce algorithm development costs by
– Providing standardized toolkits and development GUIs for interfaces

P idi t d di d f k f “I t P” d “P t O” i t f– Providing standardized framework for “I to P” and “P to O” interfaces
Use of ADL will reduce operational implementation costs by
– Ensuring “plug and play” compatibility with operational baseline
– Reduce time and effort required to make an algorithm operationalReduce time and effort required to make an algorithm operational
ADL framework was created for use by algorithm developers to facilitate future
business through:
– Plug and play compatibility between the algorithm developers and operations
– Less cost and effort to operationalize science algorithms

Use of ADL will benefit any organization creating, modifying, testing, or integrating
algorithms into an operational system

7/16/2010

