How does Inter-calibration support
- Crosstrack Infrared Sounder (CrlS)
' launch calibration?
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Benefits to the NOAA Mission

ATMS (NGES)

CriS (ITT)

ATMS and CrIS together provide high vertical
resolution temperature and water vapor
mformation needed to maintain and improve
forecast skill out to 5 to 7 days in advance for
extreme weather events. including hurnicanes
and severe weather outbreaks.

VIIRS (Raytheon SAS)

VIIRS provide a large set of parameters
mchding snow/ice cover, clouds, fog, aerosols,
fire, smoke plumes, vegetation health,
phytoplankton abundance/chlorophyll needed
for environmental assessments which impacts
human health and key economic sectors
(transportation. fishing. energy. agriculture)

OMPS (Ball Aerospace
and Technology Corp)

Total ozone for monitoring ozone hole and

recovery of stratospheric ozone and for UV
mdex forecasts

CERES

Prowvide climate quality measurements of the
Earth’s outgoing radiation budget.

From M. Goldberg (2014)




CrlS: Interferometer

Detector
Optics (1w)
Cooler (81k) 3]
==

Interferometer '

Porchswing Mirror

~ - Compensator Stationary Nirmor
Beam splitter
~
DA Mirror
Caherant
Light Source

Recombined C—
Beam Maving Mirror

CrlS Optical System \ o ()

Scene SSM %

- Detector
Radiance
Yong Han (2014)
S0 T T
150 N e Fesnppe = b 1 Caipns.
ey | EMH = LI
o 100 - |
5 o
F |
TR -
0 1 i i ; i 1 i i o
(Sl Foo a0 800 a0 900 950 1000 10580 1100 F -

wavenumber O U ri e r o F] 000 P e Tooen
IR spectrum \Transfoy Interferogram 4




Absolute Radiance




CrlS Spectral Bands

Full IReso'Iutionl Modle
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CrlS Scan Patterns

NORTH

From Yong Han et al. (2014)




CrlS Images
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Main Users:
1) Radiances as inputs for NWP Data Assimilations
2) Atmospheric profiles retrievals ( Temperature and Humidity)
3) Trace gas retrievals (CO,, CO, CH4 ...)
4) Inter-calibration references for other broadband or narrow band instruments ¢

Water Vapor
channel channel
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2. Instrument Sensor Calibration
e Satellite Sensor Calibration
e Inter-Calibration



How to calibrate satellite sensor?

CALIBRATION OF

THERMOMETER 4 Target Radiance

COLD POINT

Scene
radiance

‘c;ld Space
Scene Counts

From Wu and Cao (2006)
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The ICT and SP vnew
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used to calibrate ES
view measurements

Earth Scene (ES)

Digital Counts (No Unit)

l Level 1B data
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WMO IMOP Guidance:

“Calibration is the process of
quantitatively defining the satellite
instrument response to known,
controlled signal inputs . The
calibration information is contained
in a calibration formula, or
calibration coefficients that are then
used to convert the instrument
output (“counts”, previously
“analogue signals”) into physical
units (e.g., a radiance value).”



Satellite Sensor Calibration

e Radiometric — how strong is the
radiance
— Precision (Noise): NEDN or NEDT
— Accuracy: Radiometric Uncertainties
— Polarization

" Radiometric

e Spectral Calibration — at which =
wavelength is radiance from?

— Central wavenumber
— Spectral uncertainties

Spectral ~ Geometric

e Geometric Geometric: where does
radiances come from?

— Geolocation (Latitude and Longitude)
— Band-to-Band Registration
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CrlS SDR Processing Major Modules
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NPP CrlS Sensor Data Record
Calibration Uncertainty Specifications

Spectral Resolution
range (cm-?) (cm™)
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After satellite was launch, the calibration
coefficients can change on-orbit. We
need to quantify the calibration
uncertainties. However, there is no truth
on orbit.

Inter-calibration methods compare a
reference instrument, with well-known
calibration characteristics, with
collocated observations from another
instrument.

It can identify problems and increase the
confidence in the operational calibration
of individual satellites. Hence, inter-
calibration can serve as a monitoring tool
for the operational calibration.

it can provide the basis for a normalised
calibration, which is a prerequisite for
the derivation of global products from
different satellites.

From CLARREO Program website
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3. Inter-calibration for CrlIS Geolocation Assessment
* Using VIIRS image Band as a reference
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CrlS Geometric Calibration Algorithm @
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Challenges for On-orbit Assessment

Orhit b02640 CrIS Image at 900 cm-1
EEe X
W Tag s T
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Unlike an imager, it is very hard to assess geolocation sub-pixel accuracy for CrlS using
the land feature method because of 1) relatively large footprint size (above 14 km); 2)
the gap between footprints; and 3) Uneven spatial distribution of CrIS Footprints
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CrlS Geolocation Assessment Paper

JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 118, 1-15, doi:10.1002/2013JD020376, 2013

Geolocation assessment for CrlS sensor data records

Likun Wang,' Denis A. Tremblay.? Yong Han,® Mark Esplin,* Denise E. Hagan.’
Joe Predina,® Lawrence Suwinski,® Xin Jin,” and Yong Chen'
Received 17 June 2013; revised 23 October 2013; accepted 27 October 2013.

[1] As important as spectral and radiometric calibration, the geometric calibration is one of
the requisites for the Suomi National Polar-Orbiting Partnership Cross-track Infrared
Sounder (CrlS) Sensor Data Records (SDR). In this study, spatially collocated
measurements from the Visible Infrared Imaging Radiometer Suite (VIIRS) band 15 are
used to evaluate the geolocation performance of the CrlS SDR by taking advantage of high
spatial resolution and accurate geolocation of VIIRS measurements. The basic idea is to find
the best collocation position between VIIRS and CrlS measurements by shifting VIIRS
images in the track and scan directions. The retrieved best collocation position is then used
to evaluate the CrlS geolocation performance by assuming the VIIRS geolocation as a
reference. Sensitivity tests show that the method can well detect geolocation errors of CrlS
within 30° scan angle. When the method was applied to evaluate the geolocation
performance of the CrlS SDR, geolocation errors that were caused by software coding errors
were successfully identified. Afier this error was corrected and the engineering packets V35
were released, the geolocation accuracy is 0.347 +0.051 km (1o) in the scan direction and
0.219 +0.073 km in the track direction at nadir.

Citation: Wang, L., D. A. Tremblay, Y. Han, M. Esplin, D. E. Hagan, J. Predina, L. Suwinski, X. Jin, and Y. Chen (2013),
Geolocation assessment for CrlIS sensor data records, J. Geophys. Res. Armos., 118, doi:10.1002/20131D020376.

Paper published in Suomi NPP Cal/Val Special Issue
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Reference: Using VIIRS Geolocation
(15 band: 375m resolution)
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Table 2. VIIRS Geolocation Accuracy

First Update Second Update

Residuals
23 February 2012 18 April 2013
Track mean -24m,-7% 2m, 1%
Scan mean -8m, -2% 2m, 1%
Track RMSE 75 m, 20% 70m, 19%
Scan RMSE 62m, 17% 60 m, 16% 20



CrlIS spectrum is convolved with sz R(v)S; (v)dv

VIIRS SRFs for I5 band (375m | =
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_VURS Pixels

CriS FOV footprint
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Quantitative Assessment

Choose un-uniform (better for cloud scene)
CrlS granules over tropical region (large
dynamic range)

Collocate VIIRS with CrIS nadir FOVs (FOR 13-
16) and then compute spatially averaged
radiances

Convert CrlS spectra into VIIRS band radiances
using VIIRS spectral response functions (SRFs)

Define the cost function as Root Mean Square
Errors (RMSE) of CrIS-VIIRS BT difference

Shift VIIRS image toward along- and cross-
track direction to find the minimum of the
cost function, which represent best collocation
between VIIRS and CrlS

Orbit 02477 on April 20 2102
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An Example

a) CrIS-simulated IS

RMS at [5,8]: L4TE
RMS at [1,1]30.55 K
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VIIRS Image
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VIIRS-CrIS

=> Radiometric Differences

VIIRS-CrIS BT [K]

Red Line: Fitting Line
Blue Line: Bin Average

VIIRS-CrIS BT [K]

1.0

VIIRS-CrIS BT [K]

CrlIS BT [K]



Effects of Radiometric Discrepancy
Between CrlS and VIIRS
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Effects of CrlS Spatial Response Function
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From Mark Esplin
Table 3: FOV shape characteristi
FOV Shape FOV Shape
(degrees, (degrees,
Cross Track) In Track)
70% of Peak Response Width | > 0.8735 >0.8735
50% of Peak Response Width | 0.942 0.942
10% of Peak Response Width | <1.100 <1.100
3% of Peak Response Width <1.238 <1.238
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Sensitivity Test
Pitch and Roll Angels

Along-Track Direction Cross-Track Direction
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A series of perturbation tests are designed by intentionally adding systematic errors,
which are then examined using the VIIRS measurements to check whether the VIIRS-CrIS

collocation method can detect the known perturbation errors. .
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Sensitivity Test
=5 yaw Angels within 30 degree scan angle

Pixel Size [km]

VIIRS pixel size varying with Scan angle

19 Track direction (no aggregatlon)
s CriS FOR
: 4
0.6
0.4 .

] Aggregate 3 Aggregate 2

0-2-1Scan Direction

0.0 | T T rrrTTTTT T

Aggregate 1 I

0 10 20 30 40 50
Scan Angles [Degree]

In VIIRS data, in order to minimize
data rate, some of this redundant
data is not transmitted and thus
referred to as “bowtie deletion”
when scan angle is larger than 32°.

Distance [m]

RMSE: 63.080 m

0 5 10 15 20 25 30
FOR Index

Sensitivity test for the yaw angle
perturbation. The black line indicates the
actual geolocation change due to the yaw
angle perturbation, while the squares
represent the detected geolocation change
using the VIIRS measurements.
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On 22 November 2012 at
1632 UTC, Suomi NPP VIIRS
entered petulant mode.
When the power was
restored at 2207 UTC, the
scan control electronics
(SCE) was switched from
side B to side A. At that
time, geolocation look-up
tables (LUTs) containing
incorrect parameters

for SCE side A introduced a
nadir geolocation bias of

~325m in the scan direction.
Corrected LUTs were applied

starting 11 December 2012
(data day 346) at 1918 UTC,

and the geolocation
products’ accuracy returned
to normal.
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1 ) Time Series of Assessment Results (4) w

. CrIS SDR Geolocation Assessment by VIIRS
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Statistical Results

Histogram
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Off-Nadir Assessment
(within 30 degree scan angles)
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CrlIS-VIIRS BT Diff. Map
(Still not well understood)
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Possible Angle Adjustment to remove
geolocation offset

: However, there is no evidence on which angle

Track . causes this mismatch. The team decided to

E H{"H’ % = leave this issue for further investigation.
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* Once satellite was launch, there is no truth on-orbit. Therefore, inter-calibration
plays an important role of post-launch calibration.

e We demonstrate an example of using VIIRS as a references to evaluate CrIS
geometric calibration accuracy.
— At nadir: 0.354 £0.047 km in scan direction and
0.209 + 0.082 km in track direction
— Within 30 degree scan angles: less than 1.3 km
— End of Scan CrIS and VIIRS mismatch (Under Investigation)

. Lessons Learned:
— Inter-calibration must be well designed and directly serves for sensor-level calibration.

— Inter-calibration results must be carefully classified based on root causes
. Caused by inter-calibration method?
. Caused by instrument sensor?
— Reference instrument?
- Compared instrument

» Instrument anomaly
» Calibration parameters
» Calibration algorithms

— Inter-calibration must be performed routinely during the whole life of instrument sensor
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CrlS Operational Concept

CrlS on NPP

s RDR = Raw Data Record
Croi??rack — SDR = Sensor Data Record
' e EDR = Environmental Data Record
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Error Characteristics

Accuracy (bias): a

Precision (standard
deviation): P

o u = Ya+p>—
Uncertainties:

Stability: a(t) and p(t)

From Goldberg (2006)

Truey
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