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Hazard types for EM-DAT disaster records* over 2000- 2010 "u™Per of events reported

Total disasters : 3638

Wild Fires : 146

Wave / Surge . 18
Volcano : 64

Slidas : 224

Industrial Accidant : 10

Wind Storm : 103 200

Earthquake : 205 100 AaAr

B

1880 1984 1aeg 1942 1908 2000 2004 2008

Flood : 1843

* source EM-DAT: The OFDA/CRED International Disaster Database - www.emdat.net

Floods are the most frequent natural disasters around
the globe. With climate change, floods become more

and more frequent
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In the U. S., floods caused
more loss of life and
property than other types of
severe weather events.



Background

Most floods occur with vegetation/bare soil underlying
conditions--supra-veg/bare land floods.

SNPP/VIIRS data show special advantages in flood detection.

3000km swath without gaps even at the equator and constant 375-m
spatial resolution across the scan in Imager bands

Multiple observations per day in high latitudes

Particularly excellent at snow-melt and ice-jam floods due to less
contamination from cloud cover than floods caused by intensive rainfall

Initialized by JPSS Proving Ground & Risk Reduction Program,
flood detection algorithms have been developed to generate
near real-time flood products from SNPP/VIIRS imagery.
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Without contamination from sun glint,
open water surface has higher reflectance
in visible (VIS) (VIS) than in near-infrared
(NIR) and short-wave infrared (SWIR)

channels.

Reflectance of clean water in SWIR channel

is close to zero.

Reflectance of water surface changes with
suspending matter content:
clean<moderate turbid<turbid<severe
turbid.

Most flood water is a mixture of open water and other land types such as

vegetation, bare soils or snow/ice. Hence, reflectance of flood water is also

a combination of open water and its mixture. 6
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NDWI1 NDWI

Cloud shadow is the biggest challenge for . - -
automatic near real-time flood detection

using optical satellite imagery. i -

NDWI NDWI1

Cloud shadows share spectral similarity to
flood water, and thus it is unable to be

removed based on spectral features. R
Geometry-based method provides a good sy
solution but still suffers with uncertainty of |

cloud height and cloud mask.

NDVI NDVI
@ vegetation @water @ bare land « cloud shadow

Solution: post cloud shadow removal from water pixels based on

geometry-based method (Li. et al., 2013).
Based on geometric relationship between cloud and cloud shadows over spherical

surface
An iteration method is applied to decrease uncertainty of cloud heights



Challenges & Solutions

Geometry-based method to
remove cloud shadows from

water pixels (Li. et al., 2013)
Based on geometric relationship
between cloud and cloud
shadows over spherical surface
An iteration method is applied
to decrease uncertainty of cloud
heights
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VIIRS false-color composited image, May 30,  VIIRS flood map without cloud shadow
2013 at 22:48 (UTC) removal, May 30 2013 at 22:48 (UTC) |
In VIIRS false-color image (Top left), — -cmweml . B

Floodwater fraction (%)

cloud shadows look very similar to R,
open water and they are easily
detected as flood water and further
retrieved in large water fractions (Top
right).

After cloud shadow removal, these , -
shadows are removed from VIIRS flood V||RS flood map after cloud shadow removal,

map (Bottom right). May 30, 2013 at 22:48 (UTC) 9
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Terrain shadow is the second biggest challenge for automatic
near real-time flood detection.

Unable to be removed based on spectral features because of
spectral similarity to flood water.

(a) R o - b)
200 T T T T

400

Solution: Object-based method to

remove terrain shadows from flood maps
(Li. et al., 2015). .

Full application of surface roughness ;
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analysis:

Terrain shadows are formed in mountainous
areas with large surface roughness

Flood water accumulates in low-lying areas
with small surface roughness

Object-based instead of pixel-based.
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VIIRS false-color composited image, Nov. 15,
2014 at 21:02 (UTC)

Without terrain shadow removal,
most terrain shadows are
detected as flood water with large
water fractions (Top right).

After terrain shadow removal,
these terrain shadows are

removed from flood map (Bottom
right).

Terrain Shadow Removal bﬁﬁsonee
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VIIRS flood map without terrain shade
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Moderate spatial resolution of VIIRS imagery
Limited to detect minor floods

Requires flood water fraction retrieval for better

representation of flood extent than simple water/no water
mask

Solution:

Application of change detection to detect minor floods.

Dynamic Nearest Neighboring Searching method for water
fractions by considering the mixing structure of sub-pixel land
portion (Li. et al., 2012)

Downscale model to enhance the resolution of VIIRS flood
map.



Challenges & Solutions — Downscaling model

Downscaling model: It is a model to enhance the spatial resolution of
VIIRS flood maps from 375 meters to 30 meters or 10 meters using

high resolution DEM and VIIRS 375-m flood water fraction product.

Spatial resolution Global coverage

SNPP/VIIRS Imagery 375 m 3000 km every day
Downscaled VIIRS 10 mor 30 m 3000 km every day
flood maps
Lar-mdsat—8 OLl 30m 189 km 16 days
imagery

The downscaling model makes SNPP equivalent to more than
15 Landsat-8 satellites in flood mapping. 13
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Challenges & Solutions — Downscaling model e

The inundation mechanism can be expressed as:

A= [0 [ wi(h)fi () didh

min h Y1

Where, A is satellite-based total water area between the minimal surface
elevation, min_h , and maximal inundated surface elevation, max_h, w;(h)

is the weight of land type i at height h in a VIIRS 375-m pixel, and f; (h) is
the total area of land type i at height h.

v' max_h: flood water surface level (the most important variable).
v Flood water depth: max_h - h.

Network analysis.

To make river flow smoothly from upstream to downstream.

To guarantee the accuracy of flood water surface level.

14



SNPP/VIIRS Flood Water Surface Level Map Jan. 12, 2016
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Comparing with aerial photography
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The background image is experimental satellite imagery collected by NOAA's Suomi NPP, using the Visible Infrared Imaging Radiometer Suite (VIIRS).
It shows the extent of surface water as of 01 JAN 2016. It has been downscaled to 30 meter resolution and packaged into KML files by NOAA.
MVR extracted the KML images for import into GIS on 02 JAN 2016.
Rock Island District
NOTE: Surface water behind a levee should not be categorically interpreated as an overtopping. The surface water detected could be due to Emergz%ng’gg%ﬁ%emem
many situations including, but not limited to, levee seepage/boils, pre-existing surface water, or ponding due to precipation.

VIIRS 375-m
flood map

Great flood details from VIIRS 30-m flood maps provide incredible

information for flood investigation and evaluation.

18



20150610 19:33(UTC)

June 10, 2015 2

A major flood
occurred along
lllinois River and

Mississippi River

since June 10, 2015. VIIRS enhanced 30-m flood maps along lllinois River
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VIIRS 375-m flood maps along Illinois River
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VIIRS enhanced-30-m flood map on
Y&hburn JUIV 10, 2014

VIIRS false P
color

image (tog
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Pike Grain Levee
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Application: Levee monitoring and management.

v’ Provide dynamic flood information around levees, which could assist river forecasters to

investigate flood status and risks of levees.

v" Downscaled flood maps based on flood extent products provide more details of Ieveczeos

such as breach, flooding water volume.
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57 Interface to browse
2 ; near-real-time flood
" ' . ¥ products for the five

g 9 T

EEBE. . o= river forecast centers:
MORE INFORMATION W i S 2 '
S b http://rs.gmu.edu
= ‘B AL http://realearth.ssec.

wisc.edu/

The software is routinely running at SSEC and GINA, which have
access to direct broadcast SNPP/VIIRS data, to generate near-real-
time flood maps for five River Forecast Centers (RFCs) in USA.

VIIRS near real-time flood products can be accessed for these five RFCs
in Real Earth and AWIPS-II.
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SNPP/VIIRS False—color Image 20150519 21:35(UTC) SNPP/VIRS Flood Detection Map 20150519 21:35(UTC)
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Near real-time flood extent monitoring.

v Coverage: any regions between 80° Sand 80° N.

v’ Spatial resolution: 375-m

v" Flood types: supra-veg/bare soil flood and supra-snow/ice flood.

v Flood maps: In a flood map, there are cloud, snow, River/lake ice, shadow (cloud shadow
and terrain shades), supra-snow/ice flood cover, normal open water and flooding water
fractions of supra-veg/bare soil floods. 29
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Cloud cover is the biggest limitation for flood detection

using VIIRS imagery, which prevents continuous detection
on flood water and causes latency to detect flood water
from intensive rainfall.
The contradiction is: no clouds, no rainfall, and then no floods.
Solution: microwave (ATMS) (Sun et al., 2015)

Latency may prevent the product from flood prediction, but is

still okay for flood extent investigation and loss assessment.

Multi-day composition from near real-time flood maps can
obtain maximal flood extent during a flood event, and thus

reduce the impact from cloud cover.

27
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Cloud cover prevents a complete overview of flood water from near real-
time flood maps during Bangladesh’s flood event in August, 2014.
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We have solved the critical issues, like cloud shadow and terrain

shade problems, and made near real time flood products become

possible.

The high temporal and wide coverage of environmental satellites,
including meteorological satellites like NPP/JPSS, made them
attractive for disaster monitoring and detection, but their moderate
spatial resolution may limit their wide applications. We developed
downscale model and enhanced the capability of these moderate-

to-course resolution sensors.

Meanwhile, our model made 3-D flood products including flood
water surface level, flood water depth, and high resolution flood

maps become possible.
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