

Observations of Atmospheric Dynamics in 3D with LEO-GEO and GEO-GEO Stereo Imaging

James L. Carr¹

28 February 2019

¹Carr Astronautics, 6404 Ivy Lane, Suite 333, Greenbelt, MD 20770, USA, <u>jcarr@carrastro.com</u> NOAA sponsorship NA14NES4320003 (CICS, UMD) NASA sponsorship NNG17HP01C, TO#28 (SAMDA, SSAI)

Collaborations

NOAA Collaboration

- Jaime Daniels, Houria Madani (Carr Astro),
 Wayne Bresky, Jeff Key
- Focuses on GEO-GEO combinations
- In progress with preliminary results

NASA Collaboration

- Dong Wu, Michael Kelly (APL), Jie Gong
- Focuses on LEO-GEO combination
- First-year finished, second year starts March 1st
- Starting to work with JPL

- Motivation
- Method
- Results
- Validation

MISR & GOES-R

Article

MISR-GOES 3D Winds: Implications for Future LEO-GEO and LEO-LEO Winds

James L. Carr 1,*, Dong L. Wu 2, Michael A. Kelly 3 and Jie Gong 4

- Carr Astronautics, 6404 Ivy Lane, Suite 333, Greenbelt, MD 20770, USA
- NASA Goddard Space Flight Center, Greenbelt, MD 20770, USA; dong.l.wu@nasa.gov
- Johns Hopkins Applied Physics Laboratory, Laurel, MD 20723, USA; michael.kelly@jhuapl.edu
- 4 NASA Goddard Space Flight Center, Greenbelt, MD 20770, USA; jie.gong@nasa.gov
- * Correspondence: jcarr@carrastro.com; Tel.: +1-301-220-7350

Received: 4 October 2018; Accepted: 21 November 2018; Published: 27 November 2018

MISR Special Issue of Remote Sensing:

Carr, J.L.; Wu, D.L.; Kelly, M.A.; and Gong, J., "MISR-GOES 3D Winds: Implications for Future LEO-GEO and LEO-LEO Winds", *Remote Sens.* **2018**, *10*(12),1885; https://doi.org/10.3390/rs10121885

3D = Velocity with 3D location of Wind in the atmosphere

Motivation

- MISR & GOES each have different strengths and weaknesses for Wind observations
 - MISR measures cross-track velocity well and altitude (parallax),
 but in-track velocity couples to altitude
 - GOES-R measures two wind components well, but operational wind products must infer altitude from IR temperature
- MISR & GOES should be better together than each working alone and therefore solve both problems.
- Advanced "Image Navigation and Registration (INR)" with the new GOES-R series makes using GOES-R with MISR attractive (geo-registration better than ~200 m @ nadir).

MISR & GOES-R

CARR ASTRONAUTICS Science at work

<u>Terra</u>

Multi-Angle

Multi-Temporal

GOES-R

- LEO on NASA Terra S/C
- Fore & Aft-looking Cameras
 - An: nadir looking
 - Af, Aa: ±26.1°
 - B, C, D: oblique viewing
- Red Band
 - 275 m resolution
 - 360 km swaths
- Winds: Zong, Davies, Muller & Diner, 2002

- GOES-16 stationed at -75.2°
- GOES-17 stationed at -137.2°
- Advanced Baseline Imager
 - Full-Disk (5, 10, 15-min. refresh)
 - CONUS (5-minute refresh)
 - MESO (30, 60-sec. refresh)
- Red Band
 - 500 m resolution
- NOAA Operational Winds

MISR Multi-Angle Imagery

- Color Separation shows
 Disparities between Cameras
 - In-track is Parallax + (mostly) V-wind
 - Cross-track is (mostly) U-Wind
- MISR Wind Challenge is the separation of Parallax from V-Wind

(R,G,B) = (Aa, An, Af) $\Delta t = (45s, 0, -45s)$

SOM Projection over WGS84 Ellipsoid (Blocks 60, 61, 62 on P024 O098797)

GOES Multi-Temporal Imagery

- Color Separation shows
 Disparities between Frames
 - Pure Atmospheric Motion
 - No Parallax
- T₀ picked close to MISR An Time
- CONUS scene used here

Advanced Baseline Imager (ABI) $(R,G,B) = (T_0-5min, T_0, T_0+5min)$

Remapped into MISR SOM Projection

Disparity Measurements

Disparities

Wind Retrieval Model

- MISR An is designated reference (n = 0)
- Solve for states at each site; $\vec{\epsilon}_n$ is a function of
 - 3 positions $(\vec{\delta}_0)$
 - U & V winds
 - (optionally W wind)
 - No synchronization
- Two global "Bundle Adjustment" states allow fine adjustment of MISR block to align better with GOES imagery
- Nonlinear, sparse-matrix solution of order
 5N+2~10⁴ per MISR block

Residual Disparities

- A Cameras + GOES-16
- Disparities ~15 km
- Residuals < 275m

Residuals after Solution

Block 61 on P024 O098797

MISR+GOES over CONUS 2018

P024O098797B53:77 2018-07-15T16:58:51.390:2018-07-15T17:07:09.069
OR_ABI-L2-CMIPC-M3C02_G16_s20181961702266_e20181961705039_c20181961705156.nc

Florence MESO 2018

P012O099670B60:67 2018-09-13T15:46:52.006:2018-09-13T15:49:17.218

OR_ABI-L2-CMIPM1-M3C02_G16_s20182561547506_e20182561547564_c20182561548033.nc

Low-altitude winds feeding in warm, moist air

P042_O100866_B45:135 2018-12-04T18:45:57.964:2018-12-04T19:17:06.592
OR ABI-L2-CMIPF-M4C02 G16 s20183381905185 e20183381909586 c20183381910079.nc

MISR+GOES Full Disk 2018

Comparison to MISR Winds

MISR Wind-Height Correlation

^{*}Davies, Horváth, Moroney, Zhang & Zhu, 2007

Mueller, Wu, Horváth, Jovanovic, Muller, Girolamo, Garay, Diner, Moroney & Wanzong, 2017

Comparison to GOES Winds

Comparison with GOES IR Height Assignments

Validation: Clear-Sky Terrain

W Winds

W-Component is observable according to the math model

2 Velocity Components Observable from each Pose

- Usually W-wind in small, so we generally constrain it to zero
- Interpretation as a true "wind" requires confirmation, may be
 - Cloud-top growth/collapse
 - Artifact of side-looks at cloud
- Apparent quality improves with number of poses

W-Component Retrievals

UV vs. UVW Retrievals

IR&D GEO-GEO Stereo Imaging

Madani, H. and J. Carr, "Stereo Cloud Top Height Products for the GOES-R Era", NOAA Satellite Conference, April 2015.

Madani, H., J. Carr, Andrew Heidinger, and Steve Wanzong, "Inter-Comparisons between Radiometric and Geometric Cloud Top Height Products", American Geophysical Union, December 2015.

IR&D Full Disk G-13, -16 (Test Slot)

STAR Study

NOAA can do parallax 3D-Winds NOW

No synchronization

Trade-off between vertical resolution and coverage

- Objective of our present work is to prove this in a way that has a path into operations to provide alternative height assignments for DMWs
- Validations/comparisons will quantify the quality of parallax heights
 - Comparison with IR height assignments
 - MISR-GOES winds
 - Rawinsondes and aircraft wind in situ measurement

STAR Study Methodology

- Remap G-17 into G-16 fixed grid
- Match each triplet using operational winds matching & clustering algorithm
- Ingest matches into MISR/GOES-heritage retrieval model
- Use MISR/GOES-heritage matching for ground-point validation

CONUS Retrievals with GOES-16, -17 (Test Slot)

B02 CONUS Validations

MISR + GOES

Near-Neighbor Retrieval Comparison 15000 3D Winds y = 0.98516*x + 195.6331GOES+GOES 3D-Wind Height (m) 15000 MISR+GOES 3D-Wind Height (m)

Ground Retrievals

IR Full Disk G-16, -17 (W Slot)

IR Ground Retrievals

We see less ground with this band than with Band 2

- 2.55 % of good retrievals are ground for Band 14
- 11.25% of good retrievals are ground for Band 2

Full Disk WV 3D-Winds

Just for Fun!

FD-FD

Did we retrieve the height? TBD

WV 3D-Wind Comparisons with DMW Products

The Future

- LEO-GEO Constellations
- LEO-LEO Leader-Follower

MISR over GOES B02 2017/260 18:00:00Z

Cubesat Deployments

International Partners

Hosted Payloads

