Webinar: NOAA PolarWatch

STAR Seminar Series, August 29, 2019

NOAA PolarWatch is the newest satellite data distribution portal of NOAA's CoastWatch program. The portal offers a single location for federal agencies, research groups, and private industry to obtain the most recent and historical satellite observations of Arctic and Antarctic waters, including measurements of sea ice cover, ocean temperature, and winds.

We will provide an overview of the data and services provided by PolarWatch with examples that demonstrate supporting safety at sea, navigation, fishing, transportation, tourism, and recreation. We will also highlight user training materials and training courses that are designed to encourage the use of polar satellite data by broad audiences.

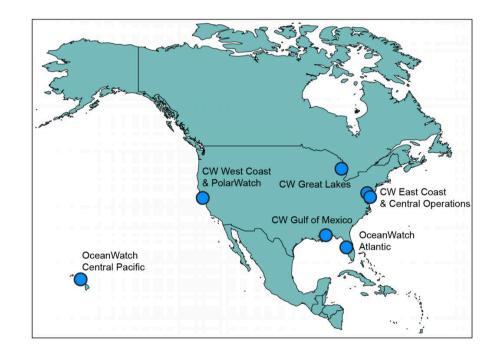
www.polarwatch.noaa.gov

NOAA PolarWatch Seminar Agenda

Thursday, August 29, 2019 - 11:30am - 12:30pm EDT

Facilitators:

- Stacy Bunin, NESDIS STAR, College Park, MD
- Cara Wilson, NOAA PolarWatch Principal Investigator, Monterey, CA


Presenters:

- Jennifer Sevadjian, NOAA PolarWatch Operations Manager, La Jolla, CA
- Webinar Introduction, by Stacy
- Webinar Agenda/Introduction by Cara
- Introduction to the PolarWatch Program (5 minutes)
- PolarWatch Users and Applications (5 minutes)
- Demonstration of PolarWatch Catalog, data discovery, preview, download (10 minutes)
- Demonstration of PolarWatch ERDDAP data server access (10 minutes)
- Tools, training and resources (10 minutes)
- Q & A (10 minutes)

NOAA CoastWatch

- PolarWatch is the newest regional satellite data distribution portal of NOAA's CoastWatch program
- CoastWatch provides global and regional satellite data products
- Regional nodes provide focused support to regional users

PolarWatch offers a single location to obtain the most recent and historical satellite observations of Arctic and Antarctic waters, including measurements of sea ice cover, ocean temperature, and winds

PolarWatch and our Collaborators

PolarWatch at NOAA Fisheries

Jennifer Sevadjian, La Jolla Cara Wilson, Monterey Dale Robinson, Santa Cruz

CoastWatch/OceanWatch

Paul DiGiacomo Veronica Lance Michael Soracco Heng Gu Phillip Keegstra

NESDIS | STAR | SOCD

Sinead Farrell

Sheekela Baker-Yeboah

Eric Leuliette

Laurence Connor

Sean Helfrich

National Ice Center

Kevin Berberich Bryan Brasher Walter Clark

National Snow and Ice Data Center

Florence Fetterer

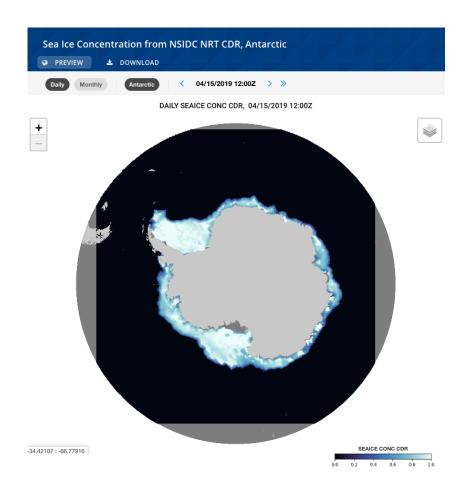
Over 100 satellite datasets available through the PolarWatch ERDDAP

Sea Ice

Sea Surface Height

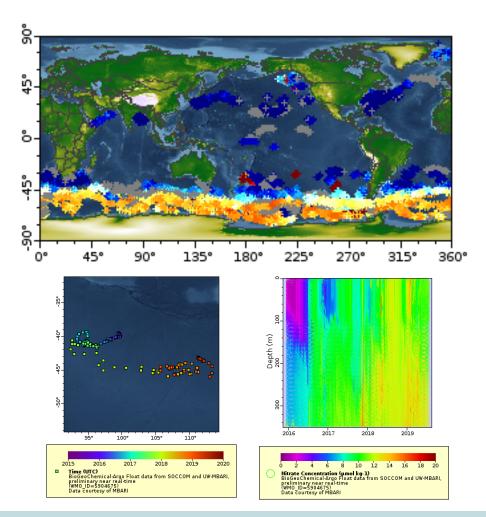
Sea Surface Temperature

Ocean Color



Winds

Salinity


NSIDC Sea Ice Concentration Climate Data Record

- New data access through the PolarWatch ERDDAP data server
- New visualization/previews through the PolarWatch catalog
- Eight datasets that comprise the NOAA/NSIDC Climate
 Data Record of Passive Microwave Sea Ice
 Concentration, Version 3 and the near real-time version
 of the Climate Data Record
- Long term science quality sea ice concentration records for the Arctic and Antarctic dating back to 1978
- Provides demonstration integration of a dataset with projected coordinates

SOCCOM BioGeoChemical ARGO Float Data

Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) BGC-Argo float data is now available on the PolarWatch ERDDAP

- Augments conventional Argo floats with biogeochemical sensors to measure carbon (pH), nutrients (nitrate), and oxygen
- ~ 200 autonomous floats provide coverage over the Southern Ocean
- Vertical coverage deep into the water column
- Allows for easy inter-comparison with satellite data

NOAA

Alaska Fisheries Science Center

Antarctic Ecosystem Research Division

Alaska Ocean Observing System (AOOS)

NESDIS Center for Satellite Applications and Research

National Weather Service

PMEL

Other Government Agencies

National Park Service

Interagency

CCAMLR

National Ice Center (NIC)

Commercial/Industry

SailDrone

Potential Stakeholders

U. S. Arctic Observing Network (AON)

Naval Research Laboratory

OAR Earth System Research Laboratory (ESRL)

NOAA Climate Program Office (CPO)

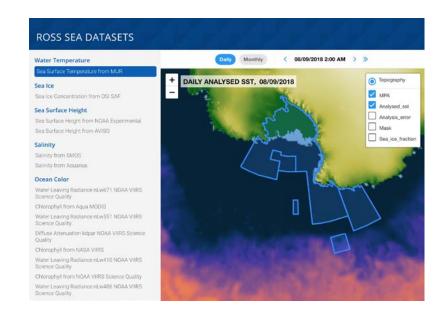
Southern Ocean Observing System

NCEP Environmental Modeling Center (EMC)

EUMETSAT

Environment & Climate Change Canada

Finnish Ice Center

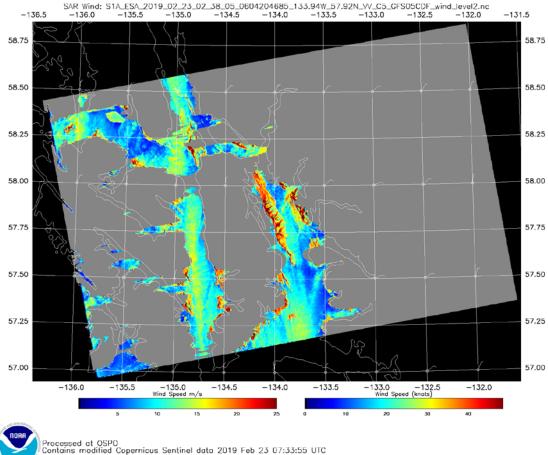

Universities, Academic Partners

Antarctic Ecosystem Research Division NOAA Fisheries – SouthWest Fisheries Science Center

Satellite data provides a long time-series of environmental context for fisheries research.

Satellite products commonly used: Sea ice, water temperature, salinity, chlorophyll

PolarWatch has developed a prototype map-based tool to allow AERD to quickly see what satellite data is available in a region of interest like a CCAMLR region or the new Ross Sea MPA, and preview, subset and download that data.

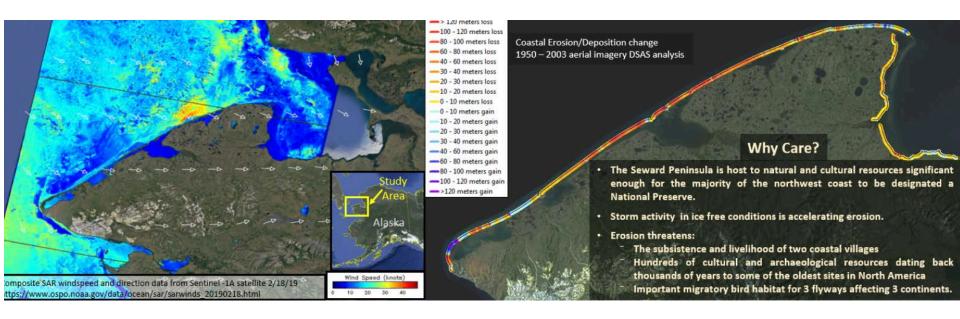


Brian Bezenek

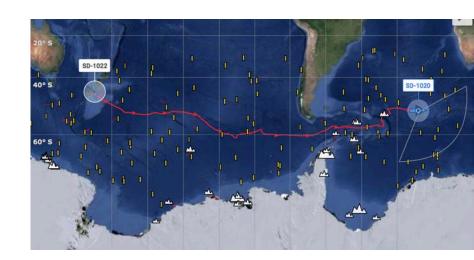
National Weather Service

"As an operational forecaster with the National Weather Service, I will be looking mainly for forecast verification from near real time products of Surface winds and Sea Heights.

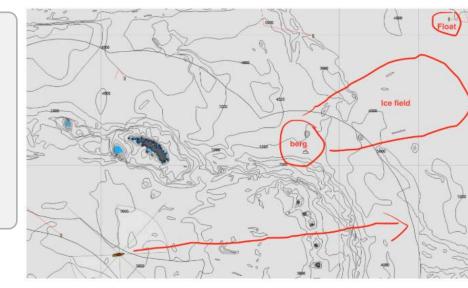
Also will be looking at the research on coastal surge from strong lows as they move inland from the coasts, to develop forecasting tips."



polarwatch.noaa.gov


Tahzay Jones National Park Service

SailDrone Antarctic Circumnavigations 2019


NOAA partnership with industry in support of science education and outreach missions in the Antarctic

Missions require environmental satellite data both for science and for operational support of the autonomous vehicle navigation

"Are there icebergs near my vehicle path today?"

"Where will the Argo floats be and where can I access their near real-time data?"

Scenarios for Data Discovery, Visualization and Access

- visualize data over area/time of interest prior to download
- customized access (subset/reformat) data
- programmatically access data repeatedly with the same workflow (R, Python, Matlab)

Live Demos

PolarWatch Website overview: polarwatch.noaa.gov

Data Catalog

Data Server


Tools & Training

₩

About ▼

Providing ocean satellite data for the Arctic and Antarctic

Environmental Data Catalog

View and download over 100 datasets, including satellite data, model output, and in situ measurements from field sensors.

Get Data

Tools and Training

- Learn about available satellite data software packages
- · Learn how to use PolarWatch data services
- · Download code examples for common satellite data tasks
- · Get info on our annual hands-on satellite data course

Tools and Training

ERDDAP Data Server

PolarWatch maintains an ERDDAP server with a large collection of environmental datasets which provides the backbone for our data catalog. The ERDDAP data server provides a simple, consistent way to subset and download environmental datasets in common file formats with options to make graphs and maps. Access the data server directly or learn more about it through the following links.

PolarWatch ERDDAP

More Info

News and Events

View News Archive

New sea ice datasets added to PolarWatch Apr 25, 2019

The NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3 and the near real-time version of the Climate Data Record datasets have been added to the PolarWatch catalog. These datasets provide long term science quality sea ice concentration records for the Arctic and Antarctic dating back to 1978.

View Data >

SOCCOM Near-Realtime BGC-Argo data now on PW ERDDAP

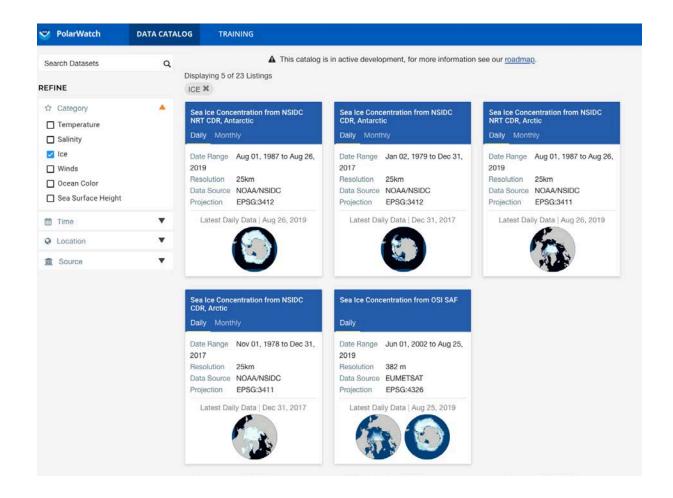
Feb 21, 2019

Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) BGC-Argo float data is now available on the PolarWatch ERDDAP. The SOCCOM project augments conventional Argo floats with biogeochemical sensors to measure carbon (pH), nutrients (nitrate), and oxygen. About 200 autonomous floats

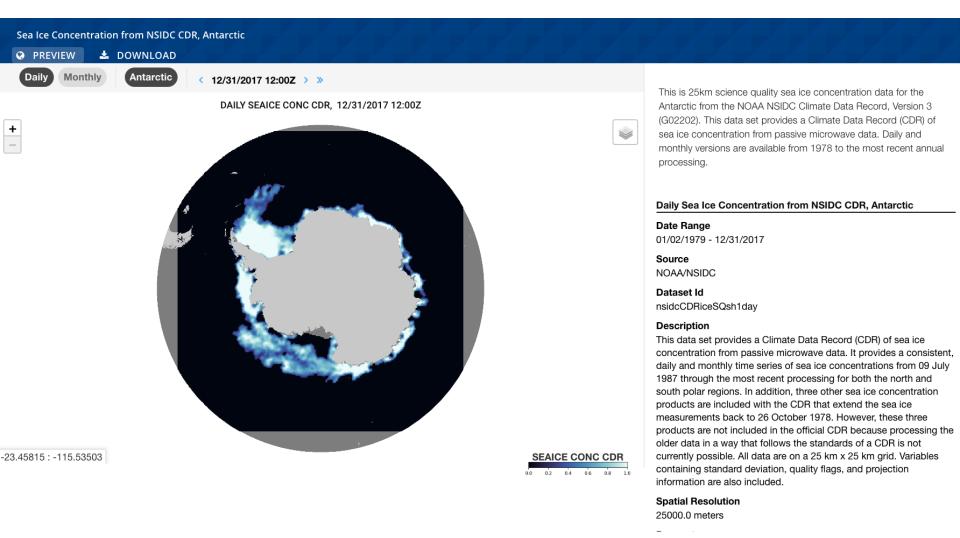
provide coverage over the Southern Ocean, with vertical coverage deep into the water column.

View Data >

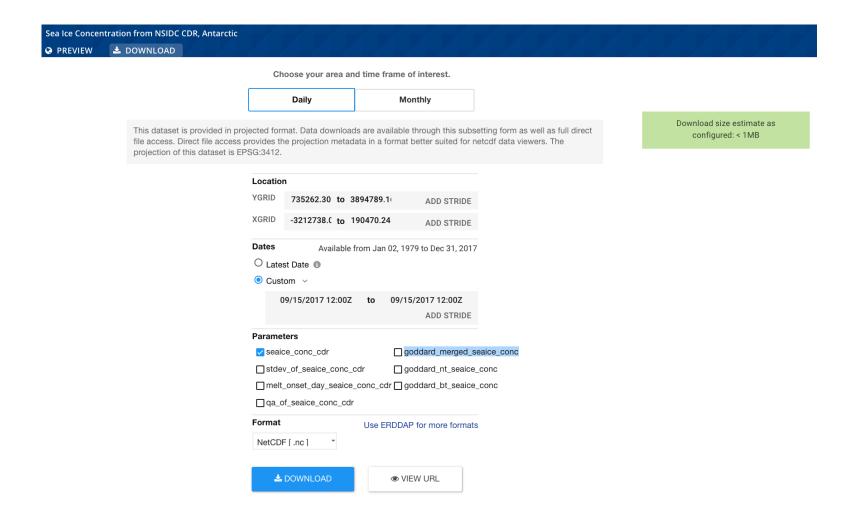
Visualizing a Decade of Change in the Arctic Sea Ice Cover AGU iPoster


Dec 19, 2018

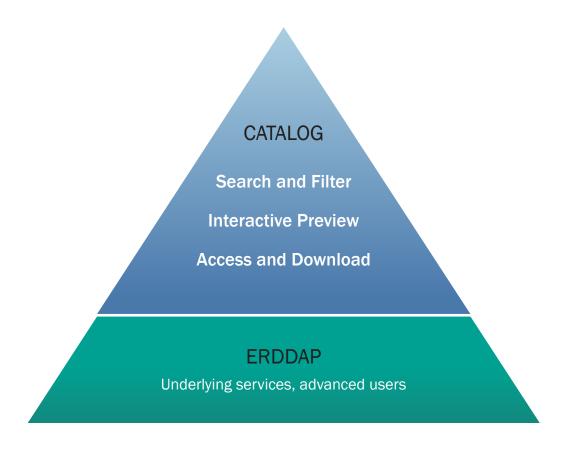
PolarWatch scientist Sinéad Farrell delivered an interactive poster on visualizing change in Arctic sea ice cover at AGU 2018. The poster highlights NOAA Lab for Satellite Altimetry sea ice data products showing variability in ice type and ice thickness over the



Data Catalog: Find and Filter



Data Catalog: Preview/Visualization



PolarWatch data catalog: Download

PolarWatch Data Services

PolarWatch Catalog

polarwatch.noaa.gov/catalog

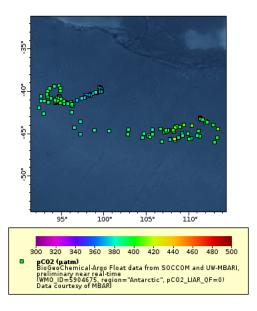
- Enhances ERDDAP capabilities
- More user-friendly data discovery interface
- Subset and download projected datasets
- Preview data on polar projected maps

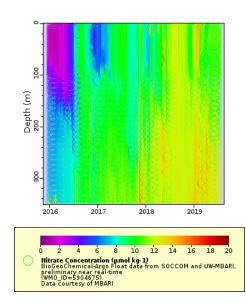
ERDDAP

polarwatch.noaa.gov/erddap

- Seamlessly integrate data from ERDDAP or aggregated THREDDS services
- Data served in many formats
- Subset data temporally and spatially
- RESTful

PolarWatch Data Server - ERDDAP


98 matching datasets, listed in alphabetical order.


Grid DAP Data	Sub- set	Table DAP Data	Make A Graph	W M S	Source Data Files	Title
	set	data	graph			* The List of All Active Datasets in this ERDDAP *
data			graph	М		Aquarius Sea Surface Salinity, L3 SMI, Version 5, 1.0°, Global, 2011-2015, 3-Month
data			graph	М		Aquarius Sea Surface Salinity, L3 SMI, Version 5, 1.0°, Global, 2011-2015, 7-Day
data			graph	М		Aquarius Sea Surface Salinity, L3 SMI, Version 5, 1.0°, Global, 2011-2015, Daily
data			graph	М		Aquarius Sea Surface Salinity, L3 SMI, Version 5, 1.0°, Global, 2011-2015, Monthly
data			graph	М		Chlorophyll, NOAA VIIRS, Near Real-Time, Global, Level 3, 2014-present, EXPERIMEN
data			graph	М		Chlorophyll, NOAA VIIRS, Near Real-Time, Global, Level 3, 2014-present, EXPERIMEN
data			graph	М		Chlorophyll, NOAA VIIRS, Near Real-Time, Global, Level 3, 2014-present, EXPERIMEN
data			graph	М		Chlorophyll, NOAA VIIRS, Science Quality, Global, Level 3, 2012-present, Daily
data			graph	М		Chlorophyll, NOAA VIIRS, Science Quality, Global, Level 3, 2012-present, Monthly
data			graph	М		Chlorophyll, NOAA VIIRS, Science Quality, Global, Level 3, 2012-present, Weekly
data			graph	М		Chlorophyll-a, Aqua MODIS, NPP, L3SMI, Global, 4km, Science Quality, 2003-present (Composite)
data			graph	М		Chlorophyll-a, Aqua MODIS, NPP, L3SMI, Global, 4km, Science Quality, 2003-present (a Composite)
data			graph	М		Chlorophyll-a, Aqua MODIS, NPP, L3SMI, Global, 4km, Science Quality, 2003-present (I Composite)
data			graph	М		Diffuse Attenuation K490, Aqua MODIS, NPP, L3SMI, Global, 4km, Science Quality, 200 present (1 Day Composite)
data			graph	М		Diffuse Attenuation K490, Aqua MODIS, NPP, L3SMI, Global, 4km, Science Quality, 200 present (8 Day Composite)
						Diffuse Attenuation K490 Aqua MODIS NPP L3SML Global 4km Science Quality 200

Using ERDDAP to visualize tabular data

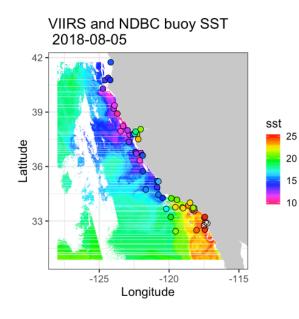
https://coastwatch.pfeg.noaa.gov/projects/erddap/tabledap.html#visualize-the-buoy-track

Chapter 7 Tabular Datasets, BGC-Argo data


notebook filename | 07-Tabledap.Rmd

There are two types of data in ERDDAP, gridded data and tabular data. So far all of our examples have been with gridded data. Working with tabular data is a little different. Here we will explore the Biogeochemical-Argo (BGC-Argo) dataset, which is hosted on the PolarWatch ERDDAP.

7.1 Searching for the BGC-Argo datasets


- Enter the following URL into your browser to bring up the PolarWatch ERDDAP: https://polarwatch.noaa.gov/erddap/
- In the search box type "Biogeochemical-Argo" and click the "Search' button

In the search results, two datasets are displayed: the near-real-time dataset (Dataset ID: SOCCOM_BGC_Argo), and a science quality dataset that is updated quarterly (Dataset ID: BGC_Argo_Snapshot_Archive).

Matchup Satellite and Buoy Data - R Script Demonstration

https://coastwatch.pfeg.noaa.gov/projects/r/

Chapter 5 Matchup satellite and buoy data

notebook filename | 05-sstbuoy.Rmd history | converted to R notebook from SSTandBuoy.R

In this exercise you will extract buoy data from ERDDAP tabular data and then extract satellite data that is coincident with the buoy data.

The exercise demonstrates the following techniques:

- . Use the tabledap function to extract tubular data from ERDDAP
- . Using xtracto to extract satellite data coincident with the buoy data
- . Using rxtracto 3D to extract satellite data for a rectangular area
- . Using rerddap to retrieve information about a dataset from ERDDAP
- · Producing xy scatter plots
- · Generating linear regressions
- · Producing satellite maps and overlaying buoy data

5.1 Install required packages and load libraries

```
# Function to check if pkgs are installed, install missing pkgs, and
pkgTest <- function(x)
{
    if (!require(x,character.only = TRUE))
    {
        install.packages(x,dep=TRUE)
        if(!require(x,character.only = TRUE)) stop(x, " :Package not founly
    }
}

pkgTest <- function(x)
{
    if (!require(x,character.only = TRUE))
    {
        install.packages(x,dep=TRUE)
        if(!require(x,character.only = TRUE)) stop("Package not found")
    }
}</pre>
```

5.5 Create a satellite map and overlay buoy data

Extract VIIRS chlorophyll data for the month of August 2018

Create the map frame for the satellite data and buoy SST overlay

```
mapFrame<- function(longitude, latitude, sst){
   dims<-dim(sst)
   sst<-array(sst, dims[1]*dims[2])
   sstFrame<-expand.grid(x=longitude, y=latitude)
   sstFrameSsst<-sst
   return(sstFrame)
}

sstFrame<-mapFrame(SST$longitude, SST$latitude, SST$sst)
   coast <- map_data("worldHires", ylim = ylim, xlim = xlim)
   my.col <- colorRampPalette(rev(brewer.pal(11, "RdYlBu")))(22-13)

buoy2<-subset(dailybuoy, month(time)==8 &day(time)==5 & sst > 0)
```

Create the map

```
myplot<-ggplot(data = sstFrame, aes(x = x, y = y, fill = sst)) +
   geom_raster(interpolate = FALSE,na.rm=T) +
   geom_polygon(data = coast, aes(x=long, y = lat, group = group), fi</pre>
```


Satellite Data Training Courses

- Attend a hands-on training course
- Find data
- Downloading and accessing data
- Beginners and advanced users welcome
- Learn to use tools for R, Python, ArcGIS and Matlab
- Multiple courses are offered by regional nodes throughout the year
- PolarWatch and the West Coast node plan to co-host our next class in Alaska Spring 2020.

https://coastwatch.pfeg.noaa.gov/courses/satellite_course.html

CONNECT WITH US!

Cara Wilson (Monterey) cara.wilson@noaa.gov

Jenn Sevadjian (La Jolla) jennifer.sevadjian@noaa.gov

Dale Robinson (Santa Cruz) dale.robinson@noaa.gov

Sinead Farrell (College Park) sinead.farrell@noaa.gov

Acknowledgements

ERD DATA GROUP

Roy Mendelssohn, Lynn Dewitt, Bob Simons

COASTWATCH CENTRAL

Veronica Lance, Michael Soracco, Heng Gu, Phil Keegstra