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Introduction 
Using ML is getting easy:

● Availability of increasing computational power & of cloud resources.  Can do a lot now without 
dedicated HPC resources. 

● Highly efficient software packages.  Easy to use. 
● Setting up + running experiments with ML methods no longer requires sophisticated 

computer science knowledge. 

Data: 
● Mountains of data available (observations & model outputs).
● Lots of earth applications can benefit from power of machine learning.  

Thus ML has arrived in the earth sciences with full force.
Most promising tool: artificial neural networks (ANNs). 
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Overview of this Presentation 

1. Brief Introduction to Artificial Neural Networks
2. Why do we care about the strategies that ANNs use?
3. Background for ANN visualization tools
4. Layer-wise Relevance Propagation
5. LRP for debugging and designing ANNs
6. LRP for scientific discovery
7. Concluding Thoughts
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Brief introduction to 
Artificial Neural Networks
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Neural networks 101

data prediction

6

ANN
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Neural networks 101

● linear regression with non-linear mapping by an 
“activation function”

● training of the network is merely determining the 
weights “w” and bias/offset “b" 
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Neural networks 101

● linear regression with non-linear mapping by an 
“activation function”

● training of the network is merely determining the 
weights “w” and bias/offset “b" 
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Neural networks 101
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Weights associated with each arrow
Biases associated with each blue node
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Neural networks 101
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one can get very 
complex and “deep”

Weights associated with each arrow
Biases associated with each blue node
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Choosing weights 
and biases

● Neural network iteratively 
adjusts the weights and biases 
using backpropagation and 
gradient descent 

● How the error of the neural 
network is quantified is defined 
by the user

● Each incremental adjustment 
ideally leads to a more accurate 
prediction

● Iterate until the weights and 
biases converge

11

Iteratively learning the best-fit weight and bias via 
gradient descent and backpropagation
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Neural networks 101

data prediction
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Once trained, you have an 
array of weights and 
biases which can be used 
for prediction on new 
data. 



Why do we care about the 
strategies that ANNs use?
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Why care about ANN’s reasoning?
Artificial neural networks 

● Have emerged as promising tool in countless NOAA-related applications.
● Perform amazingly well at many complex tasks.
● ANNs are generally treated as black box:  hard to understand how they work.
● Why is that a problem?  If they work fine, why do we care how they work?

14
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Reason 1: Problematic strategies (Clever Hans)

Insights from a study of strategies utilized by a neural network.

Reference (also source of images on the following slides):
Lapuschkin et al. “Unmasking Clever Hans Predictors and Assessing What Machines Really Learn.” 
Nature Communications, vol. 10, no. 1, Mar. 2019, p. 1096, doi:10.1038/s41467-019-08987-4.

Task:  Object recognition.  Decide whether there is a horse in a given image.

Methods used in this study:
● Neural network: to decide whether there’s a horse.
● Visualization technique (LRP): to analyze network’s strategies.

The following slides provide two things: 
● An example of problematic strategies an ANN might use and why it might use those.
● A way to identify such strategies.

15
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Strategy 1: What does the NN detect?

Input images

Attribution maps:
Shows where the NN 
is looking to decide 
whether there is a 
horse.

Red areas:    increase confidence
Blue areas:   decrease confidence
Black areas: not useful
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       Strategy 1: Detects the pixels with horses.  Good!

Input images

Attribution maps:
Shows where the NN 
is looking to decide 
whether there is a 
horse.

Red areas:    increase confidence
Blue areas:   decrease confidence
Black areas: not useful
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Strategy 2: What does the NN detect?
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Strategy 2: Detects correlated objects: poles.
Acceptable?  Depends on where this will be used.
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Strategy 3: What does it detect?



Colorado State University
21

Strategy 3: What does it detect?
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Strategy 3: Detects html tags!  Not acceptable!
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ANN used three different strategies 

ANN detects:  horses                          poles                 html tags    
 (great!)                (might be acceptable)            (not accetable!)

Questions:
● Which strategies do you actually want?
● Which ones of these strategies will work in the “real world”?

23

Correlated 
objects:
Might or 

might not be 
acceptable
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What to learn from this example
● Algorithm correctly learned correlations present in the data.  
● But some of the correlations were not representative of correlations in real world (e.g., 

html tags).
→ Algorithm seems to perform well, but learned reasoning that does not 
generalize to the world.

● Conclusion:  Using ANN as black box is a problem in this case.

Other problems when using ANNs as a black box:
● Earth scientists working with these tools might be alienated by lack of understanding - 

and rightly so → no trust.
● Primary way of improving ANNs: trial-and-error.  Wouldn’t it be nice to have guiding 

tools on how to improve them?
● Does not encourage physics-guided machine learning.
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How visualization methods can help

Using visualization tools can provide:
● Provide information on ANN’s reasoning (see above examples), e.g., in form of 

attribution maps, as shown above.

In turn that provides:
1. Important information for design of ANNs.
2. Increases trust, encourages physics-guided machine learning.
3. Provides new role for ML: visualization output can even be used to discover new 

science! (See examples in last part of this tutorial).
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What to expect from visualization

26

Scanning backpack through Xray scanner.  

Not a perfect view, but a lot better than just looking at the outside.
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What to expect from visualization
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Background for ANN 
visualization tools
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Related Work - Recent Article
Recent article - written for climate/weather community: 

McGovern A, Lagerquist R, Gagne DJ, Jergensen GE, Elmore KL, Homeyer CR, Smith T. 
Making the black box more transparent: Understanding the physical implications of machine 
learning. Bulletin of the American Meteorological Society.  Aug 22, 2019.
https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-18-0195.1 

Provides: 
1. Overview of general ML interpretation/visualization methods.
2. Specifically for ANNs:

● Saliency maps (discussed below)
● Backwards Optimization (discussed below)
● Gradient-weighted Class-activation Maps
● Novelty Detection

3. Demonstration for applications: 
Storm-mode, precipitation type, tornado prediction, and hail prediction.

29

https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-18-0195.1
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Related Work - Explainable AI Book
Recent book on Explainable AI - not specific to climate/weather: 

Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Muller, K.-R., 
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. 
Springer Nature, Aug 30, 2019.  
https://www.springer.com/gp/book/9783030289539. 

Provides: 
● General overview of interpretation and visualization methods.
● Primarily for ANNs.
● 439 pages.

30

https://www.springer.com/gp/book/9783030289539.
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Related Work - Implementations
● Many methods from the book are already implemented in toolboxes.
● Example: “Innvestigate” toolbox for Keras, available at https://github.com/albermax/innvestigate

31
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Our Preferred Method - as of now
Our favorite method:  

● Layer-wise relevance propagation (LRP).
● Has not yet been used in climate/weather.  
● We believe LRP is particularly powerful.
● Focus of this presentation. 

● But: New methods are being developed as we speak.
● The purpose of this tutorial

○ Is not to promote LRP as “the best method”. 
○ Is to show what visualization methods in general can do for the 

community!

32
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Two types of visualization tools
Type A: Feature Visualization
Philosophy: Seek to understand all internal components of ANN.

33

Seek to understand the meaning of all intermediate (blue) nodes.
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Type A: Feature Visualization

34

First hidden layer:
● Special case.
● Very easy to interpret, 

because directly related to 
input space.

● Often useful to visualize ANN 
weights for first layer.

● Easy to do.  Easy to interpret.

Later layers:  
● Much more abstract.
● Particularly hard to interpret for 

ANNs trained on objects with 
fuzzy boundaries.
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Type A: Feature Visualization
Method for visualizing first layer:

● For each node in first layer: 
○ Show input image corresponding to first layer weights of that neuron.  
○ Tells you which input image each neuron represents.  Done!

Method for later (deeper) layers:
● Common Method: 

○ Generate some kind of “image representation” for any specific neuron as follows.
○ Optimize input to maximally trigger the specific neuron (“Backwards Optimization”)
○ Easy to do - uses built-in back propagation mechanics of ANN.
○ But high-frequency artifacts often occur - especially when using strided convolution & 

pooling (creates high frequency component in gradient). 
○ Hard to interpret.

Comment:
● For our applications, we have sometimes found it worthwhile to visualize weights of first hidden 

layers, but not of deeper layers.
35
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Type B: Attribution / Explaining Decisions
Philosophy:  Understand the ANN’s overall decision making for specific input. 

36

Seek to understand the meaning of the entire algorithm - for a specific input.
Do NOT worry about meaning of intermediate (blue) nodes.
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Type B: Attribution
Goal:  Given a specific input image, understand how ANN comes up with the output, e.g., a 
predicted class.   (Primarily developed for classification - more on that later.)

Method: 
● Generates “Attribution map” - also known as “Heat map”
● “Map” is a computer science term here - has nothing to do with a geographic map.
● Map = overlay for input  
● Input does not have to be an image, but images used her for simplicity.
● Given input, highlight which parts of input are important to lead to corresponding output.

→ Seeing which part of input is most important for a specific class can provide intuition of 
network’s strategies.  

We find Type B methods much more useful for our applications.  Focus from here on.

37
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Type B Methods briefly discussed here
1) Perturbation (occlusion) methods

Reason for including:  intuitive, baseline method.

2) Saliency
Reason for including:  very common.

3) Layer-wise relevance propagation (LRP)
Reason for including:  Currently, our preferred method for our applications.

● Other methods exist.  New methods are being developed as we speak!

         All three methods produce “heat maps” with color code: 
○ Red: area makes output class more likely.
○ Blue:  area makes output class less likely.
○ Black (or white): area not important for output. 

38
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Set-up considered
General set-up discussed here:
1. Train ANN model using training data.
2. Freeze ANN parameters.
3. Seek to understand reasoning of frozen ANN model.

For ease of explanation:  
● Focus on “image” type input here.
● Output: predicted class (discrete).

Example yielding a class (“classification task”):
● Is there a hurricane in this satellite image (0/1)? 
● In which phase (1-8, or none) is MJO in this image?

39
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Method 1: Perturbation / Occlusion

40

Idea:  
● Cover one part of image at a time.
● See how this changes the output.

Example:  Detect whether there is a snake in the input image.
Source:     Ancona, Marco, et al. “Towards Better Understanding of Gradient-Based Attribution Methods 
for Deep Neural Networks.” ICLR 2018, arxiv.org, 2018, http://arxiv.org/abs/1711.06104.

Observation:  Occlusion method works here only if the occlusion patch size is large enough to cover most of 
the object being detected.     

Nevertheless:  intuitive baseline method.  Just make sure to choose occluded patch big enough.
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Method 2: Saliency (Gradient)

41

Idea:   Calculate H = gradient of neuron activation over input pixels

H  =     ∂ f (x)      =   ∂ output neuron value
            ∂ x                    ∂ input values

    

ANNs are gradient-based methods   

→  Easy to calculate H with built-in mechanics of ANN.

→  Yields heat map H.

→  H tells you:  How should we change input to maximally increase/decrease output?

Saliency maps:
● Widely available method.  
● Applicable for both classification and regression.
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Method 2: Saliency - Interpretation
Saliency answers this question:
  

What should we change in input to maximally increase/decrease output value? 

Analogy:  Which change would maximally increase/decrease Warren Buffet’s wealth?

Question we are usually more interested in for our applications:  

What in the input led to the current output value?

Analogy: What made Warren Buffet so rich in the first place?  What contributed most to 
his wealth?

→ To answer the latter question:  
→ Method 3: Layer-wise relevance propagation (LRP).
→ See next section.

42



Layer-wise 
Relevance 
Propagation
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Layer-wise Relevance Propagation [LRP]

44

ANN
Input

Vector

Prediction/
Output

Which part(s) of the specific input were most 
relevant for the ANN’s prediction?

● Used after the model has been trained
● Output relevance is computed 

separately for each input
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Layer-wise Relevance Propagation [LRP]

45Montavon et al. (2017)

Probability of CAT

LRP

Prediction

Probability of CAT
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How it works

Montavon et al. (2018)
method described in Toms et al. (in prep)

46

Conserves the output during 
propagation
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LRP preserves 
information from 
the output to input

● Dots along the line show 
conservation of information 
from the output to the input

● Rules have been constructed 
such that the information is 
conserved

● Ensures that all regions of 
relevance are captured by the 
heatmap

47
Output value

sum over weights
in one layer
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LRP developed for ReLU 
to show activation vs 
deactivation

● Positive values show activation, 
while negative values are 
deactivated and are ignored

● Only activated outputs from 
neurons are propagated 
backwards

● Similar to how only activated 
outputs from neurons are 
propagated forwards during 
training

48

Deactivated Activated
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Alpha-Beta Rule

49Montavon et al. (2018)
method described in Toms et al. (in prep)

tunable parameters: 𝛼, 𝛽
fixed parameters: a, w, R 



Colorado State University

Alpha-Beta Rule

50Montavon et al. (2018)
method described in Toms et al. (in prep)

tunable parameters: 𝛼, 𝛽
fixed parameters: a, w, R 
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A few more LRP examples

51Bach et al. (2015)

alpha=2
beta = 1
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A few more LRP examples

52Bach et al. (2015)

alpha=2
beta = 1
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A few more LRP examples

53Montavon et al. (2017)

alpha = 1
beta = 0 
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A few more LRP examples

54Montavon et al. (2017)

alpha = 1
beta = 0 
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Many other “rules” to explore

55Samek et al. (2019)
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heatmapping.org

● innvestigate package
○ lots of options
○ not perfect, but a useful 

tool for our group

56
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heatmapping.org

● innvestigate package
○ lots of options
○ not perfect, but a useful 

tool for our group
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LRP for debugging 
and designing ANNs
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Application 1
● Yoonjin Lee (ATS/CIRA)
● Task: Detecting from series of GOES images whether there is convection or not.
● Method: 3D Convolutional Neural Networks (CNNs).  Uses: x,y, time as three axes.

59

Desired strategy: ANN should look for combination of high brightness and bubbling.  
Attribution map:  Shows clear correlation to brightness, still exploring impact of bubbling.  Work in progress.

Visualization → Brings it back to space of physics and expert knowledge!  → Feedback for ANN design.
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Application 2
● Kyle Hilburn (CIRA)
● Task: Generating synthetic radar images from GOES channels
● Input: Images from selected GOES channels.
● Output: Emulation of corresponding MRMS output.
● Method: 

○ Convolutional Neural Networks (CNNs).
○ Encoder-decoder architecture that uses downscaling and upscaling.

60

Input 
images

N x Encoder 
layer:

 N x Decoder 
layer:

Low Res
Image

Output
image

Key question:  How many encoder and decoder layers should we use?    N = ?

Convolution 
+ 

MaxPooling

Transp. Convol. 
+ 

Upsampling
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Important concept for design of fully convolutional NNs

1) Theoretical Receptive Field (TRF):
● Definition:  Size of input area that can - theoretically - affect a single output pixel.
● Easy to calculate for CNN, depends only on architecture.
● But in practice:  only small subset (central region) truly comes into play.

2) Effective receptive field (ERF):
● Definition:  Size of input area that practically affects a single output pixel.
● ERF generally much smaller than TRF. 
● Not easy to calculate - ERF even changes throughout network training.
● ERF is important for network design:  max feature size that CNN can recognize.

Great discussion of effective receptive fields:

Luo, Wenjie, et al. “Understanding the Effective Receptive Field in Deep Convolutional Neural Networks.” Advances 
in Neural Information Processing Systems, papers.nips.cc, 2016, pp. 4898–906, 
http://papers.nips.cc/paper/6202-understanding-the-effective-receptive-field-in-deep-convolutional-neural-networks.

Key concept: Receptive Field

http://papers.nips.cc/paper/6202-understanding-the-effective-receptive-field-in-deep-convolutional-neural-networks
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Shown below are LRP results
● For a single output pixel (here chosen at center of image).
● For network with varying architecture - N encoder layers and N decoder layers (N=1,2,3).

What does LRP give us?

Result:        LRP gives good estimate of “effective receptive field”
    → Found simple way to approximate ERF!
    → Tells us patch size of input image being considered for each output pixel.
    → Match patch size with size of meteorological feature you want network to use as context.

Input Image LRP for N=2 LRP for N=3LRP for N=1
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Some Limitations
● Many tools are developed primarily for classification tasks.  

→ Using them for regression tasks → “Off-label use”.  Work-arounds for now. Work in progress.

● Heat maps only give you locations where ANN is looking, but sometimes that’s not enough to 
completely figure out strategy.  Recall analogy below.

● Keep it simple - an ANN with fewer layers is easier to understand.  Like a backpack with fewer 
“layers”.  

● Heat maps are specific for each input.  May have to look through many cases (or take averages, or 
perform clustering, etc.). 
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LRP for scientific 
discovery
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What we mean by “scientific 
discovery”
● Many neural network tasks focus on maximizing the 

accuracy of the neural network
● We emphasize designing a neural network to maximize 

the amount of scientific value that can be offered by the 
interpretation

○ Combination of prediction accuracy, appropriate structure for 

interpretation methods, etc.

○ A Goldilocks problem!

65
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ENSO
Starting with an example we know the answer to.
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What is ENSO?

● Dominant mode of sea-surface 
temperature variability within 
the tropical Pacific

● Impacts weather and climate 
across the globe

67
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Defining ENSO...

68Toms et al. (in prep)

Figure courtesy of NCAR Climate Data Guide

Niño 3.4 index

ENSO is commonly defined according to average sea-surface temperatures within the central tropical Pacific.
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ENSO + Neural Networks

69Toms et al. (in prep)
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What we’re testing with this example...

70Toms et al. (in prep)

The network classifies the sign of ENSO with 100% accuracy, so...

● Is the neural network interpretation physical? Does it depict ENSO 
spatial patterns consistent with physical theory?

● Assume we don’t know the answer: does the neural network focus only 
on the Nino3.4 region, or does it help tell us about the full spatial 
pattern of ENSO?
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Composite relevance for all El Niño samples

71Toms et al. (in prep)
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Relevance overlays robust El Niño signal

72Toms et al. (in prep)

Black = lower relevance
White = higher relevance

Niño3.4 index region
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Capturing 
different modes 
of variability

● The neural network can identify 
different types of El Nino events

● Attention is refocused 
depending on the location of 
sea-surface temperature 
anomalies

● If not known a-priori, LRP could 
show that multiple modes of 
ENSO exist

73Toms et al. (in prep)

Black = lower relevance
White = higher relevance
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Animated relevance for ENSO...

74Toms et al. (in prep)

LRP highlights where the neural network focuses its attention for each sample and
shows which patterns are the most relevant for the neural network’s decision

https://docs.google.com/file/d/10NYo6TPzmZYrtETEzKUXtH6WS3jOSOkv/preview
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We have shown that LRP can be used to identify 
known patterns of climate variability.

Now we extend this idea to unknown patterns of 
climate variability...
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Identifying Forced 
Patterns of Change

within CMIP5 models and observations
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Visualization tools for scientific 
discovery

● ANNs for science need not be only focused on prediction 
- prediction can be a means to an end

● Attribution methods like LRP allow us to frame the 
problem such that what the ANN learns is the science

● Get creative!
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Wrap-up
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Limitations of LRP

● Initially developed for classification using ReLu

● Unclear how to interpret the output for regression

● Documentation is not great, and different publications 
seem to conflict with each other

● Must consider network architecture for best 
visualization ahead of time (e.g. avoid max-pooling)
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Parting thoughts

● Artificial neural networks are not black boxes anymore

● Many visualization tools out there - let’s use them! 

● They can be used for debugging, design and science

● While many tools are coming out of computer science 
every week, they are not optimized for our applications: 
more collaboration needed

87
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Resources

Software (we have not used all of these ourselves):

● heatmapping.org website: http://heatmapping.org/
● innvestigate toolbox [Keras]: https://github.com/albermax/innvestigate
● Keras-vis package for Keras:  https://github.com/raghakot/keras-vis
● LRP pytorch package: https://github.com/moboehle/Pytorch-LRP

Further reading: 

● Intro to Feature Visualization:    Olah, C., et al. “Feature Visualization.” Distill, 2017, 
https://distill.pub/2017/feature-visualization/.

● Book on Explainable AI:  W Samek, G Montavon, A Vedaldi, LK Hansen, KR Müller (Eds.) 
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Springer LNCS 11700, 
2019
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http://heatmapping.org/
https://github.com/albermax/innvestigate
https://github.com/raghakot/keras-vis
https://github.com/moboehle/Pytorch-LRP
https://distill.pub/2017/feature-visualization/
https://link.springer.com/book/10.1007/978-3-030-28954-6


The End

89


