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Temperatures have risen over the past 150 years

£
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Temperature change (°C) from 1850s through 2010s

Schneider & Held, J. Climate, 2001; update http://climate-dynamics.org/videos



http://climate-dynamics.org/videos

But climate predictions remain uncertain: E.g., the CO2 concentration at
which 2°C warming threshold is crossed varies widely across models
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The primary (but not only) source of uncertainties in climate
predictions Is the representation of low clouds in models

http://eoimages.gsfc.nasa.gov

Stratocumulus: colder Cumulus: warmer

We don’t know if we will get more low clouds (damped global warming),
or fewer low clouds (amplified warming) with rising CO: levels



Spread in predictions for next ~30-50 years iIs dominated by
uncertainties in low clouds; uncertainties are poorly quantified
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More accurate climate projections with quantified
uncertainties would enable...

- Data-driven decisions about infrastructure planning, e.g.,

- How high a sea wall should New York City build to protect itself against
storm surges in 20507

- What water management infrastructure is needed to ensure food and water
security in sub-Saharan Africa”?

- Rational resource allocation for climate change adaptation: costs estimated to
reach >$200B annually by 2050 (UNEP 2016)

- Realization of the socioeconomic value of more accurate predictions, which is
estimated to lie in the trillions of USD (Hope 2015; CDP 2019)

“The climate information needs of Federal, State, Local, and Private Sector
decision makers are not being fully met.” U.S. GAO (2015)



Clouds in climate predictions:

Why are they difficult but important?



Clouds are difficult to simulate because they
contain very little water

Water vapor: Cloud droplets:
25 mm 0.1 mm




The small-scale cloud-controlling processes
cannot be computed globally in climate models

Global model:

~10-50 km resolution Cloud scales: ~10-100 m

Subgrid-scale processes (e.q., clouds and turbulence) are
represented in ad-hoc fashion (not data-driven)

NASA MODIS



No climate model simulates low clouds well,
eading to large energy flux biases (~50 W m-

CNRM-CM®6 low-cloud bias relative to observations (%)
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Improving predictions is urgent.

How can we make progress?



We have a wealth of global climate data, whose
potential to Improve models has not been tapped
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We can also simulate some small-scale processes
(e.q., clouds) faithfully, albeit only in limited areas

[ arge-eddy simulation of tropical cumulus
Simulation with PyCLES (Pressel et al. 2015)




Such limited area models can be nested in a global
model and can, in turn, inform the global model

Global model Limited-area model

Thousands of high-resolution simulations can be embedded in global model in a
distributed computing environment (cloud), and the global model can learn from them



Vision: build a model that learns automatically both from
observations and targeted high-resolution simulations

Schneider et al., Geophys. Res. Lett. 2017



Out of these ideas was born ClIMA (fall 2018)

CIIMA

CLIMATE MODELING ALLIANCE

About 50 Earth scientists, engineers, and applied mathematicians at
4 institutions:

Caltech T} JPL

Jet Propulsion Laboratory
California Institute of Technology




CIIMA is building an Earth system model that wraps a joint data
assimilation/machine learning layer around all component models

Observations

Ocean Turbulence

Clouds

Targeted High-Resolution Simulations



How does this actually work?
“Soft Al”



We want to use observations, yet need out-of-sample
predictive capabilities and computational feasibility

- We need out-of-sample predictive capabilities (predict a climate we have
not seen), yet want to use present-day observations

- Use known equations of motion to the extent possible to minimize
number of adjustable parameters and avoid overfitting

- Climate data often do not have high temporal resolution but do provide
informative time aggregate statistics

-+ Learn from climate statistics (in contrast to weather states in NWP)
- Running climate models is computationally extremely expensive

-+ Need fast algorithms for learning about models from data (with
judicious use of ML tools)



Our strategy: Close, automate, and accelerate the
scientific discovery loop

Design
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Our strategy: Close, automate, and accelerate the
scientific discovery loop
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L earn
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Process-informed model



Our strategy: Close, automate, and accelerate the
scientific discovery loop

Design

experiment

L earn

about model

Qualitative progress from doing 104 times more computational experiments
and using >106 times more observational degrees of freedom than before



An example: Reduced-order models for
turbulence, convection, and clouds

Ilgnacio Lopez
Gomez

Anna Jaruga



Cloud/boundary layer turbulence schemes in current GCMs
have unphysical discontinuities and many correlated parameters

Deep convection: Often mass flux schemes e.g., Arakawa &
Schubert 1974, Tiedtke 1989; Arakawa & Wu 2013)

Shallow convection: Often also mass flux schemes, but
with discontinuously different parameters (e.q.,
entrainment rates)

Boundary layer turbulence: Often diffusive; difficult to
match with cloud Iayer (e.g.,Troen & Mahrt 1986)

Parametric and structural discontinuities for processes with
common (e.q., ary) limits; plethora of parameters



We use a unified, physics-based model, derived by coarse graining of
equations of motion and adaptable in complexity to data availability

Decomposes domain into environment (i=0) and coherent plumes (i=1, ..., N):
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We use a unified, physics-based model, derived by coarse graining of
equations of motion and adaptable in complexity to data availability

Decomposes domain into environment (/=0) and coherent plumes (i=1, ..., N):
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Parametric functions requiring closure appear in the
coarse-grained equations; can be refined with data

Entrainment and detrainment (exchange between subdomains):

Represented by a physical entrainment length (|bl/w?2) and 1
an adjustable function of nondimensional parameters £,0=c, 7 f (RH )

Nonhydrostatic pressure gradients

Represented by a combination of buoyancy ~ dp,,
reduction (virtual mass) and pressure drag 0z

= _pa(abb T, Ha'?

Eddy diffusion/mixing length

Mixing length as soft minimum of all possible balances K=c kl\/TKE
between production and dissipation of TKE



Reduced-order model captures polar and subtropical boundary
layer and clouds (which have vexed climate models for decades)

: P S
40°N |- {2 N
i y : N P
20°N
O ° \ ‘9\-—\_,\;\ '
& \ A @O . S : :x""‘ '
SN | : | X BN S d o 3 °
20°S |2 N SR N NAT
. : | ARAAN ‘ : b gl -
‘ : A } ) o

40°S B

60°S [L5Y e Tl S B ety O

g°s Hedlomest 2 S By
180° 150°W 120°W 90°W  60°W  30°

Low-cloud bias (from earlier)

Polar boundary layer

b — LES

--- SCM 3.125m
—-— SCM 12.5m
...... SCM 50 m

-2
Stratocumulus-topped BL

1.41 Observations
1.2 — LES

r— Parameterization
1.0 A
0_8_ %
0.6 /
0.4
0.2
. Lopez-Gomez et al. (submitted)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
liquid water specific humidity [g/kg]




't also captures shallow and deep cumulus
convection
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The new unified turbulence and convection
scheme...

* IS prognostic (essential at high host model resolution)

- captures dynamical regimes from boundary layer
turbulence to deep convection

+ reduces number of adjustable parameters relative to the
plethora of parameters In traditional schemes

Next step is implementation in climate model, calibration
and UQ with ~70,000 LES driven by climate model (first
dozen running on Google Cloud Platform right now)



Calibrating a climate model and
quantifying its uncertainties
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We want to improve climate models in a similar way that weather
forecasts have improved, though data assimilation approaches

We are using statistics accumulated in time (e.g., over seasons) to
calibrate model components jointly by:

1. Minimizing model biases, especially biases that are known to
correlate with the climate response of models. That is, we will minimize
mismatches between time averages of ESM-simulated quantities and
data, directly targeting quantities relevant for climate predictions.

2. Minimizing model-data mismatches in higher-order Earth
system statistics, €.g., covariances such as cloud-cover/surface
temperature covariances, which are known to correlate with the climate
response of models. Higher-order statistics relevant for predictions
(e.g., precipitation extremes) are also included in objective function.



Learning from climate statistics presents
challenges and opportunities

Matching statistics results in smoother objective functions
than matching trajectories (as is done in weather
prediction)

- Climate-relevant statistics such as covariances
between cloud cover and temperature (emergent
constraints) and precipitation extremes can be included
in objective function

But objective function evaluation (accumulation of
averages) is extremely expensive



Our setting for learning about parameters (or
parametric or nonparametric functions)

Find Parameter 8 From Data y

Let G: © — ), and 1) be noise. Then data and parameter are related by

y =G(0)+n, n~N(O,~2.

Our Setting

» Calibration and UQ for 6 are both important.
» G is expensive to evaluate.
» G is only approximately available.

» Derivatives of G are not available.



Optimization approach

Formulation

0" = argmingcg ®(0; y),

1
do(0; y) = 272\Y — G(0)?,

1 1 _
®(0;y) = 2_W2‘y — G(0)]* + §<9»Z *6).

Algorithms: parameter 6 calibration
(e.q., derivative-free ensemble methods, O(102) evaluations of G;
scale well to high-dimensional data and parameter spaces)



Sayesian approach

Formulation

P(6]y) oc P(y|0) >x P(6),

P(0]y) exp(—CI)o(H;y)) X exp(—%(@, 2_19>)

x xp(0(0:))

Algorithms: parameter 6 sampling
(e.g., MCMC, O(109) evaluations of G, not feasible for climate models)



We combine calibration and Bayesian approaches
N a three step process for fast Bayesian learning

— Calibrate |— —— Emulate —— - Sample
y=6(0)+n > G (0) ~ G(0) > y =G (0) 4+ n(0)

Gradient-free ensemble

methods (EKS/EKI) Gaussian processes/NNs MCMC

Experimental design (where to place high-resolution
simulations) can be incorporated into CES pipeline

Gives approximate Bayesian posterior (i.e., quantified
uncertainties, including covariance structure of error etc.)



2roof-of-concept in idealized general circulation
model (GCM)

- GCM Is an idealized aguaplanet model

It has a simple convection scheme that relaxes
temperature and specific humidities to reference profiles

I — Tref
T

q — RHrefq>I< (Tref)
T

0T +v-VT+ -

0q+v-Vqg+ -

-+ Iwo closure parameters: timescale T and reference
relative humidity RHyes
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(1) Calibrate with ensemble Kalman inversion
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(2) Emulate parameters-to-statistics map during
calibration step with Gaussian processes

1.0, ,
~ 15 u 0.20 —e— GP Emulator
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Effective emulation of model statistics at vanishing marginal cost;
aaaitional important advantage: smoothing of objective function
(can be replace by NNs for better scaling)


http://scikit-learn.org/0.17/_images/plot_gp_regression_001.png

(3) Sample emulator to obtain posterior PDF for
uncertainty quantification

MCMC (600,000 iterations) on GP trained on ensemble gives good
estimate of posterior PDF
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Approximate Bayesian inversion at 1/1000th the cost of standard methods
First calibrate-emulate-sample paper: https.//arxiv.org/abs/2001.03689



https://arxiv.org/abs/2001.03689

We are pursuing the same approach for all

components of the new

—arth system model

Observations

Targeted High-Resolution Simulations

5-year goals

Build a model that learns
automatically from observations
and high-resolution simulations

Achieve at least factor 2
reduction in rms error of climate
simulations and impacts (e.g., in
rainfall extremes)

Serve as anchor of ecosystem
of downstream apps, e.g., for
infrastructure planning or
projections of wildfire and flood
risks.



Core design principles for CliIMA's model

Require performance-portability and scalability across different hardware
architectures with accelerators (facilitated by Julia programming paradigms
and collaboration with MIT Julia Lab)

- Atmosphere, ocean, land, and (eventually) sea ice share computational
kernels, maximizing code re-use and facilitating coupling and optimization

- Use consistent thermodynamics, microphysics etc. across the entire model

- Develop unified parameterizations through hierarchical approximations that
can be refined as more data become available

+ Couple parameterized processes consistently with their underlying
distributional assumption (e.g., subsample microphysics from subgrid-scale
distributions of dynamical guantities)



Conclusions

Reducing and quantifying uncertainties in climate models is urgent but
within reach

- To reduce and guantify uncertainties, we combine process-informed
models with data-driven approaches using climate statistics

Physics-based subgrid-scale models can capture turbulence and cloud
regimes that have vexed climate models for decades

+ Our subgrid-scale models will learn both from observations and (where
possible) from high-resolution simulations spun off on the fly

- Calibrate-emulate-sample forms the core of the data assimilation/
machine learning layer and achieves up to 1,000x speed-up relative to
traditional Bayesian learning methods

Much interesting work (SGS models, more effective filtering strategies,
optimal targeting of high-res simulations...) remains to be done!
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