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. Motivation: Parameterizations of small scale processes are the main cause of
uncertainty in climate change temperature and precipitation projections

* Previous studies: Recent studies on machine-learning parameterization are
promising (but still many problems)

~ + Results:

a. Learning from a high resolution model (SAM)

b. Example: Sub-grid tendencies are very important

c. Offline results, conservation of energy, non-negative precipitation
d. Online results

e. Is there an optimal length scale for parameterization?
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Large uncertainty in the temperature response to increased
CO, concentrations (slow to non-existent improvement in
narrowing the uncertainty)

Arrhenius (1896):

Doubling of CO, — global warming of ~5°C IPCC AR5

1.5-4.5°C
Charney Report (1979): 7
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“Estimates of the equilibrium climate sensitivity
(ECS) based on observed climate change, climate
models and feedback analysis, as well as
paleoclimate evidence indicate that ECS is likely in
the range 1.5°C to 4.5°C with high confidence, ....
and very unlikely greater than 6°C (medium
confidence)."
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Large uncertainty in the temperature response to increased
CO, concentrations (slow to non-existent improvement in
narrowing the uncertainty)

Arrhenius (1896):

Doubling of CO, — global warming of ~5°C IPCC AR5  CMIP6 early

1.5-4.5°C results 2.8-5.8°C
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warming for a doubling of CO, to be near
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Extreme precipitation [mm/day]

There Is a large spread In the intensity of extreme
precipitation events between climate models
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The large uncertainty in climate projections is mainly
caused by (inaccurate) representation of subgrid physics

Law of physics
(e.g., fluid dynamics)

Figure credit: NOAA



The large uncertainty in climate projections is mainly
caused by (inaccurate) representation of subgrid physics

Law of physics
(e.g., fluid dynamics)

Parameterizations \

represented by simplified >
models — (e.g., convection)

Physical Processes in a Model

solar  terrestrial
radiation radiation
C !

ATMOSPHERE

Figure credit: NOAA

Arakawa and Schubert 1974



Uncertainty in low-cloud feedback leads to large
uncertainty in the equilibrium climate sensitivity
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Climate Models

“Important” small scales will not be resolved
In the foreseeable future
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Climate Models

“Important” small scales will not be resolved

INn the foreseeable future
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Climate Models

“Important” small scales will not be resolved

INn the foreseeable future

Starting to resolve
deep convection —
O(10km)
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A different approach to parameterization:
Use machine learning to create new parameterizations trained
on high-resolution models

General Circulation Models

N

Law of physics Machine learning
(e.qg., fluid dynamics) parameterizations
(where possible)

N\

High-resolution
simulations



« Motivation: Parameterizations of small scale processes are the main cause of

~ « Results:

a. Learning from a high resolution model (SAM)

b. Example: Sub-grid tendencies are very important

c. Offline results, conservation of energy, non-negative precipitation
d. Online results

e. Is there an optimal length scale for parameterization?



Recent attempts at machine learning parameterizations
had some success but were not always stable/did not obey
conservation laws/had climate drift
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Recent attempts at machine learning parameterizations
had some success but were not always stable/did not obey
conservation laws/had climate drift
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Recent attempts at machine learning parameterizations
had some success but were not always stable/did not obey

conservation laws/had climate drift

Neural Network to learn a 3D
cloud resolving model (SAM, 4km
resolution) sub-grid tendencies.
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Recent attempts at machine learning parameterizations
had some success but were not always stable/did not obey
conservation laws/had climate drift

Neural Network to learn a 3D
cloud resolving model (SAM, 4km
resolution) sub-grid tendencies.

. Drift of the mean climate: only

short term prediction

. Challenging to make it stable

. No energy conservation

y (1000 km)

y (1000 km)

10

a) NG-Aqua

P : £l

-+

% .-

- ’ .

>

-

=
)

L ED
k,

. e

‘l
Ao

c) NN-Lower Simulation

- .-~..F

2

Y

-

'\‘

T
5

1
10

x (1000 km)

I
15

I
20

CRM (4 km
resolution)

'\ 2-day

precipitation
forecast

160 km resolution +

| NN parameterization

Brenowitz and Bretherton (2019)



Random forests is a machine learning algorithm that can
give a parameterization that obey conservation laws
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Random Forest could
emulate the relaxed
Arakawa-Schubert
(RAS) convection
scheme

Random forest (mm day™?)
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RAS convection scheme (mm day‘l)

O’Gorman and Dwyer (2018)



Random forests is a machine learning algorithm that can
give a parameterization that obey conservation laws

_1)
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1. Stable when coupled to GCM

2. Conserves energy/non-negatlve precipitation 0’Gorman and Dwyer (2018)



Goal here: to run stable and accurate climate simulations
learning from a fully 3D high-resolution simulation



« Motivation: Parameterizations of small scale processes are the main cause of
uncertainty in climate change temperature and precipitation projections

* Previous studies: Recent studies on machine-learning parameterization are

. Example: -grid tendencies are very importan
c. Offline results, conservation of energy, non-negative precipitation
d. Online results

e. Is there an optimal length scale for parameterization?
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We learn from a quasi-global
high-resolution model

« SAM model with hypohydrostatic rescaling factor
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Extreme precipitation is different in high- and low-
resolution simulations
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Extreme precipitation is different in high- and low-
resolution simulations
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Privious studies: Agua-planet simulations with
different parameterization schemes lead to very
different precipitation patterns
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Goal: to correct the tendencies of the thermodynamic
and moisture variables due to sub-grid processes
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Goal: to correct the tendencies of the thermodynamic
and moisture variables due to sub-grid processes

h; — The liquid/ice water static stability energy
hi, = CpT + gz — LC(QC + Q’r) — Ls(Qi + qs 1 QQ)

\_'_I

Liquid Ice

gr — total non precipitating water mixing ratio

g, — total precipitating water mixing ratio



Goal: to correct the tendencies of the thermodynamic
and moisture variables due to sub-grid processes

9hr — advection + diffusion + radiation...
941 — advection + diffusion + microphysics...

% = advection + precipitation + microphysics...



Goal: to correct the tendencies of the thermodynamic
and moisture variables due to sub-grid processes

—8§LtL = advection + diffusion + radiation...

—agf = advection + diffusion + microphysics...

% = advection + precipitation 4+ microphysics...
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Goal: to use a Random Forest (RF) to predict the effect of
subgrid processes on the resolved thermodynamic and
moisture variables

_ (9h Oar Ogp
’ ot | 0t | 0t subgrid

y = RF(z)



Goal: to use a Random Forest (RF) to predict the effect of
subgrid processes on the resolved thermodynamic and
moisture variables
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Coarse grained field = average of a field over a number of grid boxes

j=Ni h=NI
— 1

Q(fﬁi,yzazk)ZW > > QT Yn, Zkhigh—res

j=N(i—1) h=N(l—-1)

(a) 12km

45°
E
w0 E
@ k=
g 0 =
s @
= i
a
200
o
a

—-45°

0

20° 50°
Longitude



Coarse grained field = average of a field over a number of grid boxes

j=Ni h=NI
— 1

Q(xivylazk):m > > QT Yn, Zkhigh—res

j=N(i—1) h=N(l—-1)

(a) 12km
X8

45°
E
wE
J s
g 0 =
s @
= i
Q.
20 8
a

—-45°

0

20° 50°
Longitude



Coarse grained field = average of a field over a number of grid boxes

j=Ni h=NI
— 1

Q(ﬂfi,ylazk):m > > QT Yn, Zkhigh—res

j=N(i—1) h=N(l—-1)

(a) 12km
X8 x16

45°
E
0 E
% g
o m
2 0 >
m =
3 3
a
205
a

-45°

0

20° 50°
Longitude



Coarse grained field = average of a field over a number of grid boxes

j=Ni h=NI
— 1

Q(ﬂfi,yhzk):m > > QT Yn, Zkhigh—res

j=N(i—1) h=N(l—-1)

(a) 12km
X8 x16 x32

45°
E
0 E
% g
m
2 o0 =
= e
20 a
@
(w1

-45°

0

20° 50°
Longitude



Subgrid tendency Is the difference
between the coarse-grained (high-res)
tendency and the resolved tendency

6’th
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Coarse grained advection from
high resolution simulation

Precipitable water [mm]

20° 50°
Longitude Yuval & O’Gorman, Nat. Com. (in press)
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Subgrid tendency Is the difference
between the coarse-grained (high-res)
tendency and the resolved tendency
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Subgrid tendency Is the difference
between the coarse-grained (high-res)
tendency and the resolved tendency

Owh I amhL
0z 0z
Coarse grained advection from Resolved advection

high resolution simulation
— dvection —
<6’hL>a eetio B (8th 8th)
ot subgrid 0z 0z

« Parameterization includes: microphysics,
vertical advection, boundary-layer turbulence
56 £5° and radiation

Longitude Yuval & O’Gorman, Nat. Commun. (in press)

Precipitable water [mm]




Goal: to use a Random Forest (RF) to predict the effect of
subgrid processes on the resolved thermodynamic and
moisture variables
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Machine-learning algorithm for parameterization:
Random-forest (Breiman 2001)

. temperature <= 295.67
One simple tree: mse = 1.0

samples = 3918
value =-0.0

True

temperature <= 272.9
mse = 0.76
samples = 2460

value =-0.3

mse = 0.79 mse = 0.62 mse = 1.29
samples = 923 samples = 1537 samples = 96
value = 0.07 value = -0.53 value =-0.53




Machine-learning algorithm for parameterization:
Random-forest (Breiman 2001)

. temperature <= 295.67
One simple tree: mse = 1.0

samples = 3918
value =-0.0

True

temperature <= 272.9
mse = 0.76
samples = 2460

value =-0.3

mse = 0.79 mse = 0.62 mse = 1.29
samples = 923 samples = 1537 samples = 96
value = 0.07 value = -0.53 value =-0.53

 Random-forest is stable and robust when implemented in a GCM
* Respects physical constraints (energy conservation, non-negative
precipitation) O’Gorman & Dwyer 2018




RF Inputs: vertical structure of temperature and humidity
RF Outputs: vertical structure of instantaneous tendencies due to
subgrid scales
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RF Inputs: vertical structure of temperature and humidity
RF Outputs: vertical structure of instantaneous tendencies due to
subgrid scales

RF(X) —y
X =(T(2),q97(2),q,(2),u(z),v(2), latitude)

Latitude is a proxy
for SST, albedo etc.
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RF(X) — vy
X =(T(2),q97(2),q,(2),u(z),v(2), latitude)

Latitude is a proxy
for SST, albedo etc.

Yy = (&hL(z) g1 (2) I4p(2) ,diffusivity(z))

Ot sub 7 Ot sub ’ Ot sub

« Single diffusivity for all thermodynamic
and moisture variables
* Flux is always down gradient



Coupling the random forest to SAM
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Coupling the random forest to SAM
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Coupling the random forest to SAM

,qr(2), qp(2),u(z),v(2), latitude)

eeeeeeeeeeeeee
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RF(X) —y

Horizontal exchange



Coupling the random forest to SAM
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Coupling the random forest to SAM
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y:

Coupling the random forest to SAM

X =(T(2),q7r(2),q,(2),u(2),v(2),latitude)

— Y

Do not correct any
horizontal fluxes
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. Motivation: Parameterizations of small scale processes are the main cause of
uncertainty in climate change temperature and precipitation projections

* Previous studies: Recent studies on machine-learning parameterization are
promising (but still many problems)

+» Results:

b. Example: Sub-grid tendencies are very important

c. Offline results, conservation of energy, hon-negative precipitation
d. Online results
e. Is there an optimal length scale for parameterization?




Tendency of precipitating water due to conversion of cloud
water/ice and due to evaporation at 3km
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Tendency of precipitating water due to conversion of cloud
water/ice and due to evaporation at 3km

Positive — means
autoconversion
(droplets grow
as they collect
water from
clouds)

45° 1

Latitude
o

_450_ ‘f

0.3
Would look the
same if subgrid
not important

0.0

-0.3

50 °[o/kg/s110~3

high Resolved at coarse
resolution resolution
T 1 >
2O 1 3 .;?‘;i
- '.-‘ - e A;.\‘- P ’\v =
oy . - .
: = L P, kb
~s 2] . ~ ~ cc:f
positive negative
a1l -,’.1%' J
| | b .
25° 50° 0° 25°
Longitude Longitude

subgrid tendency = coarse-grained - resolved



Tendency of precipitating water due to conversion of cloud
water/ice and due to evaporation at 3km

Positive — means
autoconversion
(droplets grow
as they collect
water from
clouds)
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resolution resolution
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e : | 1. T Would look the
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. Motivation: Parameterizations of small scale processes are the main cause of
uncertainty in climate change temperature and precipitation projections

* Previous studies: Recent studies on machine-learning parameterization are
promising (but still many problems)

*» Results:
a. Learning from a high resolution model (SAM)

c. Offline results, conservation of energy, non-negative precipitation

d. Online results
e. Is there an optimal length scale for parameterization?




Random forest (96km horizontal grid) predicts reasonably
well the subgrid tendencies in a test data set (coefficient of
determination R%>0.7)

Non-precipitating subgrid tendency

W

o

o
I

600

Pressure [hPa]

900

RF(X) — vy

96km

—45° O° 45 °
Latitude

Yuval & O’Gorman,
Nat. Commun. (in
press)



Precipitation is a diagnostic variable (we
do not predict it separately in the RF)
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o
o

w
o
o

RF prediction [mm/day]
= N
o o
o o

, , , , , Yuval & O’Gorman,
0 100 200 300 400 Nat. Commun. (in
True precipitation [mm/day] press)




Precipitation is a diagnostic variable (we
do not predict it separately in the RF)

RF prediction [mm/day]
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Yuval & O’Gorman,

0 100 200 300 400
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Nat. Commun. (in
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Random forest (almost) conserves energy

In the absence of external forcing
(@) True (b) RF

Percentage of samples
N
S
S~
|

0% -

-0.25 0.25 -0.25 0.25
Residual [W m™2] Residual [W m™2]

. . Y ’ |
Compared to ~92W/m? in Brenowitz and Bretherton (2019) that Nl;\t/.aclzi‘n?m%?{r?i?]n

used neural networks (Though see Buecler et al. 2019) press)



. Motivation: Parameterizations of small scale processes are the main cause of
uncertainty in climate change temperature and precipitation projections

* Previous studies: Recent studies on machine-learning parameterization are
promising (but still many problems)

*» Results:
a. Learning from a high resolution model (SAM)
b. Example: Sub-grid tendencies are very important

d. Online results

€. IS there an optimal iengtn scaie 10r parameterization :




y:

Coupling the random forest to SAM

X =(T(2),q7r(2),q,(2),u(2),v(2),latitude)

— Y

Do not correct any
horizontal fluxes

ahL 8QT an . .o
— — — dift t
( (9?5 sub’ (9t sub7 (9?5 sub7 TSV

RE(




Random-forest parameterization brings the low-resolution
model simulation much closer to the high-resolution simulation

High resolution Coarse resolution

45°
40 £
O
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g
o
—45°
Yuval & O'Gorman,
0 Nat. Commun. (in

20° 50° 20° 50°

Longitude Longitude press)



Random-forest parameterization brings the low-resolution
model simulation much closer to the high-resolution simulation

Coarse resolution with
High resolution Coarse resolution RF parameterization
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Y I
go
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= 0
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— r
el
Qo
(©)
Q
| -
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20° 50° 20° 50° 20° 50°
Longitude Longitude Longitude

Yuval & O'Gorman,
Nat. Commun. (in
press)



Random forest parameterization leads to remarkably
accurate simulation of precipitation extremes

Precipitation [mm/dav]
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Extreme precipitation
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== High resolution (target)

- — Yuval & O’Gorman,
0 45 Nat. Commun. (in
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Random forest parameterization leads to remarkably
accurate simulation of precipitation extremes

Precipitation [mm/day]
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45 Nat. Commun. (in
press)



. Motivation: Parameterizations of small scale processes are the main cause of
uncertainty in climate change temperature and precipitation projections

* Previous studies: Recent studies on machine-learning parameterization are
promising (but still many problems)

» Results:
a. Learning from a high resolution model (SAM)
b. Example: Sub-grid tendencies are very important
c. Offline results, conservation of energy, non-negative precipitation

e. Is there an optimal length scale for parameterization?



Is there an optimal length scale for parameterization?

Test score for diurnal cycle of summer
precipitation (Germany)

1.0
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Vergara-Temprado et al. (2020)



Is there an optimal length scale for parameterization?

1.0

0.8

0.0

Test score for diurnal cycle of summer
precipitation (Germany)

~— DEEP
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w EXPLICIT
"Gray zone”
Better to turn off
deep convection
parameterization
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0.44 022 0.11 008 0.06 0.04 0.02
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Conventional
parameterization
(non scale aware)

Vergara-Temprado et al. (2020)



Is there an optimal length scale for parameterization?

X8 x16 x32

When increasing the grid spacing: .

8

Precipitable water [mm]

N
o

20° 50°
Longitude

Yuval & O’Gorman, Nat. Commun. (in press)



Is there an optimal length scale for parameterization?

X8 x16 x32

When increasing the grid spacing: .

8

Precipitable water [mm]

« Averaging over more cloud 2 ol
elements — subgrid tendencies =
more predictable

« But more of the dynamics
becomes subgrid

N
o

20° 50°
Longitude

Yuval & O’Gorman, Nat. Commun. (in press)



Is there an optimal length scale for parameterization?

x16 x32

X8

When increasing the grid spacing: .

8

Precipitable water [mm]

« Averaging over more cloud 2 R
elements — subgrid tendencies =
more predictable

« But more of the dynamics
becomes subgrid

N
o

20° 50°
Longitude

We train a different random-forest parameterization for
different grid-spacing

Yuval & O’Gorman, Nat. Commun. (in press)



Random-forest parameterization of subgrid tendencies
becomes more accurate as grid spacing becomes coarser

Offline performance

1 —
] Larger coarse-graining factor
makes the subgrid tendencies
0.8 - .
~ more predictable
g
0.6 -

1 J Performance is based on

1 1
Yuval & O’Gorman, . .
Nat. Commun. (in x4 X8 X16 X32 ’;es't <.:Iataset with-held in
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But accuracy of simulations improves with decreasing

grid spacing
Online performance
1 -
0.8 -
r& More dynamics is resolved
0.6 -
Performance is
measured by the mean

| | precipitation distribution

| |
Yuval & O'Gorman, x4 X8 X16 X32 ascompared to high-

Nat. Commun. (in o : : :
press) Coa rse-graining factor resolution simulation



Yuval & O’'Gorman,

Nat. Commun. (in
press)

More dynamics is resolved

Online performance

ML parameterizations
could be useful for

grid spacings that are quite
close to that of the high-
resolution model from
which they are learned

Performance is
measured by the mean

x4

X8 X16
Coarse-graining factor

! precipitation distribution
X32 as compared to high-
resolution simulation



Why the discrepancy between offline and online performance?

Offline
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Why the discrepancy between offline and online performance?
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Why the discrepancy between offline and online performance?
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Discrepancy between offline and online performance regardless
of whether consider relative or absolute measures of error

Offline gt tendency

“Relative”
agreement

h

RMSE [kg kg~?! s~ ! x1078]

x4 X8 xX16 X32
Coarse-graining factor



Discrepancy between offline and online performance regardless
of whether consider relative or absolute measures of error

Offline gt tendency
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Latitude

The outputs have (a) a predictable component
and (b) a stochastic component
(@) x4 Target
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tendency
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Latitude

Latitude

The outputs have (a) a predictable component

and (b) a stochastic component
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Latitude

Latitude
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Latitude

To compare “apples-to-apples” we coarse-grain the
higher resolution parameterization
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Latitude

To compare “apples-to-apples” we coarse-grain the
higher resolution parameterization
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Latitude

RF with smaller coarse graining performs better in an
‘apples-to-apples” comparison (at the same length scale)
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e Offline performance can be 20° |

Latitude
o

misleading in comparisons across
length scales unless first coarse-
grain to a reference length scale

I
N
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* ML parameterization works better

as we decrease grid spacing (no
evidence for optimal length scale
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Extreme precipitation
800 1 — hi-res

x8-RF /\
— X8
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« Random-forest parameterization learned from fully
3-D high-resolution simulation gives stable and 400 1
accurate simulations at climate-model resolution 200 A M
* Machine learning can give insights into the 0" o A
parameterization problem (e.g., scale dependence) Latitude
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« Machine learning parameterization has potential to 1
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Low resolution simulations with random forest
parameterizations are faster than high resolution simulations

* 96km-RF requires x30 times less CPU time than the high resolution
simulation (12km)

e 192km-RF x120 less resources
* Without changing the time step



* Precipitating water (gp) is a variable that changes rapidly (due
to precipitation falling with gravity)

« Cannot significantly increase the time step when correcting gp
« Want to avoid using gp as a prognostic variable



Want to avoid using precipitating water as a
prognostic variable

hyp — The liquid/ice water static stability energy
hL — CpT + gz — Lc(Qc + QT) - LS(Q’L' + Qs + QQ)

qr — total precipitating water mixing ratio

. ] . .

_ Ohr, Oqr Oqp
/ ot | ot | ot subgrid



Want to avoid using precipitating water as a
prognostic variable

hi — The liquidNgce water static stability energy
hL:CpT—'_gZ_Lc +qT)_LS(Qi—|—qS+QQ)
HL — CpT + gz — chc + _LSQi

qr — total precipitating water mixing ratio

p

OHT, + Change equation of
Ot subgrid motions in SAM
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RNI/ANCTIGT S




coarse grained + simplified RF parameterization have
similar precipitation a to a high resolution simulation

(a) Mean precipitation online
- hi-res
=== X8-RF no qgp 7
—— X8
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