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Outline

• Motivation: Parameterizations of small scale processes are the main cause of 
uncertainty in climate change temperature and precipitation projections

• Previous studies: Recent studies on machine-learning parameterization are 
promising (but still many problems)

• Results:

a. Learning from a high resolution model (SAM)

b. Example: Sub-grid tendencies are very important

c. Offline results, conservation of energy, non-negative precipitation

d. Online results 

e. Is there an optimal length scale for parameterization? 
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Charney Report (1979):

“We estimate the most probable global 

warming for a doubling of CO2 to be near 

3°C with a probable error of ± 1.5°C”

IPCC report  (2013):
“Estimates of the equilibrium climate sensitivity 
(ECS) based on observed climate change, climate 
models and feedback analysis, as well as 
paleoclimate evidence indicate that ECS is likely in 
the range 1.5°C to 4.5°C with high confidence, …. 
and very unlikely greater than 6°C (medium  
confidence)."

Arrhenius (1896):

Doubling of CO2 → global warming of ~5°C CMIP6 early 
results 2.8-5.8°C

IPCC AR5
1.5-4.5°C

Large uncertainty in the temperature response to increased 
CO2 concentrations (slow to non-existent improvement in 
narrowing the uncertainty)



There is a large spread in the intensity of extreme 
precipitation events between climate models
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There is a large spread in the intensity of extreme 
precipitation response to climate change

Climate models from CMIP3
Figure adapted from O’Gorman and 
Schneider 2009 
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Climate models from CMIP5

Figure adapted from: O’Gorman 2015
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Climate models from CMIP5

Figure adapted from: O’Gorman 2015

Climate change 

Climate models from CMIP3
Figure adapted from O’Gorman and 
Schneider 2009 
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There is a large spread in the intensity of extreme 
precipitation response to climate change

Latitude



The large uncertainty in climate projections is mainly 
caused by (inaccurate) representation of subgrid physics

Law of physics

(e.g., fluid dynamics)

Figure credit: NOAA



The large uncertainty in climate projections is mainly 
caused by (inaccurate) representation of subgrid physics

Parameterizations 

represented by simplified 
models – (e.g., convection)

Law of physics

(e.g., fluid dynamics)

Figure credit: NOAA

Arakawa and Schubert 1974



Uncertainty in low-cloud feedback leads to large 
uncertainty in the equilibrium climate sensitivity 

Schneider et al. (2017)



“Important” small scales will not be resolved 
in the foreseeable future

Schneider et al. (2017)
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“Important” small scales will not be resolved 
in the foreseeable future

Schneider et al. (2017)

Starting to resolve 
deep convection –
O(10km)
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“Important” small scales will not be resolved 
in the foreseeable future

Schneider et al. (2017)

Starting to resolve 
deep convection –
O(10km)
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A different approach to parameterization: 
Use machine learning to create new parameterizations trained 

on high-resolution models 

Law of physics

(e.g., fluid dynamics)

General Circulation Models

Machine learning 

parameterizations 

(where possible) 

High-resolution 

simulations
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(super-parameterized model) sub-
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conservation laws/had climate drift
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Neural Network to learn SP-CAM 
(super-parameterized model) sub-
grid tendencies.

1. 2D CRM with 8 gridboxes (wasn’t stable with 32 
gridboxes)

2. Changes in the Neural Network architecture can 
lead to unstable  simulations

3. No energy conservation (though see Beucler et.al. 
2019) Rasp et al. (2018)

SP-CAM and Neural 
network-CAM has similar 
precipitation distribution

Recent attempts at machine learning parameterizations 
had some success but were not always stable/did not obey 
conservation laws/had climate drift



Brenowitz and Bretherton (2019)
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cloud resolving model (SAM, 4km 
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Brenowitz and Bretherton (2019)

Neural Network to learn a 3D 
cloud resolving model (SAM, 4km 
resolution) sub-grid tendencies.

2-day 
precipitation 
forecast

CRM (4 km 
resolution)

160 km resolution + 
NN parameterization

1. Drift of the mean climate: only 
short term prediction

2. Challenging to make it stable
3. No energy conservation

Recent attempts at machine learning parameterizations 
had some success but were not always stable/did not obey 
conservation laws/had climate drift
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emulate the relaxed 
Arakawa-Schubert 
(RAS) convection 
scheme

Random forests is a machine learning algorithm that can 
give a parameterization that obey conservation laws



O’Gorman and Dwyer (2018)

Random Forest could 
emulate the relaxed 
Arakawa-Schubert 
(RAS) convection 
scheme

1. Stable when coupled to GCM
2. Conserves energy/non-negative precipitation

Random forests is a machine learning algorithm that can 
give a parameterization that obey conservation laws



Goal here: to run stable and accurate climate simulations 
learning from a fully 3D high-resolution simulation
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We learn from a quasi-global 
high-resolution model

• SAM model with hypohydrostatic rescaling factor 
of 4 (grid spacing 12km), 48 vertical levels

• Specified SST distribution (qobs)

• Original simulation thanks to Bill Boos

SAM: Khairoutdinov and Randall, 2003

Hypohdrostatic/DARE: e.g., Kuang et al. 2005 
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Extreme precipitation is different in high- and low-
resolution simulations

High resolution (target)



Extreme precipitation is different in high- and low-
resolution simulations

Lower resolution

High resolution (target)



Privious studies: Aqua-planet simulations with 
different parameterization schemes lead to very 
different precipitation patterns

Mobis and Stevens 2012



Goal: to correct the tendencies of the thermodynamic 
and moisture variables due to sub-grid processes
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subgrid processes on the resolved thermodynamic and 
moisture variables
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Coarse grained advection from 

high resolution simulation

Subgrid tendency is the difference 
between the coarse-grained (high-res) 
tendency and the resolved tendency
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Resolved advectionCoarse grained advection from 

high resolution simulation

Subgrid tendency is the difference 
between the coarse-grained (high-res) 
tendency and the resolved tendency
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• Parameterization includes: microphysics, 
vertical advection, boundary-layer turbulence 
and radiation

Yuval & O’Gorman, Nat. Commun. (in press)



Goal: to use a Random Forest (RF)  to predict the effect of 
subgrid processes on the resolved thermodynamic and 
moisture variables



Machine-learning algorithm for parameterization: 
Random-forest (Breiman 2001)

One simple tree:



Machine-learning algorithm for parameterization: 
Random-forest (Breiman 2001)

• Random-forest is stable and robust when implemented in a GCM

• Respects physical constraints (energy conservation, non-negative 
precipitation)

O’Gorman & Dwyer 2018 

One simple tree:



RF Inputs: vertical structure of temperature and humidity 
RF Outputs: vertical structure of instantaneous tendencies due to 
subgrid scales
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for SST, albedo etc.



RF Inputs: vertical structure of temperature and humidity 
RF Outputs: vertical structure of instantaneous tendencies due to 
subgrid scales

Latitude is a proxy 
for SST, albedo etc.



RF Inputs: vertical structure of temperature and humidity 
RF Outputs: vertical structure of instantaneous tendencies due to 
subgrid scales

Latitude is a proxy 
for SST, albedo etc.

• Single diffusivity for all thermodynamic 

and moisture variables

• Flux is always down gradient
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Coupling the random forest to SAM

Do not correct any 
horizontal fluxes
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Tendency of precipitating water due to conversion of cloud 
water/ice and due to evaporation at 3km

high 

resolution 

coarse 

grained

Resolved at coarse 

resolution

Positive – means 

autoconversion

(droplets grow 

as they collect 

water from 

clouds)

Negative –

means 

Evaporation of 

precipitating 

water

Would look the 

same if subgrid

not important
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Random forest (96km horizontal grid) predicts reasonably 
well the subgrid tendencies in a test data set (coefficient of 
determination R2>0.7)

R
2

Yuval & O’Gorman, 

Nat. Commun. (in 

press)

Non-precipitating subgrid tendency



Yuval & O’Gorman, 

Nat. Commun. (in 

press)

Precipitation is a diagnostic variable (we 
do not predict it separately in the RF) 



no negative 
precipitation 
values

Yuval & O’Gorman, 

Nat. Commun. (in 

press)

Precipitation is a diagnostic variable (we 
do not predict it separately in the RF) 



Random forest (almost) conserves energy 
in the absence of external forcing

Compared to ~92W/m2 in Brenowitz and Bretherton (2019) that 
used neural networks (Though see Buecler et al. 2019)

Yuval & O’Gorman, 

Nat. Commun. (in 

press)
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Coupling the random forest to SAM

Do not correct any 
horizontal fluxes



Random-forest parameterization brings the low-resolution 
model simulation much closer to the high-resolution simulation

High resolution Coarse resolution
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Random-forest parameterization brings the low-resolution 
model simulation much closer to the high-resolution simulation

High resolution Coarse resolution

Coarse resolution with 

RF parameterization

Yuval & O’Gorman, 

Nat. Commun. (in 

press)



Random forest parameterization leads to remarkably 
accurate simulation of precipitation extremes

Yuval & O’Gorman, 

Nat. Commun. (in 

press)

Lower resolution

High resolution (target)



Lower resolution

High resolution (target)

Random forest parameterization leads to remarkably 
accurate simulation of precipitation extremes

Low-res + RF

Yuval & O’Gorman, 

Nat. Commun. (in 

press)

• Stable simulation

• No drift
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Is there an optimal length scale for parameterization?

Conventional 
parameterization
(non scale aware)

Test score for diurnal cycle of summer 

precipitation (Germany)

Vergara-Temprado et al. (2020) 



Is there an optimal length scale for parameterization?

Conventional 
parameterization
(non scale aware)”Gray zone”

Better to turn off 

deep convection 

parameterization

Vergara-Temprado et al. (2020) 

Test score for diurnal cycle of summer 

precipitation (Germany)



When increasing the grid spacing:

x8 x16 x32

Yuval & O’Gorman, Nat. Commun. (in press)

Is there an optimal length scale for parameterization?
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When increasing the grid spacing:

• Averaging over more cloud 
elements – subgrid tendencies 
more predictable

• But more of the dynamics 
becomes subgrid

x8 x16 x32

We train a different random-forest parameterization for 
different grid-spacing

Yuval & O’Gorman, Nat. Commun. (in press)

Is there an optimal length scale for parameterization?



Random-forest parameterization of subgrid tendencies 
becomes more accurate as grid spacing becomes coarser

Larger coarse-graining factor 
makes the subgrid tendencies 
more predictable

Offline performance

Performance is based on 
test dataset with-held in 
training

Yuval & O’Gorman, 

Nat. Commun. (in 

press)



But accuracy of simulations improves with decreasing 
grid spacing

Online performance 

Performance is 

measured by the mean 

precipitation distribution 

as compared to high-

resolution simulation

More dynamics is resolved

Yuval & O’Gorman, 

Nat. Commun. (in 

press)



Online performance 

Performance is 

measured by the mean 

precipitation distribution 

as compared to high-

resolution simulation

More dynamics is resolved

ML parameterizations 
could be useful for
grid spacings that are quite 
close to that of the high-
resolution model from 
which they are learned

Yuval & O’Gorman, 

Nat. Commun. (in 

press)

But accuracy of simulations improves with decreasing 
grid spacing



Offline

Yuval & O’Gorman, 

Nat. Commun. (in 

press)

Why the discrepancy between offline and online performance? 
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Offline Online

Why the discrepancy between offline and online performance? 



Offline Online

Yuval & O’Gorman, 

Nat. Commun. (in 

press)

Why the discrepancy between offline and online performance? 



Discrepancy between offline and online performance regardless 
of whether consider relative or absolute measures of error

“Relative” 
agreement 



Absolute 
error

“Relative” 
agreement 

Discrepancy between offline and online performance regardless 
of whether consider relative or absolute measures of error



The outputs have (a) a predictable component  
and (b) a stochastic component
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The outputs have (a) a predictable component  
and (b) a stochastic component 

Longitude

Low R2 for the 
high resolution 
does not imply 
that it does not 
predict the 
predictable 
component 
accurately

Target Target

Error Error



To compare “apples-to-apples” we coarse-grain the 
higher resolution parameterization

Longitude Longitude Longitude

Target Target



To compare “apples-to-apples” we coarse-grain the 
higher resolution parameterization

Longitude Longitude Longitude

Target Target

Coarse-grain (again!) 



Error Error

Coarse-grain

RF with smaller coarse graining performs better in an 
“apples-to-apples” comparison (at the same length scale)



• Offline performance can be 
misleading in comparisons across 
length scales unless first coarse-
grain to a reference length scale

• ML parameterization works better 
as we decrease grid spacing (no 
evidence for optimal length scale 
or gray zone)

Conclusions 



Main conclusions

• Random-forest parameterization learned from fully 

3-D high-resolution simulation gives stable and 

accurate simulations at climate-model resolution

• Machine learning can give insights into the 

parameterization problem (e.g., scale dependence)

• Machine learning parameterization has potential to 

work well in the ''gray zone" of conventional 

parameterizations



Low resolution simulations with random forest 
parameterizations are faster than high resolution simulations

• 96km-RF requires x30 times less CPU time than the high resolution 
simulation (12km)

• 192km-RF x120 less resources 

• Without changing the time step



A different approach for Random forest 
parameterization

• Precipitating water (qp) is a variable that changes rapidly (due 
to precipitation falling with gravity)

• Cannot significantly increase the time step when correcting qp

• Want to avoid using qp as a prognostic variable



Want to avoid using precipitating water as a 
prognostic variable



+ Change equation of 
motions in SAM

Want to avoid using precipitating water as a 
prognostic variable



coarse grained + simplified RF parameterization have 
similar precipitation a to a high resolution simulation


