

- Satellite products

And the latest of the

- Model
- In situ
- Events

EV 100 1

The importance of proper visualization cannot be overemphasized.

Image Credit Edward H. Adelson Professor, Vision Science, MIT

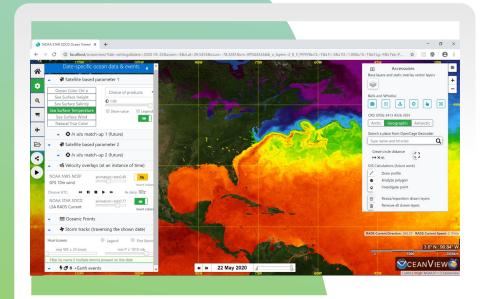
B

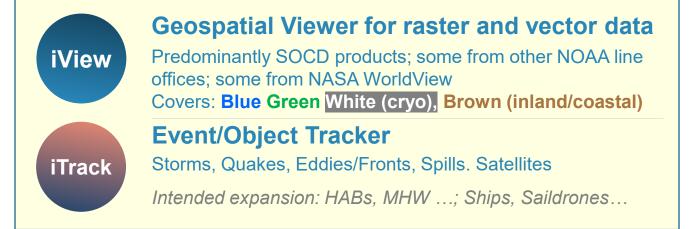
VISUALIZATION

INTERPRETAION

PARTING PARTY PARTY

PERCEPTION

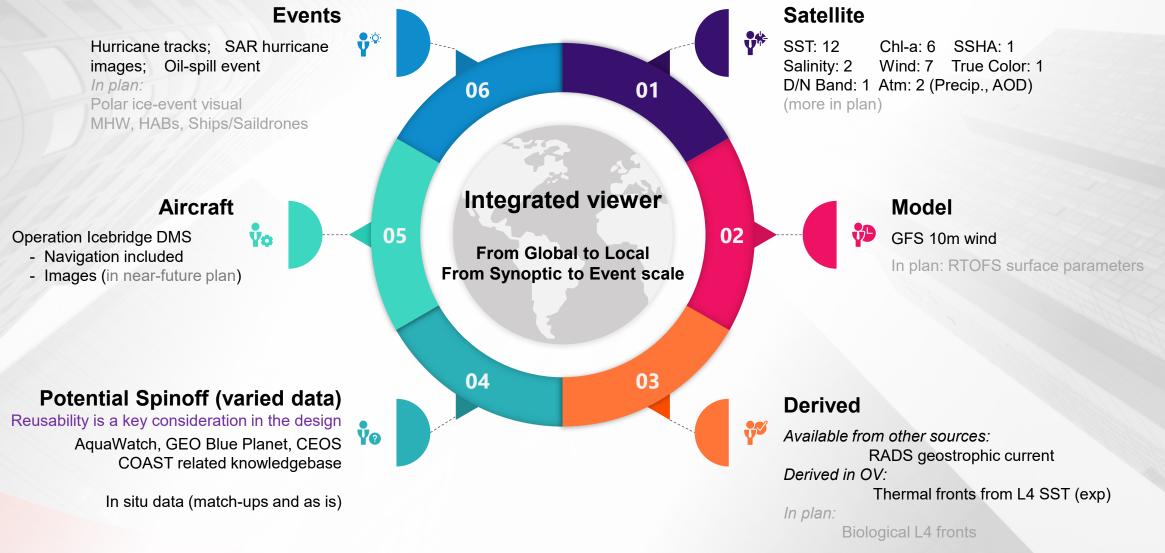

ittps://www.illusionsindex.org/ir/checkershadow


CAR IS AN THE MUSIC

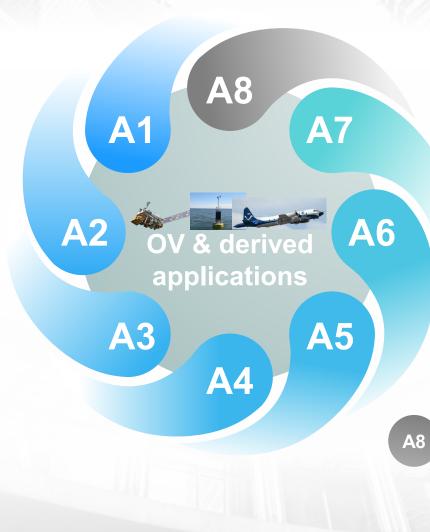
Applications

The OV in a Nutshell

A web-application *toward* integrated visualization of remote sensing and *in situ* data, model output and ocean, coastal & inland water events


Tech Overview

iTech


- Purely client-side (within STAR web constraints)
- Strictly opensource *tools* and *formats* (no proprietary hooks or 'technocratic regimes')
- Raster maps are based on OGC WMTS specification (without the map-server). JPL/GSFC MRF technology
- Customizable entry points *via* use of permalink that can serve for specific applications in the future
- In-built graphical user onboarding support

Data ingested in OV v1.0 [raster + vector]

Benefits

Web-access

⊲A1

▲A2

▲A3

▲A4

The OV is a web-based open ocean, and coastal & inland water geospatial viewer and event tracker.

Assist and support

Assist and support ocean stakeholders, practitioners, and enthusiasts interested in the state of diverse terrestrial water bodies.

Spatiotemporal scale

Heterogeneous and Multi-scale support in space and over time, both from a synoptic as well as an eventscale perspective.

Highlight NOAA/Partner & other useful products

Incorporates products from NOAA and non-NOAA sources, spanning satellites, airborne and field platforms as well as environmental modeling output. Make products more discoverable. Partner: EUM/EU Sentinel series

A5

Scientific linkage

- Visually assist scientists in connecting observations to models, Physics and Oceanography ...

- Coupling/interaction (sea-air, land-sea)
- Coastal studies (near-future plan)
- Ocean/Land/Air/Coastal interplay couple dynamic system

Situational awareness

Events/ Alerts: Multi-Hazard Warning Currently, data come with 1day lag, but OV can support NRT feed.

A6

Initiate and maintain collaborations

Contributes to CEOS, COAST, GEO Blue Planet (ocean and coasts), AquaWatch Initiatives, as part of the overarching **U.N. Decade of Ocean Science for Sustainable Development**. NOAA interline office, GHRSST, JPL.

8 Opens doors to:

- Application of advanced technology in the future, e.g., Computer vision, AI/ML, SDAP
- Climatological assessment of data and state of the ocean, e.g., product stability, trend detection
- Live alerts and probability prediction

5

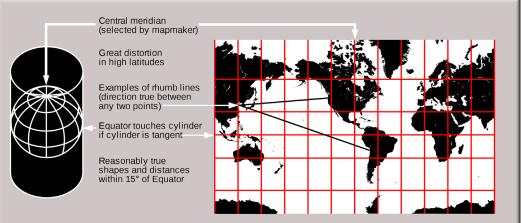
Features in OceanView v1.0

SVG: Scalable Vector Graphics

XML: Extensible Markup Language

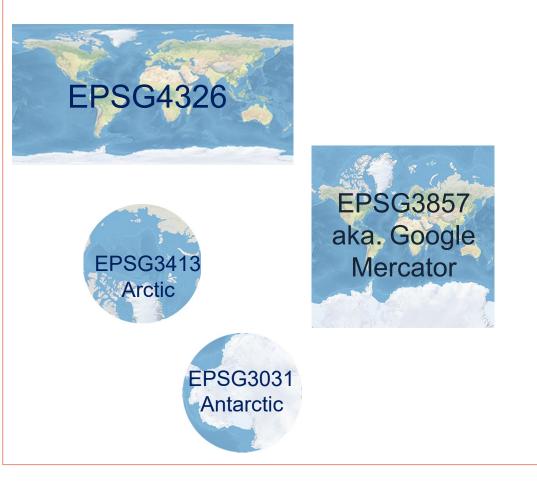
Map controls <> Scientific <> Technology <> Spinoff potentials being pursued

Map controls & interactions		Scientific		Technology	Spinoff	Limitations
 zoom, pan, resize, multiple layers raster (on top or side- opacity, show value, let vector vector animation coordinate reference set export screen display display local file (deskter) permalink, social medit customizable entry potential Semantic search (ong set to the set of t	egend system top app) ia share ints	 various ocean, o select atmosphere deep-dive fronts deep-dive polar make basic GIS track/search nate track manmade viz surface curre viz satellite/mode 	e parameters (profiler) flights ops ural events objects ent motion	 opensource tools/standards* allowing interoperability OGC WMTS client-side processing architecture Screen functionality Leaflet/plugin, JS, jQuery, Bootstrap Back-end functionality Python, GDAL, JAVA, OpenCV, C/++ original front-end design from scratch (no template) Mapserver or Geoserver unavailable; so, based on RESTful web services UX/UI has a very high focus. 	 support AquaWatch/ GeoBluePlanet CEOS COAST AdHoc project (work underway) support polar pan-Arctic and pan-Antarctic missions 	- pre-generated tiles with color table. Cannot change the range or CT, easily (*can be done though with server-side programming as images are based on PCT but its not straightforward)
*Established open standards						
VMTS: Web Map Tiling ServiceGML: Geographic Mark-up LanguageVMS: Web Map ServiceSLD: Styled Layer DescriptorVFS: Web Feature ServiceFE: Feature Encoding Standard		GeoJSON				


Concepts: pre-requisite to understanding dynamic maps Projection and CRS > Web-map protocols and standards by OGC > Tiling

Datum: a foundation and reference for spatial measurements.

Projection: How an ellipsoid latitude-longitude is projected on to a flat surface, i.e., it is the visual representation of those measurements on a different surface.


Coordinate Reference System: refers to the mathematical approach used for flattening. Used to describe those measurements relative to the datum.

Common choice (GCS, Datum): WGS84

CRS (Coordinate Reference System)

Concepts

Projection and CRS > Web-map protocols and standards by OGC > Tiling

WMS: Web Mapping Service, 2000

- Desktop GIS was mature, but internet was young!

Consumes map data by a <u>GET</u> request
 (with a bounding box, a layer, a style-list, **service type**, the
 number of pixels of the final image, and the map proj system)

- Rendered in real time by a **spatial-server***.

(the user receives an image, either PNG or JPEG, of the bounding box provided; some parameters were added in time)

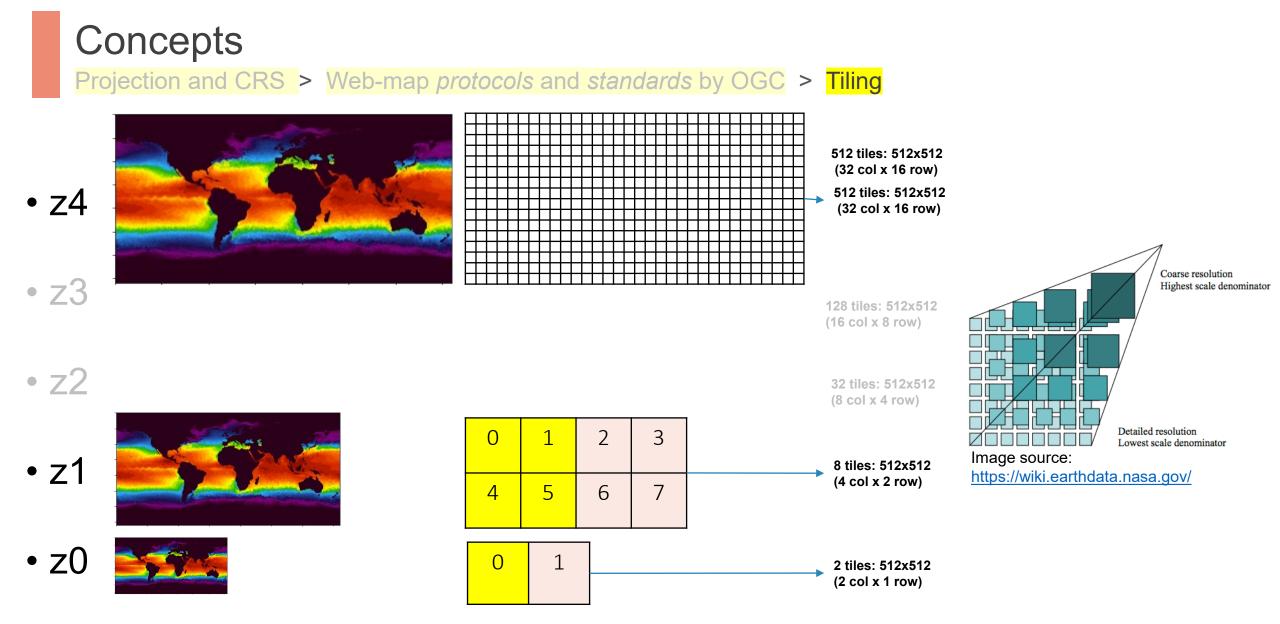
*ArcGIS server, Geoserver, Mapserver etc. (STAR)

- Works *great* for moderate size RoI and numerical analyses if desired. Best in one image/layer per GET request scenarios such as static maps. Can combine layers with comma.

- Not user-friendly to quickly change the Rol or zoom level. This will start *throttling* for higher-resolution data, e.g., > 2 km grids

WMTS: Web Mapping Tiled Service, 2010

- 2005: Google, Bing started "slippy maps"


- A new **WMTS** protocol was developed in 2010 by OGC. It shares the basic premise of WMS but images returned are in small tiles (256 x 256 or 512 x 512 sizes), *pre-rendered* so that they can be returned very quickly to the user. "*The Need for Speed*".

- Can work w/o a geospatial server with simple RestAPI template: ov_epsg4326_template = ovDataLoc + 'wmts/epsg4326/nrt/' + '{layer}/{time}/{tileMatrixSet}/{z}/{y}/{x}.png'

- Best if the objective is both global and regional display with the need for speed/fast response.

Challenge: Efficiently pre-generating tiles is a daunting task for the uninitiated, optimizing image format for web suitability is another challenge, often ignored. In WMS, the spatial-server does this for you.

*TMS, WFS etc. also exist that we are not covering today

*The exact implementation in OV is based on JPL/GSFC MRF technology (let's talk later, time permitting)

DEMO (~25 min)

https://www.star.nesdis.noaa.gov/socd/ov/

Functionalities V1.0 (May 2021)

- Right menu accessories
- Left menu modules
- Left menu daily data module (details)
- Special functions: fronts (generated in OV), flight path V1.1 (June 2021)
- Improved timeline widget (animation capability)
- changelog notification

Select Use Cases

- Visually intercompare two products for the same EDR (Eric/RTOFS future)
- Cyclone-related changes in Chl-a/SST (wakes);
- Model + Satellite + In situ (NCEI IBTracs) integrated view
- Display a local file (Mike's Cruise)
- Nightlight (experimental; Feb 16 on; Texas)
- Animation (Cyclone Amphan, 16 May 2020 onward)

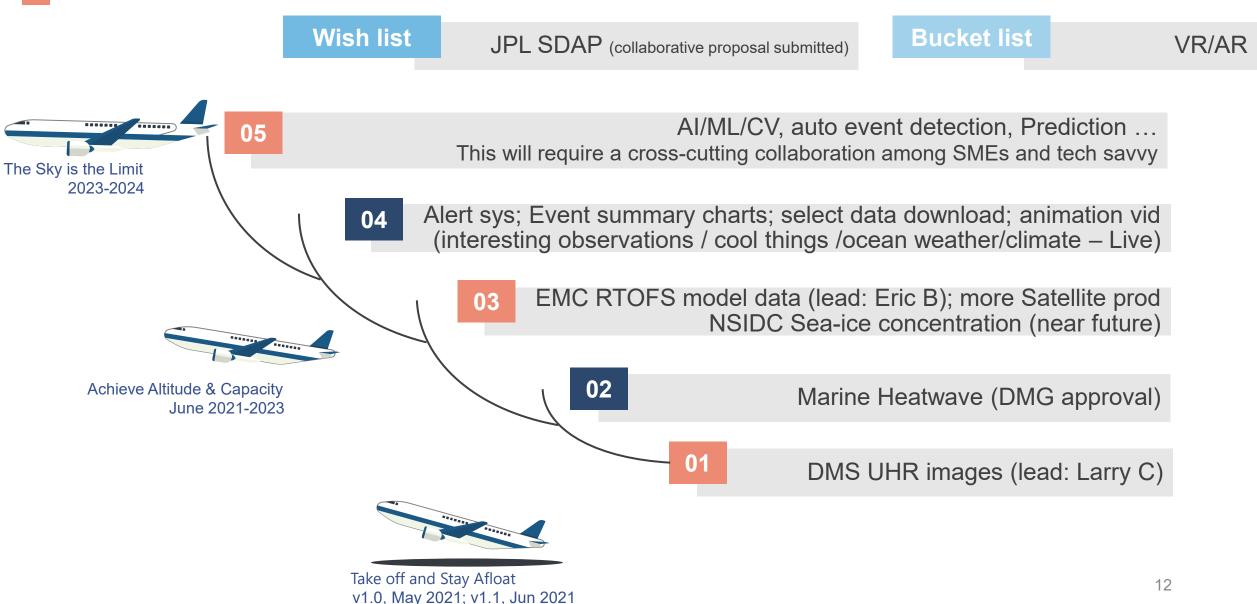
Customizable Entry Points

- Choice can be offered on page load for different user types

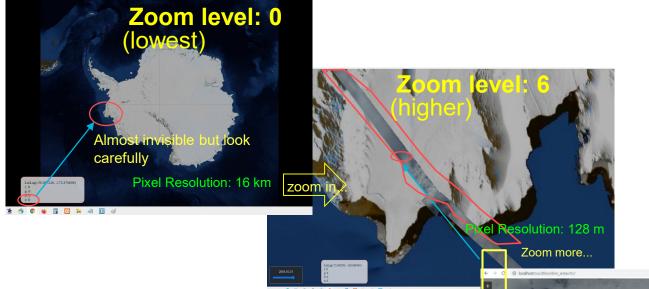
Full-stack Viewer
 Most options visible
 in plain sight

Gulf of Mexico
 Geostrophic currents
 on bathymetry base

Panarctic
 Flight and satellite for sea-ice studies


Limited Desktop App
 Visualize local files:
 Text: CSV, GeoJSON, KML, GPX
 Bundle: KMZ

Search events
 Search hurricane tracks & some basic GIS analysis



FUTURE Extensions

Upcoming extensions and improvements (not exhaustive)

FUTURE Extensions: Polar module example (slide from Larry C.)

- DMS Imagery conquered for zoom display
- Establishes robust framework for other data sources
- Next: process images, move on more airborne, satellite, and in situ

Polar Cal/Val Interface Development (OceanView - the Polar Component)

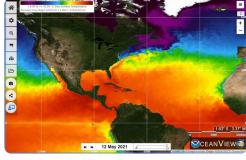
Contact: Larry Connor

THANKYOU

Socialization

That's it. **Questions? Comments?**

AGU


Live demo video (available until Oct 1, 2021): https://agu.confex.com/agu/21workshop2/meetingapp.cgi/Session/125385 (Time-segment in the video for the SOCD OceanView: 37min to 57min)

Twitter

https://twitter.com/CIRA CSU/status/1397970788356026370

Check out Ocean View, a tool developed by CIRA and

@NOAASatellites STAR researchers. Satellite, in-situ, and model data covering the Earth's oceans, all in one online tool!

1:39 PM · May 27, 2021 · Twitter Web App

Contact: Paul DiGiacomo (vision) /Prasanjit Dash (implementation)

If you have further interests, especially collaborative ideas and innovations, cross-cutting applications, showcasing a STAR product or just wish a newer feature in the viewer.

GHRSST Newsletter

https://www.ghrsst.org/ghrsst-news/noaa-star-satellite-oceanographyclimatology-division-releases-oceanview-1-0/

STAR Web

https://www.star.nesdis.noaa.gov/star/news2021 202105OceanView.php