

David M. Kehoe

Department of Biology

Indiana University

F. Partensky

L. Garczarek

H. Doré

Frederic **Partensky**

Thanks! "Team CA4"

NEW ORLEANS Wendy Schluchter

INDIANA UNIVERSITY

Jon Karty Chemistry

Andrian Gutu

Joe Sanfilippo

Allissa Haney and Morgane Ratin

J. Piterra

Iguyen

T. Grebert

M. Ratin

Laurence

Garczarek

C. Six

Picocyanobacteria are the most abundant photosynthetic organisms on Earth

Prochlorococcus

0.5-0.8 μm Warm/temperate Oligotrophic waters

Synechococcus

0.8-1.2 μm
Equator/polar
circles
Mesotrophic waters

16% of global primary production

low

Synechococcus are photosynthetic microbes that are widely distributed in oceans and strongly impact global ecology

Electron micrograph of Synechococcus

- estimated global population of 7 x 10²⁶ cells
- some Synechococcus phenotypes are spread by "horizontal gene transfer"
- variation in photosynthetic light harvesting ability is one of these phenotypes

Synechococcus pigmentation varies with spectral distribution in the marine environment

Spectral distribution of sunlight:

Marine Synechococcus strains

Light harvesting structures in Synechococcus are "phycobilisomes"

Synechococcus strains can vary significantly in their chromophore content to exploit different light environments

Different chromophores can be present in the rods of the antennae

Synechococcus light harvesting pigments:

Phycourobilin=PUB Amax= 495 nm

Phycoerythrobilin=PEB Amax = 550 nm

Phycocyanobilin=PCB A_{max} = 620 nm

The major *Synechococcus* pigmentation types are: green light specialists, blue light specialists, and blue-green generalists

Type 4 Chromatic Acclimation (CA4) provides *Synechococcus* with the ability to efficiently absorb both blue and green light

CA4 shift occurs in 3-5 days

Today's questions:

What confers CA4 to some Synechococcus?

How does CA4 work?

How do these cells perceive blue and green light?

How did C4 evolve?

How common is CA4 and where is it found globally?

Can CA4 be detected by remote sensing?

What confers CA4?

Analysis of over 70 *Synechococcus* genomes revealed two types of "genomic islands"

How does CA4 work?

Gene expression and chromophore location data gave initial hints

Genetic tools developed:

- -transformation
- -CRISPR/cpf1
- -Tn5 mutagenesis
- -insertional mutagenesis
- -selectable markers
- -autonomously replicating plasmids
- -reporter constructs

How does CA4 work?

Deleting mpeZ and unk10 showed that they are needed for adding the three PUB chromophores in blue light

How do these cells "see" blue and green light?

Deleting *fciA* and *fciB* showed that they encode CA4 master regulators that appear to be a new class of photoreceptors

How did CA4 evolve?

Two types of CA4 genomic islands and two types of specialists....

How did CA4 evolve?

Two types of CA4 genomic islands and two types of specialists....

How common is CA4 and where is it found globally?

How common is CA4 and where is it found globally? Conclusions from Tara Oceans metagenomic data and marker genes

Can CA4 be detected by remote sensing?

Limnol. Oceanogr., 42(8), 1997, 1746–1754
© 1997, by the American Society of Limnology and Oceanography, Inc.

Consequences of a *Synechococcus* bloom upon the optical properties of oceanic (case 1) waters

André Morel

Laboratoire de Physique et Chimie Marines, Université Pierre et Marie Curie and CNRS, BP 8, 06230 Villefranche-sur-Mer, France

ARTICLE

https://doi.org/10.1038/s41467-019-08457-x

OPEN

Ocean colour signature of climate change

Stephanie Dutkiewicz 1,2, Anna E. Hickman³, Oliver Jahn¹, Stephanie Henson⁴, Claudie Beaulieu^{3,5} & Erwan Monier 2,6

Today's questions answers:

What confers CA4 to some Synechococcus?

- two sets of genomic islands

How does CA4 work?

- changes in activity of chromophore attachment enzymes
 How do these cells perceive blue and green light?
- FciA and FciB are likely novel photoreceptors
 How did CA4 evolve?
- two genomic islands + two pigment types = two ways to make CA4
 How common is CA4 and where is it found globally?
- 40% of all *Synechococcus*; found deep, cold, high latitudes
 Can CA4 be detected by remote sensing?
 - your thoughts?...

F. Partensky

J. Piterra

Iguyen

L. Garczarek

H. Doré

Frederic **Partensky**

Thanks! "Team CA4"

NEW ORLEANS Wendy Schluchter

INDIANA UNIVERSITY

Jon Karty Chemistry

Andrian Gutu

Joe Sanfilippo

Allissa Haney and Morgane Ratin

C. Six

T. Grebert

M. Ratin

Laurence

Garczarek