

CEOS COAST

A web-based coastal application prototype in development https://www.star.nesdis.noaa.gov/socd/coast/ (work in progress) NOAA SOCD, NOAA Fisheries, CEOS

Prasanjit Dash, Paul DiGiacomo, Nicole Bartlett, Guangming Zheng, Nikolay Nezlin, Rachel Lazzaro, Sean Helfrich, Merrie Neely CEOS COAST Project co-leads: NOAA (Paul DiGiacomo), ISRO

CEOS Committee on Earth Observation Satellites

CEOS COAST

Coastal Observations Applications Services and Tools Co-design co-develop relevant diagnostics and tool <u>https://ceos.org/ourwork/ad-hoc-teams/ceos-coast/</u> (contact Paul D and/or Merrie B for further details)

Vision

Contribute to coastal safety and restoration by addressing challenges and risks in the coastal zones

Goal

Direct efforts toward providing new and improved scientific and technical capabilities and building capacity for a more robust, end-toend value chain:

 $Data \rightarrow Information \rightarrow (actionable)$ Knowledge

Scope and Vision

Preamble to the CEOS COAST knowledge hub: The OceanView

The COAST application is inspired by a previously released generalized geospatial viewer, namely, The OceanView.

Presentation (1hr) https://www.star.nesdis.noaa.gov/star/PastSeminars.php (2021)

https://www.star.nesdis.noaa.gov/star/documents/seminardocs/2021/20210802_Dash.pdf

https://www.star.nesdis.noaa.gov/star/documents/seminardocs/2021/20210802_Dash.mp4

OceanView = a web-application toward integrated viz of remote sensing & in situ data, model, and ocean, coastal & inland water events

- The COAST KH and OceanView have a shared origin.
- However, they diverge, and the COAST application will focus on coastal studies
 - ✓ In addition to satellite products, will showcase curated information about events and other contextual information
 - ✓ Expands on the technology stack using newer formats and protocols
 - ✓ Improved presentation using story maps and dashboard
 - ✓ Mobile-friendly (not just responsive grid but build menu differently)

Modern web	OceanView	 Projections: EPSG 3413, 4326, 3031 Raster: WMTS raster tiles in MRF (ref. OV presentation for WMTS vs WMS etc) Vector: GeoJSON (unsuitable/unresponsive for large datasets) Data-processing: Python, GDAL; Screen display: Leaflet JS
mapping tech	CEOS COAST	 All of the above + Vector tiling (Google protocol buffer format; MVT encoder/decoder) for millions of records OGR/Fiona for vector handling + Provision to effectively display high-res, non-routine images through story maps

Binary encoded, **gridded squares** in Google protobuf containing layers & attributes just as a shapefile or GeoJSON but faster... Its a watershed moment for the *client-side enthusiasts* of geospatial information. Google/OSM moving to VT.

Enough of technology, switch gears ...

CLIMATOLOGICAL

- Sea-level rise

- Acidification

- SST rise

- Extreme events (Hurricanes)

- Ocean current pattern changes

Coastal infographics

ECOSYSTEMS OVERVIEW

Temperate -Rocky shores, Kelp/Algae

Tropical - Coral Reef, Seagrass, Mangrove Polar eco

FLORA

from satellites?

LOCAL

FACTORS AFFECTING COASTAL ECOSYSTEMS

- Runoff
- Pollutant dumping

-

HUMAN

Social science data Land use land cover Recreation

WATER QUALITY INDICATORS

Chl-a (Phytoplankton) Colored Dissolved Org. Matter (CDOM) TSS/TSM SST Salinity Fluorescence line height Derived prod: Nutrient/Hypoxyia

 ∇

Can they be identified

Can satellites help?

FAUNA

Detail for specific

Fish, Snails, Turtles,

ecosystems.

Lionfish...

gaining momentum, but the variation in radiometric and geometric quality compared to traditional platforms (i.e., Landsat, MODIS, etc.) means the images are not always 'analysis ready' upon download. Need additional steps.

Components

Physical environment

- Sea state (SST, SSH, Salinity, Winds ...)
- Flooding/Inundation
- Geomorphology shoreline change/bathymetry, coastlines
- Hydrology hydrobasins (global), waterways, dams, reservoirs
- Land cover/land use, DEM

Biological/Ecological/habitat

- Water quality parameters/indicators blooms/biomass via chl-a, turbidity/sediments
- Habitat maps/assessments seagrass, mangroves, salt-marshes
- Stressors ship traffic/detection
- Oil spill/slicks vessel discharge

Social data and indicators

• Social vulnerability indicators, Human-base, Population, flood mortality and economic impacts

Events-scale, seasonal/annual static assessments, climatologies/anomalies

• Story maps for weather events including regular analytics and true/false color images/animations

Components

Physical environment

- Sea state
- Flooding/Inundation
- Geomorphology shoreline change/bathymetry, coastlines
- Hydrology hydrobasins (global), waterways, dams, reservoirs
- Land cover/land use, DEM

Biological/Ecological/habitat

- Water quality parameters/indicators blooms/biomass via chl-a, turbidity/sediments
- Habitat maps/assessments seagrass, mangroves, salt-marshes
- Stressors ship traffic/detection
- Oil spill/slicks vessel discharge

Social data and indicators

• Social vulnerability indicators, Human-base, Population, flood mortality and economic impacts

Events-scale, seasonal/annual static assessments, climatologies/anomalies

 Story maps (concept) for weather events including regular analytics and true/false color images/animations

Data handling challenges: example raster, MERGE DEM

- Univ of Tokyo
- widely referred
- 90m grid res; 2m or better vertical accuracy
- Retains negative values as low as 1000 mts (perhaps Antarctica rift) and 400 mts (Dead sea)

Challenges:

- The data is prepared as 5x5 deg tiles (6000 pixel x 6000 pixel)
- In total 2300 files (>80
 Gb) that needs to be merged/stitched and tiled at multiple zoom levels

H H C1 = 6 Feb 2022

Data handling challenges: example vector, HYDROBASINS

- Hydrosheds.org
- widely referred

Challenges:

- Separately for 9 Regions
- At 12 zoom (Pfatstetter) levels, natively
- In total 108 shapefiles (>8
 Gb) that needs to be merged and vector-tiled at individual zoom levels
- Even server-side app will throttle. So, VT.

Cf. existing visualizations

GEE: https://developers.google.com/earth-engine/datasets/catalog/WWF_HydroSHEDS_v1_Basins_hybas_7

ESRI: https://www.arcgis.com/home/item.html?id=8f6356f23e05444894190c361705a802

NASA: <u>https://appliedsciences.nasa.gov/sites/default/files/HydroSHEDS%20Tutorial.pdf</u>

Storymap concept

- For a given event, a story map provides a pointwise guided tour, with a scrolling narrative to display collated information (text, images/CC, audio, animation etc.)
- The points along the trajectory of an event are displayed on the map-panel and are linked to relevant description in the story board. These are inter-linked and mutually callable.
- The primary advantage is that a suitable "narrative" can be added to each story that is understandable to the educated non-experts in the field along with quick facts for reference.
- Another advantage is, the data that are not routinely displayed as raster tiles (due to unavailability or operational challenges) can also be shown for usecases, e.g., high-resolution images from SAR, S2, Landsat(s), Ecostress, Trishna (2025), Planet etc.

Demo: <u>https://www.star.nesdis.noaa.gov/socd/coast/</u> (password protected till beta)

THANK YOU

Backup:

Basics of true/false color composites

Electromagnetic spectrum

VIIRS M and DNB bands (750m nadir res)

#	Band	C. ₩(µm)	Width(µm)	Туре
0	M1	0.412	0.402-0.422	Violet
1	M2	0.445	0.436-0.454	Indigo
2	M3	0.488	0.478-0.488	Blue
3	M4	0.555	0.545-0.565	Green
4	M5	0.672	0.662-0.682	Red
5	M6	0.746	0.739-0.754	NIR
6	M7	0.865	0.846-0.885	NIR
7	M8	1.240	1.230-1.250	SWIR
8	M9	1.378	1.371-1.386	SWIR
9	M10	1.61	1.58-1.64	SWIR
10	M11	2.25	2.23-2.28	S₩IR
11	M12	3.70	3.61-3.79	MWIR
12	M13	4.05	3.97-4.13	MWIR
13	M14	8.55	8.4-8.7	LWIR
14	M15	10.763	10.26-11.26	LWIR
15	M16	12.013	11.54-12.49	LWIR

VIIRS I Bands (375m nadir res)

#	Band	C. ₩(µm)	Width(µm)	Туре
0	11	0.64	0.6-0.68	Vis (Red)
1	12	0.865	0.85-0.88	NIR
2	13	1.61	1.58-1.64	SWIR
3	14	3.74	3.55-3.93	MWIR
4	15	11.45	10.5-12.4	LWIR

+ DN 0.7 micron band (VIS+NIR)

VIIRS spectrum

Backup:

Recipe for true/false color composites (correct for molecular scattering as needed)

1. True Color Composite (as a pair of human-eye would see)

Color gun	VIIRS Band	CW(µm)	Band Vis (Red)	
R	M5	0.672		
G	M4	0.555	Vis (Green)	
В МЗ		0.488	Vis (Blue)	

2. False Color Composite (Bands Vis, SWIR, SWIR)

Color gun	VIIRS Band	CW(µm)	Band
R	M3	0.488	Blue
G	M10	1.61	SWIR
В	M11	2.25	SWIR

Vegetation=Green lce or snow=Red Liquid water on the ground=Black or dark red Liquid water clouds=White lce clouds=Peach Desert=Light blue-green

3. False Color Composite (Bands SWIR, NIR, Vis)

Color gun	VIIRS Band	CW(µm)	Band	
R	M11	2.250	SWIR	
G	G M07		NIR	
В	M05	0.672	Vis	

Vegetation=Green

Water=Black or dark blue

Desert/Naturally bare soil=Sandy pink

Burn scar=Red to reddish-brown, depending on the nature of pre-fire vegetation and burn severity

4. Natural (but false) Color Composite SWIR, NIR, Vis for a realistic view

CG	VIIRS Band	CW(µm)	Туре	(CG	VIIRS Band	CW(µm)	Туре
R	13	1.610	S₩IR	1	R	M10 or M11	1.610 or 2.225	S₩IR
G	12	0.865	NIR	(G	M07	0.865	NIR
В	11	0.640	Vis	1	В	M05	0.672	Vis

Natural-looking images of earth surface Flooding extent (CIRA)