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Why Phytoplankton Community Composition?

Dierssen et al., 2021



Finkel et al., 2010

Phytoplankton are taxonomically and functionally diverse

Burki and Keeling, 2014
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Background & Motivation

https://pace.gsfc.nasa.gov/



Background & Motivation

àHow can we move beyond Chl a-based estimates of phytoplankton communities 
from space?

àCan we estimate PCC at finer spatial scales (pixel level?) with the added information 
from PACE (hyperspectral OC and polarization; improved uncertainty calculations)?

àWhat types/how much data are needed to build robust predictive algorithms?



MODIS February 23, 2020
NASA Earth Observatory



Lower plankton 
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Challenges in going beyond total biomass:
1. Requires accurate knowledge of 

phytoplankton communities in situ 
2. Ocean color remote sensing is an 

inversion problem



Lombard et al., 2019



Imaging FlowCytobot (IFCB)

Plankton imagery used to determine community composition of cells ~7-150 μm



~5 million IFCB images spanning four seasons

Chase et al., 2022

Diatoms



Fr
eq

ue
nc

y

Median diatom size (μm)

1) 2.2 million images manually 
validated over two years
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Multiple approaches used to classify diatom images
2) > 300,000 images of diatoms, 
labeled with a deep learning 
classification network

ecotaxa.obs-vlfr.fr Cell biovolume à carbon 
via established conversions



Algorithms based on pigment proxies show higher diatom 
carbon estimates relative to IFCB-based estimates

Chase et al., 2022



Shallow neural networks trained using plankton imagery data

ρ = 0.71 ρ = -0.16ρ = -0.42

à Diatom carbon and environmental variables are correlated but with high variability



Merging satellite products from multiple platforms

Daily MODIS Aqua Chl a Daily MUR SST product Monthly SMAP SSS



Cdiat_Pigments (Eq. 2,5)

Cdiat (Eq. 6)

3-parameter neural network

Previous Chl a-based 
method (Hirata et al., 
2011)

Updated Chl a-based 
method

Neural network-
based method

Plankton imagery data enable improved satellite-based diatom carbon estimates

Diatoms defined 
by pigment proxy

Diatoms defined 
by plankton 
imagery

Chase et al., 2022



Diatoms defined 
by pigment proxy

Diatoms defined 
by plankton 
imagery

Previous Chl a-based 
method (Hirata et al., 
2011)

Updated Chl a-based method

Neural network-based 
method

Chase et al., 2022



Uncertainty calculations

Diatom ID accuracy
Cell biovolume 
estimate

Statistical counting 
error

Chl a uncertainty

Neural network 
uncertainty

Uncdata

At low estimated diatom carbon values, the absolute error dominates over 
the relative error, and thus UncNN= max(1.05 mg m-3, 65%) 

Is it good enough???
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Challenges in going beyond total biomass:
1. Requires accurate knowledge of 

phytoplankton communities in situ 
2. Ocean color remote sensing is an 

inversion problem



Adapted from M. J. Perry
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Phytoplankton pigments drive spectral absorption features

data from Bidigare et al. 1990
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Photoprotective
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Phytoplankton pigments estimated from absorption spectra

Chase et al., 2013



Relative pigment values vary spatially, and differently from [Chl a]

Chlorophyll b : Chlorophyll a Chlorophyll c : Chlorophyll a



Diatoms DinoflagellatesChlorophytes, Euglenoids Silicoflagellates
Prymnesiophytes
Cryptophytes

Chlorophylls b & c

Phytoplankton pigments can help differentiate groups
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Pigments from discrete water samples (HPLC)
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Hyperspectral Rrs(λ) measured in situ enables method development
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Rrs = remote-sensing reflectance

Lw = water-leaving radiance

Lu = upwelling radiance

Ed = downwelling irradiance

South Atlantic Ocean Amazon River Plume

Wavelength (nm)

N
or

m
al

iz
ed

 R
rs

(λ
) 

Pigments from hyperspectral Rrs(λ) : Chase et al., 2017; Kramer et al., 2022



Near-future hyperspectral satellite measurements 

PACE simulation https://pace.gsfc.nasa.gov/

Satellite ocean 
color missions

à Anticipated launch date early 2024

à Hyperspectral ocean color measurements 
provide more information across the visible 
wavelengths compared to multispectral ocean 
color data



Ongoing & future research

- Include data from other ocean basins in diatom carbon neural network model

- Define the spatial scale limitations for predictive models of diatom carbon

- Incorporate a size metric for diatoms (e.g., large and small types) into the 
algorithm

- Consider how to best define other groups that may not be imaged 
comprehensively by the IFCB

- UTOPIA project for plankton image analysis



UTOPIA: User-friendly Tools for Oceanic Plankton Image Analysis

Dr. Valentina Staneva
Senior Data Scientist

• Designed as an evolving community space for IFCB data analysis 
resources 

• Open-source code, examples and user guide for deep learning 
approaches to classifying plankton and particle images

• Future goal: a “live pipeline” that supports the re-training of deep 
learning networks following the contribution of new IFCB data 

Please visit https://github.com/ifcb-utopia and/or contact alichase@uw.edu to be involved

Hisham Bhatti
CS student, UW

https://github.com/ifcb-utopia
mailto:alichase@uw.edu


Take-home messages

1. Plankton cell imagery or combined methodologies to 
define the phytoplankton community greatly enhance 
algorithm development

2. Hyperspectral data is anticipated to further improve 
phytoplankton community composition algorithms, but 
robust algorithms will still rely on (1)



Email: alichase@uw.edu alisonpchaseWebsite: http://alichase.com
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