

Marine debris induced by the Great East Japan Earthquake and Tsunami: A multisensor remote sensing assessment

Lin Qi^{1,2} (<u>lin.qi@noaa.gov</u>) and Menghua Wang¹ Chuanmin Hu³, Junnan Jiao³, Young-Je Park⁴, and many others

> ¹NOAA STAR ² Global Science and Technology, Inc. ³University of South Florida ⁴TelePIX Co. Ltd, Korea

> > NOCCG Seminar, December 4, 2024

The Great East Japan Earthquake and Tsunami – March 11, 2021

- Earthquake magnitude: 9.0-9.1
 M_w
- massive tsunami up to 40.5m
- Cause >18,000 deaths
- destroyed 300,000 buildings
- damaged > 1,000,000 buildings
- > 1.5 million metric tons of debris into the Ocean

(MOE, 2012; Suppasri et al., 2013)

Huge amounts of debris washed in the ocean

Observed debris

Murry et al. (2018, MPB)

Web of Science literature

	All limited in spatial and temporal coverage
	High-res satellites, SAR, aerial imagery
+ Remote Sensing	9 conference abstracts, 4 papers
+ Debris	140
Tsunami Japan 2011	> 3000
Keyword Search	# of papers

Thirteen years passed, several questions still remain

- Where are the debris?
- What are they?
- How much?

Why are they so difficult to answer?

Field and/or airborne observations – too few to provide a large picture Satellite remote sensing – lack of spatial resolution or temporal coverage lack of algorithm/methodology

Why can we revisit these questions now?

Progresses in satellite remote sensing technology (e.g., high-res constellation) – but it cannot be applied backward to 2011

Progresses in algorithm/methodology – detection of presence, discrimination of type, and quantification

Will show these latter progresses first, and then the Japan tsunami case

Visualization method and tools

FRGB is better than RGB for visual inspection. There are other indexes for the same purpose.

Near real-time online tool (NOAA OCVIEW)

Near real-time online tool (ESA EO browser)

Al automation (deep-learning)

2. Discrimination of type The many types of floating matters

2. Discrimination of type Spectral endmember library

2. Discrimination of type

Problem: too small to show these characteristics

Solution: subtraction of nearby water

2. Discrimination of type

Analogy to atmospheric correction of ocean color (Gordon, 1983)

2. Discrimination of type

3. How much? Pixel unmixing: $\Delta R(\lambda) \approx \chi R_{FM}(\lambda)$

Now the 2011 Japan tsunami case

What are they? Spectral analysis

How can we trust these results? Debris type: confirmation from limited aerial photos

Mostly wood, but mixed with plastics

How can we trust these results?

Debris amount: compare with high-res images

How can we trust these results?

Debris amount: compare with high-res images

Distribution patterns

MODIS: up to 3/28/101 Pebis no. (103 Moder: 6 10 4/6/2011 (Day 26)

Now what?

1. Improve numerical model

2. Improve disaster response

Determine hotspots to help mitigation efforts, e.g., by directing boat operations to remove

Targeted sampling for post-disaster assessment. Lumber woods are often treated with arsenic, therefore possibly toxic to the marine and benthic environments

Assuming 20 cm thickness of debris, area can be converted to mass

What's next Improve capacity for event response

What's next Improve coverage with high-res satellites

PlanetScope constellations

(4 m resolution, 1-2 day revisits)

o 200 400 600 800 1000 1200 1400 1600 1800 2000

However, challenges still remain

Most challenge comes from the difficulty in separating debris from others

Summary and Conclusions

- **Significant progresses have been made** in algorithm/methodology development to detect, discriminate, and quantify marine debris and other floating materials.
- Applying such algorithm/methodology to the 2011 Japan tsunami event led to new information on the debris distribution, type, and amount (maximum 7.6 km², about 1.5M metric tons, maximum water area of 7000 km², duration of about 4 weeks)
- Multi-sensor assessment shows the advantage: MODIS mapping; MERIS – spectral analysis; ASTER – validation; Landsat – duration.
- Satellite remote sensing technology (e.g., high-res constellation, hyperspectral) has advanced rapidly, providing much improved capacity to map marine debris for various purposes.
- Japan tsunami case published in Qi et al. (2024, MPB)