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Is there a stable hydrogen atom in higher dimensions?
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The Schrdinger equation in higher dimensions is considered. It consists of the
kinetic energy part given by the corresponding Laplace operator, and a term de-
scribing the interaction with the electrostatic field of a point charge. From
Rutherford-type scattering experiments one can conclude that the potential of a
point charge is~1/r irrespective of the dimension of the space where the experi-
ment is carried through. Also the structure of the kinetic energy is unchanged in
higher dimensions so that one is lead to the result that there exist stable atoms in
higher spatial dimensiond=4. The solutions and energy eigenvalues to this
Schralinger equation in higher dimensions are presented. As a consequence, the
dimensionality of space can be read off from the spectral scheme of atoms: The
three-dimensionality of space is a consequence of the existence of the Lyman
series. Another consequence is that the Maxwell equations in higher dimensions
must be modified in order to have the 4otential as solution for a point charge.

© 1999 American Institute of Physids§0022-24889)00502-3

I. INTRODUCTION

The idea of extra space—time dimensions continues to pervade current attempts to unify the
fundamental forces, but in ways somewhat different from that originally envisaged. A modern
perspective on the role of internal dimensions in physics comes mainly from the superstring
theory, which is the most promising candidate for a unified field theory. The appearance of extra
space—time dimensions at high energy scales is a generic feature of string theory. Typically these
extra dimensions remain compactified at the Planck scale, but it is possible for new dimensions to
have an effect below the Planck scale. In particular, large-radius compactification schemes have
recently been discussed in a number of theoretical and phenomenological cbAtSktslarly,
the effects of extra dimensions below the Planck scale have played a role in understanding the
strong-coupling behavior of string theohyEven the old pioneer Kaluza—Klein theory is embed-
ded in a super-string theory; their states persist as a subset of the full string spectrum. However,
string theory comes to rescue and ensures correct high-energy behahiem, we can regard this
theory as an effective “medium” energy model coming from finite string field theories. Therefore,
the study of different higher-dimensional models is of importance for the understanding of more
general theories.

One of the most interesting questions addressed to the higher-dimensional approaches con-
cerns the stability of atoms in higher spatial dimensions, d&.3. These investigations started
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with the well-known paper of Ehrenfésand has inspired many additional interesting investiga-
tions. For reviews see Refs. 6 and 7, and for a recent paper on this problem see Ref. 8 where the
dimensionality of space—time has been related to physical phenomena which are accessible to
experiment.

According to the analysis of Ehrenfest, see also Ref. 9, there are statements in all papers that
in higher dimensions it is not possible to have stable atoms. It is one of our purposes in this paper
to show that it is indeed possible to hastable atoms in higher dimensiarihe main point is that
first the kinetic energy in the Schitimger has the usual form described by theimensional
Laplacian and that the electrostatic interaction in the Sitihger equation has the same form
irrespective of the spatial dimension. This of course leads to modified Maxwell equations in higher
dimensions. While the main characteristics of these new Maxwell equations in higher dimensions
remains the same as compared with the Maxwell equations in three dime(te®sslutions have
the same structure and the force between charges is the same as in three dinethssas
modified Maxwell equations do not lead to a Gaussian law for charges. This may sound strange
but the results of scattering experiments, the stability of atoms in higher dimensions, and the
structure of the force between charges is certainly of more basic physical content.

A second point in our paper is that the spectra of atoms are influenced by the spatial dimen-
sion. That means, as we shall show, that eem decide from a spectroscopic experiment the
dimension of our configuration spac€o be more concrete, the ratio of the frequencies of two
distinguished spectral lines leads to a number from which we uniquely infer the three-
dimensionality of our space. If this ratio gives a different number we would be led to four or
another number of spatial dimensions.

The most important starting point of our investigation is the structure of the” Siclyer
equation in higher dimensions. One way which fixes the kinetic part of the @iciger equation
is the quantization scheme arising from the Hamilton—Jacobi equation of a point mass which also
in higher dimensions has the usual fofs=p2/2m+V, whereV is some potential energy. In
addition, also from a constructive axiomatic schefsee, for example, Refs. 8 or )Ll6ne gets a
Dirac equation in higher dimensions which nonrelativistic Ithitecessarily possesses a kinetic
term which is proportional to the Laplace operator. Therefore, any modification of this term would
need a modification of the quantization scheme as well as a violation of fundamental properties
(like unique evolution, superposition principle, finite propagation speed, etc., see, for example,
Ref. 10 of single particle quantum systems. Since these modifications obviously changes physics
drastically we do not change the structure of the usual kinetic term.

As far as the potential energy term is concerned we use results from scattering experiments to
fix its form. Indeed, since the results of Rutherford-type scattering experiments are independent of
the spatial dimension, we can unambiguously conclude from the experimental data, that in any
dimensiond the potential must be of the form 1/r. This is of course consistent with the analysis
of Ref. 5 that atoms with the usual kinetic energy coupled to a modified potential of the form
~/r972 are not stabléthe exponentl— 2 is due to the requirement that Gauss’ law should be still
valid in higher dimensions Since our result for the electrostatic potential is not compatible with
a Gaussian law for electrostatics, we conclude that we have to modify the structure of Maxwell's
equations in higher dimensions.

Consequently, we take as general ansatz for the Hamilton operator for the hydrogen atom in
higher dimensions,

p2
H=5—+V(r), (1)

whereV(r) is the spherically symmetric potential given by

V(r)= )

o
r
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In comparison to other work on the problem of physics in higher dimensions, we do not
consider the usual physical laws like the Maxwell equati@e®, for example, Refs. 12 and) 18
the Schrdinger equation or Newton’s field equatio(see Ref. b or the Einstein equationsee
Refs. 14-1pto be valid in higher dimensions and discuss physical implications of the solutions.
Instead, we start with generphysicalproperties of the class of phenomena under consideration
and then try to get information of the structure of the physical laws. In general, these equations in
higher dimensions are very different from the equations in three dimensions describing the same
effects. An interesting approachwhich is in the line of our reasoning, is based on the causal
structure of space—time events. It deduces the four-dimensionality of space—time from a set of
axioms which do not use the notion of a differentiable manifold or of the dimensionality. Another
approach having some similarities to our reasoning is given in Ref. 18 where it is shown that for
a gravitational theory based on a quadratic Lagrangian the usual Newtonian limit and Huygens’
principle is valid only if this theory if formulated in six space—time dimensions. In Ref. 8, a very
general approach to a generalized Dirac equation in arbitrary dimensions has been used and the
dimensions of space—time has been inferred from the propagation of helicity states and from the
validity of Huygen’s principle. In this work we do not consider the fractal dimension; see, for
example, Ref. 19.

In earlier worR~" it has been shown that there are no stable hydrogen atoms in higher
dimensions. Essential for that was the assumption that also in higher dimensions Maxwell’'s
equations were assumed to be valid leading to a potential of a point charge of the-forftr 2
whered is the spatial dimension. In our approach we do not assume the usual Maxwell equations
to be valid. We only use the results of scattering experiments to get information about the potential
of a point charge. We use this potential in Sec. Il in order to solve the hydrogen atom and then
show that even in higher dimensions there are stable atoms. However, from the comparison of the
calculated spectrum with the observational data we are able to determine in Sec. IV the dimen-
sionality of our space. In Sec. V we present the full set of modified Maxwell equations in order to
show that even our potential violating Gauss’ law is part of a consistent set of equations governing
electrodynamical phenomena in a higher dimension. Though being nonlocal in general, they are
still Lorentz-covariant.

Il. THE POTENTIAL OF A POINT CHARGE IN HIGHER DIMENSIONS

The electrostatic potential of the atomic nucleus which we assume to be pointlike, can be
determined by means of scattering processes. Indeed, using the scattesipanicles at gold
atoms, Rutherford was able to deduce that the electrostatic potential within an atom is the Cou-
lomb potential. We will show that this procedure and this result is true independent of the under-
lying spatial dimensions. This can be seen already from the fact that the classical trajectory of a
point charge in a 1/ potential does not depend on the spatial dimension so that the relation
between the deflection angle and the potential also remains the same.

Starting with(1,2), conventional quantum mechanics gives the asymptotics of scattered waves
according to

1
Ut ()= ——

. eikr
(27T)d/2 elkr+fI2(é) —)r (3)

p(d-1)72

with é=r/r. This can be shown by calculating the Green’s function in the energy representation

1 . J‘ e(i/h)(r—r )-p d

G(ri)=—->—1Im | ————d
( ) (Zﬂh)d e—0" E0+|€_ p2/2m P

which results in a position dependence of the fordt— | ~(9~2) with factors depending on the
dimensiond and an integration over a spherical Bessel function. The scattering amplitude is then
given by
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f,;(é)~J e ke'\/(F yut()d9x’, (4)

whereé=r/r. In the Born approximation we have
fr(&)~ f el (k=D (F)ddx. (5)

In a scattering experiment the measured quantity is the differential cross set(ﬁ?olib)
which is related to the scattering amplitude by

o(8,ko)=

fe (812 (6)

This is a relation which is independent of the dimension of the underlying space. In the Born
approximation there is a one-to-one correspondence between the differential cross section and the
potential V(r). Therefore, by analyzing the standard Rutherford-type experiments we can
uniguely conclude that a point charge, or the nucleus of a hydrogen atom, possess a potential of
the form~r 1, independent of the spatial dimension.

lll. THE HYDROGEN ATOM IN HIGHER DIMENSIONS

We start with the Hamilton operatdf) in the external spherically symmetric potent{@)
which gives, in position representation,

[A—¢+ely=y, @)

where we introduced the abbreviations

2m
$(r)= 77 V(r), ®
2m
E:FE. (9)

The following calculations are analogous to that in three dimensions. Also, in a higher dimension
we can separate the Laplace operator into a radial and an angular part:

.1
A=R— - L, (10)
r
where we introduced
. 9® d-194
R=—+——
ar ror
(13)
L=L(0,,....0,)
With the corresponding ansatz,

we get from the Schidinger equation ird dimensions,
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2

%§R+r2(e—¢)= LY=I(1+d-2). (13

<+

Y(0,,...,04 represents the spherical harmonicsdilimensions. They are eigenstates of the

angular momentum operatBrwith the eigenvaluell +d—2). Thus we get for the radial part of
the wave function,

# d-194 [(1+d—2)
—+— —+e-¢p— ———|R=0. 14
ar? roar ¢ r? (14
We introduce
, T B 1 /_Zmar 15
"t T YT (15

and assume for the potential the form

!

B(rrd=— . (16)

We also introduce a new variabfér’) through
R=e W2r'p /vy, (17

and get an equation for the functién

d2f(r") df(r')
O=r ———+[2y+d—-1-r
dr’? [2y ] dr’
y(y+d=2)—1(1+d—2) o' 2y+d—1
+ , | (18)
r r

This equation is valid for arbitrargl. In order to solve this equation we specify the valueydfy
the requirement that the term1/r’ should vanish:

y(y+d—2)—I(I+d—-2)=0. (19

This gives the two possibilities

yi=1, (20
y_=—(+d-2), (21)

and from(18),
zf'—[9—z]f'— Bf=0, (22

with

+(21+d—2)+1

=+ (21+d-2)+1, B:= 5

a'. (23

Equation(22) is the confluent hypergeometric differential equation with the soléftion
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©

g Bronz
MB2= 2 o ot

(24)
which is appropriate for our problem.

It is clear that, in order to get no infinite term8,is not allowed to be a negative integer:
9#—1,—2,.... Therefore we cannot use the soluti@i). In addition, if the sum does not
terminate, then the solution diverges for largefaster than exgt’) which leads to non-
normalizable solutions. The condition for a termination of the sufds/Z™, or

d-1
B=|+T—a’=—k, keN. (25
Here o' is connected with the energy eigenvaluds8,15. Therefore we get for the energy
eigenvalueds,
2ma? 1 2ma? 1 1
E=———=- =—-Ry—==E,, 26
72 a2 A2 (t[(d-Di2ltk? e o 26
where the principal quantum numbeiis given by the series
~d-1 d-1 1d—l 2d—1 3 )
n_2,2+,2+,2+,.... (27

We also introduced the Rydberg const&t which, in general, may depend throughon the
dimensiond. In the cased=3 we recover the usual expressions. Note that, in general, the prin-
cipal quantum numbem must not be an integer.

Consequently, we have shown that for a potential of the fertr even in higher dimensions
there is a lowest energy level, that is, there are stable atoms.

IV. THE INFLUENCE OF THE DIMENSION ON THE SPECTRUM

We discuss now the spectrum of stable hydrogen atoms in higher dimensions. It is clear that
the spectrum depends on the dimensibi\n interesting question is whether this dependence is
accessible to observations. In an experiment only the difference of two energy eigenvalues,

AEnr,n:Enr_En, n,>n, (28)

can be measured. For a fixadne gets an atomic series which now depends on the dimedsion
In three dimensionsl=3 one gets fom=1 the Lyman series, fon=2 the Balmer series, for
n=3 the Paschen series, etc. In 4 dimension, for example, accordi@d)td is not possible to
haven=1, so that in this case there is no Lyman seriesd#6 dimensions there is also no
Balmer series.

However, since the Rydberg constant Ry may depend on the dimehgian unknown way,
we are not able to draw any conclusions about the dimensionality of space from testing the atomic
spectral series. Therefore we are forced to restrict ourselves to the ratio of two energy differences
which is also independent of any unit conventions. In our case it is enough to take the ratio of the
difference between the three lowest energy levels of one series characterined by

AEq,2n 4(1+n)3

b(m= AEn.1, (2+mZ(1+2n)

(29
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Because this functiol(n) is one-to-one, the value dd(n) uniquely characterizes the corre-
sponding series. For the first few values we BgD)=1, D(3)=5:=1.08,D(1)=3%=1.18519,
D(3)=%=1.275,D(2)=%=1.35,D(3) = 33=1.41152, etc.

Therefore we have the following experimental method at hand in order to determine the
dimensionality of our space: We consider that series which belongs to the lowest energy state.
From this series we take the two highest frequency spectral lines and calculate the ratio. This gives
the valueD (n,,). From this value we can calculate the correspondipg and, using(27), the
dimensiond=2n,,,+1 of our space. Here we used that in each dimension the lowest series
contains only transitions with=k=0.

We know from spectroscopy of the hydrogen atom that the two spectral lines coming from
transitions to the lowest energy level haigee, for example, Ref. 21215.67 A and 1025.73 A,
so thatD(n,;,)=1216/1026-1.18518. A comparison with the values Bf{n) shows that this
implies n,,,=1, and from Eq.(27) that d=3. Therefore we hav@roven by a spectroscopic
experiment that our space is three-dimensiofrabther words, because we know the spectrum of
the hydrogen atom we are able to determine the dimensionality of space.

We want to stress once more that it is not the stability of the atom which one may use as
argument in favor of three spatial dimensions. In our approach the stability of atoms is secured in
any dimension. It is only the structure of the spectral series which leads us to the conclusion that
space is three-dimensional.

V. MAXWELL EQUATIONS IN HIGHER DIMENSIONS

We have seen that the electric potential of a point charge in the @olger equation in higher
dimensions must be of the forth~ 1/r independent of the dimensiah Since the usual Laplacian
has the same form in any dimension, the above potential cannot be a solution of the Poisson
equation ind>3 dimensions. However, we show that it is indeed possible to present a consistent
set of equations governing the electromagnetic phenomena in higher dimensions which violates no
fundamental principle of electrodynamics and, in addition, possesses the above electrostatic solu-
tions for a point charge. Of course, the structure of the Maxwell equations will be not the same as
in three dimensions.

In order to determine the structure of the stationary Maxwell equation for the electric field, we
use results of Riesz distributions, see, for example, Refs. 22, 23. In doing so we first define the
distribution

e '™ [(d/2)—\]r# e
Gy:= : 30
§ 420 () 30

wherer as usual is the distancé= Eid:l xiz. The properties of these distributio@g are given by

the composition law
G#*G)\':G)\+M’ (31)
and an explicit representation in the case of negative integers,
G=A"%5, k=0,-1,-2,.., (32

whereA is again the Laplace operator in an arbitrary dimensétine usual Dirac delta distribu-
tion, and the star the convolution operation.

We formally introduce operatorﬁt_X by

AM=G_,, (33

so that the following composition law holds:
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KM*G)\:G)\_# . (34)
An important special case is given py=N\:

A*G,= 4. (35

This means thaG, is a Green’s function corresponding to the operatée .

Now we come back to our problem of finding the field equations which are required to possess
the solution~r~?1 in any dimensiond. That means that we require in any dimens®p~ 1/r
which impliesu=(d—1)/2. Consequently,

AT VZG )=, (36)

or
— 1 . d-1
A(d*l)/Z*_:(477)(d71)/2e[|17(d71)/2]1'* 5 5. (37)
r

This means that the equation for the electric potential, or the generalized Poisson equation, reads
as

(K(d*l)/lk ) (X)= (477)(d1)/2e[i77(d1)/2]I‘<d;_1) p(X), (38

wherep(x) is the charge density id dimensions. The operatQTr(d*l)’2 replaces the Laplacian in
three dimensions. In general, this operator is no differential operator.
We briefly discuss this new form of the Poisson equation in electrostatics.

(1) Itis possible to reformulate the field equation for the potenfiah terms of the electric field
strengthE= —V ¢. For doing so we usé31) and(32):
A-D)/2, b= (K*K(d—Ii)/Z)* b=A S+ (K(d—3)/2* b)= o+ (K(d—S)/L\, Sp)= (K(d—S)/Z* V.E),
(39
so that we get as field equation for the electric field strength,

((Bd—B)/Z* V). E)(X) — (47T)(d—l)/2e[i7r(d—l)l2]l—* ( d;_1> p(X). (40)

(2) The force between two charges still has the same form as in 3 dimensions, namely
~0y02/r2.

(3) For all charge densities(x) the solution for the potential looks as usual, i.er*}.

(4) In odd dimensionsl=1,3,5,..., the above equation reduces (@3 and(32) to a differential
equation:

Nd—l)/z*i — s Ad-D2 } — Ad=D)12 1 _ (477)(dl)/2e[iw(d1)/2]r( d; 1 5 (a1)
r r

r
For a three-dimensional spaabs 3, we get the usual Laplace equatifp(x) = —4mp(X)
and in a five-dimensional space we det(x)=(4)%p(X).

(5) In even dimensions, the operataf®~2’2 is no differential operator but instead a pseudo-
differential operator. Therefore the corresponding field equations are pseudo-differential op-
erator equations. These operators are nonldtadleed, differential operators are the only
local operators acting linearly and surjective ©fi; see Ref. 24. For a physical discussion,
see, for example, Ref. 25.

(6) An essential difference to the usual properties of the electric field in 3 dimensions is that now
the Gauss’ law is no longer valid. This is easy to see by integrating the fundamental solution
r~1in an arbitrary dimension over the surface of a sphere with ragius

d;—l) RIS, (42)

J'E-dA=J' V T PRA-140) = (47m) 0 D@ D2
rR I
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wheref is the unit vector in radial direction ardX) is the surface element ith dimensions.

The result depends on the radius of the sphere so that indeed Gauss’ law does not hold. It is
only in three spatial dimensions that the quanfiywhich plays the role of a force on a
charged particle, is also that quantity which integral over the area enclosing a volume gives
the total charge which acts as sourcédedthe field strengtl is defined by means of the force
acting on a charged particle; whether this quantity obeys a law like Gauss’ law is a deduced
property which holds in three dimensigns

However, Gauss’ law is valid for a quantity deduced fr&mnamely fore=A(d=3)/2g:

V.@=(4m)d-Di2ginl(d-1/2p

p(X)C> QE~dA:(477)<d_1)/2ei”[(d_l)/2]Q,

(43
whereQ= [p(x)d% is the charge contained in the volurde

It is also straightforward to give the full set of Maxwell's equations such that their static limit
give the Poisson equation discussed above: Since the covariant generalization of the Laplace
operatorA is given by the d’Alambert operatan, the covariant generalization of Poisson’s
equation i (472 = (477) (@~ D/ (A= ((d—1)/2)p. We complete the quantities to co-
variant 4-vectors, namely the 4-potentist and the 4-curreni?. Then we have, using the same
methods as above,

ja:a (d—=1)/2,4 Ad= (ﬁ *[] (d—3)/2)* A2=[] &* (a (d—=3)/2, Aa) = 5% (a (d—3)/2*D Aa)
=0 (d—3)/24 &bea: :;bea, (44)

where we defined a generalized partial derivatiye=0 (¢~ %% g, and, as usual, the Maxwell
field strengthF ,,= d,A,— dpA,. We also used the Lorentz conditiogA®=0. By construction,
these generalization of Maxwell’s equations is covariant. Also current conservation is fulfilled. For
even spatial dimensions these equations are nonlocal.

To sum up: despite the fact that the mathematical structure of the equation determining the
electric potential from a given charge density changes dramatically when compared with the
three-dimensional case, the physical content does not change. The solution has the same form and
the force between charges is the same as in three dimensions. Only Gauss’ law loses its meaning.
However, we think that the specific expression for the force between charged particles and the
stability of atoms are of more basic physical importance than the validity of Gauss’ law.

VI. SUMMARY AND DISCUSSION
To sum up, we have shown the following.

(1) From Rutherford-type experiments we can conclude that the potential of the point charge in
any spatial dimension must bel/r.

(2) This potential leads to stable atoms in higher dimensions.

(3) The dimensionality enters the atomic spectra thus making it possible to infer uniquely from
atomic spectra the three dimensionality of space.

(4) That the Maxwell equations have to be modified in higher dimensions in order to allow
solutions of the form 1/ leading to nonlocal equations in even spatial dimensions.

In the case that one uses the usual Maxwell equations in higher dimensions the hydrogen atom
is proven to be not stable. This has been related to the fact that orbits of classical bodies in a
potential derived from the usual Poisson equation in higher dimensions are not stable, as well:
small perturbations of the circular orbit leads the body to fall into the central body or to leave the
system. Consequently, if one wants to enlarge the above reasoning to the case of Newtonian
mechanics, one has to require stable orbits, which gives thgoténtial for gravity also in higher
dimensions. This forces one to modify the Poisson equation for the Newtonian potential in the
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same way as the Poisson equation for the electrostatic potential in Sec. V. That means, in higher
dimension d the field equation for the Newtonian potentiél(x) must be of the form
(A= D2 ) (x) = (47) @~ D2 m(d=D2 ((d—1)/2)p(X), wherep(X) is the mass density. As a
consequence, also Einstein’s equations should be modified in higher dimensions.

In conclusion, we want to say that our or similar considerations do not rule out the possibility
of unifying physics in higher dimensions; we just restrict, from observations, the direct physical
applicability of dynamical equations to three spatial dimensions.
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